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Abstract
It is well-established that traffic-related air pollution has a detrimental impact on health. Much of the focus has been on diesel
exhaust emissions due to a rapid increase in vehicle numbers and studies finding that this pollutant is carcinogenic.
Unsurprisingly, the highest diesel exposures that the general population experiences are during urban daily commutes; however,
few studies have considered professional drivers who are chronically exposed to the pollutant due to their work in transport
microenvironments. In this narrative review, we address the literature on professional drivers’ exposure to diesel exhaust and
advocate that a modern exposure science approach utilised in commuter personal exposure studies is needed. This type of
evaluation will provide a more detailed understanding of the time-activity of professional drivers’ exposures which is required
to identify specific interventions to reduce their risk to diesel exhaust emissions.
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Introduction

The rapid and sustained growth in vehicle numbers has result-
ed with engine emissions substantially contributing to urban
air pollution issues (Health Effects Institute 2010). This
growth has occurred in parallel to an increased appreciation
of the health impacts of traffic-related pollutants on human
health over the life course. Adverse associations have been
observed with birth outcomes (Smith et al. 2017), sub-
optimal lung (Mudway et al. 2019) and cognitive develop-
ment (Alvarez-Pedrerol et al. 2017), the development and

exacerbation of chronic respiratory (Gehring et al. 2015;
Pfeffer et al. 2018; Samoli et al. 2016) and cardiovascular
disease (Alexeeff et al. 2018; Atkinson et al. 2010; Bell
et al. 2014), increased risk of dementia (Carey et al. 2016)
and cancer (Hart et al. 2015) and ultimately premature death
(Atkinson et al. 2016; Hoek et al. 2002).

Alongside traffic-related air pollution, the increase in vehi-
cle numbers has also led to concerns over their contribution to
global warming, leading the European Commission in the
1990s to incentivise diesel vehicles due to their lower carbon
dioxide emissions compared to gasoline vehicles (Cames and
Helmers 2013). As a result, in the last 20 years, there has been
an increase of 45 million diesel cars in Europe (Cames and
Helmers 2013), with diesel vehicles increasing from 27.1% in
2005 to comprise 42.4% of the European vehicle fleet by 2017
(European Environment Agency 2018). Whilst they do emit
less carbon dioxide, the increase in diesel vehicles has led to
the concern that they are disproportionately adding to the air
pollution health burden. Regulators have found they emit sig-
nificantly higher levels of fine particulate matter compared to
gasoline vehicles, with estimates that diesel vehicles contrib-
ute greater than 90% of total exhaust emissions in the UK
(Monks et al. 2012).

Whilst the health effects of traffic-related pollution are now
well-established, studies have identified that exposure to die-
sel exhaust is highest for the general population during the
daily commute (Karanasiou et al. 2014). However, few studies
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have considered professional drivers who are chronically ex-
posed to the pollutant due to their prolonged work in transport
microenvironments (Knibbs and Morawska 2012). This paper
reviews our current knowledge on the hazard and exposure of
diesel exhaust in professional drivers. We briefly outline
methods employed which identified the health risks of diesel
exhaust emissions and provide a narrative review on studies
which have measured professional drivers’ occupational ex-
posure to diesel exhaust. The paper concludes by highlighting
how a modern exposure science approach utilised in commut-
er studies can enhance our understanding of professional
drivers’ risk of diesel exhaust exposure and assist in identify-
ing strategies to reduce adverse health outcomes in this
occupation.

Assessing the health effects of diesel exhaust
emissions

The evidence of the health effects of traffic-related pollution
was initially identified by assessing health metrics of popula-
tions who live nearby to heavy traffic. These studies have
found increased cardiopulmonary mortality, asthma and re-
duced lung function for those living near major roads
(Brunekreef et al. 2009; Health Effects Institute 2010; Hoek
et al. 2002; Janssen et al. 2003), with one study finding that an
increase in diesel truck traffic resulted in an exacerbation of
asthma symptoms (Brunekreef et al. 2009). More recently,
studies addressing the impact of traffic-related air pollution
on health, link health data to estimates of individual exposures
within the population, with nitrogen dioxide (NO2) most often
used as a proxy for traffic-related pollution (Atkinson et al.
2016; Samoli et al. 2016).

