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Abstract
The nationwide lockdown in India to flatten the pandemic COVID-19 curve has resulted in the reduction of anthropogenic
emission sources to a great extent. This study reports change in air quality and its impact on the environment during the unique
lockdown scenario at Bhubaneswar, a coastal smart city in east India. The urban air shows a remarkable reduction in the mean
pollutant levels influenced by traffic emission viz. NOx (~ 67 %) and BC (~ 47 %) during lockdown over the pre-lockdown.
Comparatively, a lower reduction of CO (~ 14 %) is attributed to the dominance of natural atmospheric chemical regulation and
biogenic sources in addition to anthropogenic contributions. In addition to the lockdown, frequent rain events due to depression
in the Bay of Bengal (BoB) also had a significant role in the reduction of the primary pollutants over the study site. An
enhancement of secondary pollutant viz. O3 (~ 3%) with a distinct diurnal pattern was observed during the first phase of
lockdown over the pre-lockdown period. An anti-correlation between O3 and NOx during pre-lockdown points to a higher O3

production potential with decreasingNOx.While a reduction in the titration of O3 due to suppression of fresh NO emissions led to
accumulation of O3 in the first phase of lockdown, inhibited photochemistry due to cloudy skies as well as reduction in precursors
led to lower O3 values during the later phases of lockdown.
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Introduction

The spread of novel coronavirus (COVID-19) was initially
identified in Wuhan city of China, in early December 2019,
and then was successively transmitted across the world with 4
million cases in the first 4 months. While the first case of the
COVID-19 pandemic was confirmed on 31 January 2020 in

India, it was detected on 16 March 2020 in Odisha, an eastern
coastal state in India. The country saw a sudden jump in
COVID-19 cases during mid of March (https://www.mohfw.
gov.in/). In order to stem the spread of novel coronavirus, the
Indian government called for a 14-h voluntary public curfew
called as Janta Curfew on 22 March 2020. Besides, the
Odisha Government called for an early lockdown of five dis-
tricts of the state from 22 March 2020 to 29 March 2020
together with Bhubaneswar (20.30° N, 85.82° E), the state
capital, and a globally acclaimed smart city. However, after
3 days of Janta Curfew, the Indian Government enforced a
complete nationwide lockdown for 21 days from 25 March to
14 April 2020 (lockdown 1.0) then extended it further until 03
May 2020 (lockdown 2.0). Thus, the lockdown limited the
movement of the entire 1.3 billion population of India in an
effort to flatten the infection/transmission curve during the
pandemic. Confinement of population, shutting off a large
portion of industrial activity, and bringing public transport to
a standstill led to a considerable decrease in anthropogenic
emissions and, consequently, in the level of urban air pollu-
tion. However, essential services such as electricity, water,
municipal sanitation bodies, hospitals, banks and financial
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services, shops dealing with food and medicines, and move-
ment of essential goods trucks and trains were exempted from
lockdown. With the rising tolls