Increasingly, there has been focus on the measure-
ment of primary combustion particles from the tailpipe
of vehicles, using a variety of metrics such as black
carbon (BC), elemental carbon (EC) or particle number
concentrations. Concentrations of these traffic-derived
pollutants have been measured at urban background
sites in major cities and then related to daily variations
in deaths and hospital admissions (Atkinson et al. 2016;
Samoli et al. 2016), and models have been developed to
estimate individual exposures in more spatial detail,
both in Europe and North America (de Hoogh et al.
2018; Jones et al. 2020). Those studies that have com-
pared the impacts of total ambient PM mass against
these refined estimates of tailpipe exposure have gener-
ally found the latter to be more strongly associated with
adverse health effects (Atkinson et al. 2016; Janssen
et al. 2011; Samoli et al. 2016), with diesel exhaust
emissions thought to contribute disproportionately to
these pollutant concentrations (Janssen et al. 2011).

The statistical associations observed between traffic-
derived air pollution and adverse health effects are also

supported by experimental studies in which human volunteers
have been exposed to diesel exhaust under controlled condi-
tions. These studies have demonstrated the induction of acute
pulmonary and systemic inflammation (Salvi et al. 1999), as
well as cardiovascular effects (Mills et al. 2007) using diluted
exhaust from engines operating under idling and loaded con-
ditions (Barath et al. 2010).

The health studies reported are often criticised due to
uncertainty around whether the proxy values or controlled
concentrations used are an accurate surrogate for actual
exposure (Brauer et al. 2002). Exposure misclassification
is the difference between estimated exposure (through
fixed monitors or models) and an individuals’ true expo-
sure (Health Effects Institute 2010). It is thought that ex-
posure misclassification is higher for those populations
that have disproportionately higher exposure (Health
Effects Institute 2010) such as those living, working or
going to school near busy roads, or those who work in
highly polluted environments such as professional drivers.
Personal monitoring, where participants carry a portable
monitor to assess how much air pollution they inhale as
they go about their typical day is often viewed as the gold
standard for exposure assessment (Brokamp et al. 2019;
Health Effects Institute 2010). This type of monitoring is
utilised to reduce exposure misclassification and provide
better dose exposure response estimates. Several studies
have utilised personal monitoring for short time periods
(typically over 1–2 h) and examined the responses of in-
dividuals, both healthy and with pre-existing disease
(asthma, chronic obstructive lung disease, ischaemic heart
disease, etc.) to real-world exposures in high diesel vehi-
cle microenvironments (McCreanor et al. 2007; Sinharay
et al. 2018). These studies have also shown impacts on
lung function, airway inflammation and vascular indices
(McCreanor et al. 2007; Sinharay et al. 2018).

Personal monitoring was initially conducted to better char-
acterise occupational exposures, associated health risks and to
provide better working conditions for employees.
Occupations where diesel emissions are prevalent have been
scrutinised with studies finding excess lung cancer deaths as-
sociatedwith exposure to EC inminers (Silverman et al. 2012)
and truck workers in the USA (Garshick et al. 2012).
Diesel engine exhaust was also estimated to be the third
most harmful substance (after asbestos and silica) relat-
ed to occupational lung cancer in the UK (Rushton
et al. 2012). These studies contributed to diesel exhaust
being classified as a class 1 carcinogen (International
Agency for Research on Cancer 2012), and is therefore
a known occupational risk to individuals who are chron-
ically exposed to this pollutant including professional
drivers. Whilst there are known health effects, there is
minimal evidence in published literature as to what can
be done to reduce drivers’ exposure to diesel emissions.
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Studying diesel exposures in the real world

Ambient air pollution represents a heterogenous mixture of
particles and gases, derived from mixed sources. To assess
the contribution of diesel engine exhaust to this mixture re-
quires the use of surrogate measures, where the contribution of
diesel is greater than that of other mixed sources.
Recent studies have moved toward the measurement of
BC or EC as a proxy for diesel emissions (Janssen
et al. 2011; Samoli et al. 2016).

Although BC and EC both represent the carbonaceous
aerosol, they represent slightly different properties of particu-
late matter, with BC described as a light absorbing substance
composed of carbon and EC as the carbonaceous fraction that
is thermally stable in an inert atmosphere (Petzold et al. 2013).
In practice, they largely differ only in their measurement tech-
nique, where EC is based on thermal-optical methods, whilst
BC by optical absorption methods (Briggs and Long 2016).
Despite this difference, in locations where the primary source
of carbonaceous aerosol is diesel exhaust they are highly cor-
related (Hessey et al. 2017; Salako et al. 2012). This is partic-
ularly relevant in Europe and North America as 70% of emis-
sions of BC are estimated to be from diesel engines (Bond
et al. 2013). EC is often measured in occupational studies as a
marker of diesel engine exhaust due to approvedmeasurement
methods from NIOSH (National Institute for Occupational
Safety and Health 1994); however, given the high correlation,
we suggest that BC should also be accepted in occupational
exposure assessment of diesel exposure as well. This is pri-
marily due to the differences in measurement technique with
EC required to be measured on filters making high time-
resolved measurements difficult. BC can be measured at res-
olutions as low as one second (Cheng and Lin 2013), and this
can provide an improved understanding on the causes of high
exposure during a working day and a better tool with which to
manage at-risk populations to diesel exposure. There is also
growing interest in employing BC for regulatory air quality
assessments, with reports from theWorld Health Organisation
(2012), US Environment Protection Agency (2012) and
European Environment Agency (2013) all emphasising the
burden associated with this pollutant metric on human health.

Professional drivers and occupational exposure to
diesel exhaust

It has been acknowledged in a number of studies that the
urban commuting microenvironment most intensely contrib-
utes to people’s daily air pollution exposure (Dons et al. 2011;
Karanasiou et al. 2014; Lim et al. 2015). Studies have also
found that although people typically spend only 6–10% of
their day in the commute environment, this contributes be-
tween 20 and 30% of their daily exposure (Dons et al. 2012;
Williams and Knibbs 2016). The average exposure during

commuting has been found to be up to eight times higher than
in the home environment (Dons et al. 2011).

However, most of these studies focus on in-vehicle expo-
sures in individuals during their daily commute to and from a
fixed place of work. In comparison, there has been a relative
absence of studies addressing the occupational exposures of
urban professional drivers to air pollution (Gany et al. 2017;
Knibbs and Morawska 2012). Whilst typically the commute
for the majority of workers only takes up to a couple of hours
each day, those employed to drive as part of their job such as
couriers, bus drivers, taxi drivers, waste removal, emergency
service workers and other such occupations can spend up to
12 h of their day in urban transport microenvironments. One
study that investigated occupational exposures found that
truck drivers in a high polluted urban environment in
Beijing had over a third higher exposure to EC compared to
office workers (Baccarelli et al. 2014), supporting the view
that professional drivers are likely exposed to far higher con-
centrations of traffic-related air pollutants than typical office
workers. It is therefore highly likely that individuals who are
in-vehicles for most of their working day are disproportion-
ately affected by air pollution.

Current occupational epidemiological studies have been
criticised for the use of imprecise proxies for diesel exposure,
with occupational mortality often linked to years in job or
against workers in non-exposed occupations (Fang et al.
2010; Sun et al. 2014). There have been reviews investigating
the health effects of ambient pollution to commercial drivers
(Lawin et al. 2018), biomarkers of occupational exposure
(Brucker et al. 2020) and occupational exposures to diesel
exhaust (Pronk et al. 2009). However, none have identified
studies investigating where and when the highest exposures
for professional drivers occur and how these exposures could
be mitigated. Here, we summarise occupational professional
driver exposure studies to BC and EC conducted between
2000 and 2020. An electronic search was conducted in
PubMed using the terms “drivers”, “occupational”, “diesel”,
“black carbon”, “elemental carbon” and “exposure”. Studies
were included if they physically measured personal exposure
for professional drivers and were observational. No experi-
mental or intervention studies were included.

We identified 16 studies which measured personal profes-
sional drivers’ exposure (Table 1). Average shift exposures
ranged from 1 to 64μg/m3 for EC and BC. Seven studies were
conducted in Asia, four in North America, four in Europe and
one in Africa. The highest exposures were measured in Africa
(64 μg/m3) and Asia (4 to 28 μg/m3). Unlike the European
and North American studies, there is uncertainty around
whether the high exposures in African and Asian countries
predominantly relate to diesel emissions, due to other sources
of EC and BC in these countries such as biomass burning
(Salako et al. 2012). The highest exposure recorded in high-
income countries was 10 μg/m3 in Estonia in 2002. The
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lowest exposures were found in all four studies in the USA (1
to 3 μg/m3), which is not surprising given the comparatively
low proportion of diesel vehicles in the country (Chambers
and Schmitt 2015). It is important to note that a number of
these studies were conducted over 10 years ago, and since this
time regulations for new vehicles have decreased tailpipe
emissions by up to 90% particularly in European and North
American locations (Anenberg et al. 2017; Fiebig et al. 2014).
Despite more stringent emission regulations, the latest studies
in 2017 and 2019 on taxi drivers in Europe found exposure to
EC and BC between 3 and 9 μg/m3 (Hachem et al. 2021;
Moreno et al. 2019). This is a concern as a study found that
a lifetime occupational exposure of 1 μg/m3 of EC would lead
to 17 excess lung cancer deaths per 10,000 individuals, above
agreed occupational risk limits in the USA and Europe
(Vermeulen et al. 2014).

Only two of the studies reviewed (Baccarelli et al. 2014;
Davis et al. 2007) sampled more than 80 shifts with the majority
less than 20 and focussed on a single sector such as taxi, bus or
truck drivers, making it difficult to assess whether these studies
are representative of the industry as a whole. Only five out of the
16 studies employed time-resolved instrumentation (Gany et al.
2017; Hachem et al. 2020, 2021; Lee et al. 2015; Moreno et al.
2019) using a portable aethalometer to measure BC at a 1-min
time resolution. All other studies used time-integrated assessment
for the duration of the drivers shift or for one study over a 24-h
period. The issue with the time-integrated studies is that they
cannot provide time or location specific information on where
the driver experienced most of their exposure and hence it is
difficult to provide advice on interventions and encourage behav-
iour change to reduce their exposure. Of the five high time-
resolved studies, 17 waste truck workers had their personal BC
exposure measured in a study in Seoul, Korea (Lee et al. 2015);
with the study reporting that better engine emission standards,
lower tonnage and placement of tail pipes had a significant in-
fluence on the workers exposure, highlighting some potential
interventions which could reduce occupational exposures. The
second study in New York City measured BC and PM2.5 expo-
sures to seven taxi cab drivers and found that in-vehicle expo-
sures were almost double those of background monitors (Gany
et al. 2017). The three other studies measured 20 taxi driver shifts
in Lebanon (Hachem et al. 2020), 14 taxi driver shifts in
Barcelona (Moreno et al. 2019) and 50 taxi driver shifts in
Paris (Hachem et al. 2021) and suggested that drivers’ BC expo-
sure was affected bymeteorology, vehicle type, window position
and ventilation settings. Whilst these studies help illustrate the
high exposures of drivers, the sample sizes are small and varia-
tions in design and monitoring make an integrative summary
difficult. Utilising time-resolvedmonitors alongsideGPS devices
can also assist in identifying locations and times where the
highest exposure occurs and provide better information to assist
drivers, employers and regulators to reduce diesel exposure in
this occupation. This is particularly important for professional

drivers, as unlike most other occupations they move across large
distances and through heterogenous locations.

As an illustration of this point, we have included some
representative BC exposure data collected from a taxi driver
in London, across a single shift (Fig. 1). This highlights sev-
eral key points: (1) the extremely high peak exposures occur-
ring when travelling through the most congested parts of the
city (> 90μg/m3); (2) the extended duration of in-vehicle peak
concentrations (in this instance this lasts over 30 min); (3) the
independence of the in-vehicle exposures from stationary
roadside BC measurement over the same period; and (4) the
very high proportion of BC exposure experienced during
work, versus time spent at the office or at home. This
short example provides an insight into the type of in-
formation that is lacking in most studies, but which
would improve our understanding of professional
drivers’ exposures to diesel exhaust.

Blending an exposure science approach to
occupational assessment

Whilst some of the occupational studies reviewed employed
time-resolved methods, most high-resolution air pollution
studies to date have been conducted within the field of expo-
sure science. These type of studies focus on understanding
human behaviour and activities to advance our knowledge
on the determinants of high exposure to agents (Lioy 2010).
Most of these studies assess people’s air pollution exposures
for a minimum of 24 h to identify events where high exposure
events occur throughout their day and quantify contributions
of exposures in different microenvironments (Carvalho et al.
2018; Dons et al. 2011; Koehler et al. 2019). This extended
duration of monitoring could also be beneficial for occupa-
tional studies which typically only measure shift exposures to
provide a contrast of occupational exposure compared to other
microenvironments in a worker’s daily life.

A subset of these exposure science studies have focussed
entirely on commuting due to the intensity of pollution expo-
sure experienced in this environment (Karanasiou et al. 2014).
Due to the advent of a portable BC monitor (Cheng and Lin

�Fig. 1 Representative black carbon concentrations measured by a taxi
driver working in London. The upper panel illustrates in-vehicle black
carbon exposure during a journey from west (Heathrow) to east (Bethnal
Green) London, starting at 18:10, 20 April 2018, with a peak measured
concentration > 90 μg/m3. The lower two panels show the real-time
measurements of black carbon between 14:00 and 00:00, including the
journey illustrated in the upper panel, at 1 and 15-min resolution. The
personal exposure for the taxi driver within the office and home environ-
ment are also marked for comparison. In the lower panel, roadside black
carbon concentrations measured at a London roadside site are illustrated
to show the potential mismatch between population exposures at a fixed
roadside monitor and within vehicles in the congested urban environment
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2013), the number of commuting exposure studies focussing
on diesel emissions in the last 10 years has rapidly increased.
An electronic search was therefore conducted in PubMed
using a combination of these terms “black carbon”, “elemental
carbon”, “diesel”, “exposure”, “vehicle”, “commute” for stud-
ies between 2000 and 2020. We provide a broad review of
these commuter exposure papers to identify insights
which can be employed to enhance occupational assess-
ments and improve our understanding of professional
driver exposure to diesel exhaust.

We identified 27 studiesmeasuring in-vehicle exposure to BC
and EC (Table 2); the studies were restricted to vehicles which
professional drivers were likely to drive such as cars, buses and
vans and excluded any modelled exposures. Twenty-five of the
studies measured commuting exposure at high time resolution,
with some studies measuring exposures at a 1-s resolution. There
was a significant variation between studies with in-vehicle BC
exposure ranging from 0.5 to 77.5 μg/m3 across 16 countries.
This is likely due to a number of reasons including differences in
location (meteorology, traffic characteristics, levels of conges-
tion), duration, study design (averaging time, replications, venti-
lation settings) and vehicle type and age.

These studies are unlikely to represent professional
drivers’ exposures, as they largely focused on short
commutes in morning and evening rush hours on fixed
routes with the researcher simulating expected commuter
behaviour. However, insights on the determinants of
commuters’ exposures could be similar for professional
drivers and should be further investigated. Determinants
of personal exposure in transport are typically grouped
in four ways, personal factors, mode of transport (bus,
train, bicycle, walk, car, etc.), traffic factors and mete-
orology (Kaur et al. 2007). In-vehicle exposure can be
highly variable in time and space due to meteorology,
season, fuel type, ventilation settings, traffic levels, fil-
ters, driver behaviour, proximity to pollution source,
dispersion of emissions in roads and street canyons (de-
termined by wind speed and direction, turbulence and
boundary layer factors), air tightness of vehicle, vehicle
age, type of vehicle and other vehicle characteristics
(Dons et al. 2013; Ham et al. 2017; Karanasiou et al.
2014; Li et al. 2015; Tartakovsky et al. 2013) (Fig. 2).

Studies have found a high variability of in-vehicle
traffic-related pollutant concentrations depending on
street type and density of vehicles (Li et al. 2015).
Intersections and highways have been found in previous
studies to have the highest in-cabin exposure levels for
BC (Dons et al. 2013), with heavy-duty diesel vehicles
thought to be the highest contributor to exposure (Li
et al. 2015). Peak hours have also been associated with
the highest exposure, with congestion thought to be the
main contributor for elevated in-vehicle exposure (Dons
et al. 2013; Good et al. 2016; Zuurbier et al. 2010).

Micrometeorology within street canyons or tunnels
could also be of influence, as this can cause high accu-
mulation of pollutants in localized areas (Vardoulakis
et al. 2003), leading to infiltration into vehicles.

Studies have found that ventilation settings in vehi-
cles can reduce exposure by up to 75% (Ham et al.
2017). With having the windows open being the worst
way to ventilate your vehicle compared to other venti-
lation modes such as outside air and recirculate modes
(Li et al. 2015; Okokon et al. 2017; Williams and
Knibbs 2016). However, even when windows are open,
and are subsequently closed and recirculate mode is
employed, this can lead to a drastic reduction in BC,
suggesting that pollutants can be efficiently removed
from the cabin (Li et al. 2015). Other ways to reduce
in-vehicle exposure are to install filters or air purifiers
on the ventilation system, with one study finding that
purifiers reduced fine particle concentrations by up to
99% compared to the outside air (Tartakovsky et al.
2013). The air tightness of the vehicle is also an impor-
tant consideration for in-vehicle exposures. A vehicle
with a greater air exchange rate has been found to in-
crease in-cabin exposures (Bos et al. 2021; Karanasiou
et al. 2014).

There is insufficient evidence to suggest whether in-
vehicle exposure is affected by different vehicle types
and fuel. There is further uncertainty on the effect of
self-pollution in-vehicles; however, one study has found
that self-pollution can contribute up to 30% of PM2.5

exposure experienced by car occupants (Harik et al.
2017), potentially indicating higher exposure to drivers
of diesel cars. Self-pollution in buses has also been
suggested due to the frequency of door opening and
exhaust location with newer bus fleets having lower
in-cabin concentrations compared to older fleets (F.
Yang et al. 2015; Zhang and Zhu 2010; Zuurbier
et al. 2010). Despite a number of studies investigating
the determinants of in-vehicle exposures, there is still
significant difficulty in identifying which variables
should be prioritised to reduce exposure.

This evidence suggests that there may be practical behav-
iour changes, new technology and different cabin types that
can reduce exposures to professional drivers; however, we did
not identify any studies that tested this hypothesis in a real-
world setting. There is uncertainty whether similar interven-
tions for this occupation would be effective in reducing expo-
sures as their activity is likely to be substantially different to
the everyday commuter. Furthermore, whilst these commuter
studies focus on driving exposures, it is unknown whether
exposures would also be high for professional drivers when
they are working but not driving, separating these microenvi-
ronments throughout the working day will also be an impor-
tant facet for accurate exposure assessment in this occupation.
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Conclusion

Exposure studies have highlighted that some of the highest
exposures to traffic-related pollutants are experienced by peo-
ple commuting, especially those driving within highly
congested urban areas. These exposures are influenced by
several factors including cabin air tightness, the use of venti-
lation and the type of air inlet filters, but there are few studies
that address these exposures in detail, and no large studies
which assess the effectiveness of these changes. Given the
evidence that acute exposures to diesel exhaust is a class 1
carcinogen and have been associated with adverse acute respi-
ratory and cardiovascular effects, it is surprising that the ex-
posures of professional drivers have not received wider atten-
tion from a health and safety perspective.

Those people that are required to work in traffic are likely to
be disproportionately affected by exposure to air pollution, and
whilst this has been acknowledged in occupational health studies,
a modern exposure science approach on the time-activity of a
professional driver has not been applied. Understanding their
activity patterns is essential in providing better information on
how to reduce their exposure. Professional drivers represent one
of the largest occupational groups, many being self-employed, or

employed on temporary contracts. There is an urgent need to
better understand exposures in this group and to parameterise
the chief determinants of their exposures during the working
day, such that low cost, effective mitigation measures can be
put in place. The advent of reliable portable sensors for indicators
of diesel exhaust exposure alongside use of GPS devices will
allow large-scale evaluations of this issue and the cooperation
between industry and academia afford the opportunity for the co-
design of studies to provide evidence lead solutions to
an underappreciated issue. There is therefore a clear
need for larger experimental campaigns to fully
parameterise the level and chief determinants of in-
vehicle exposures in occupational drivers.
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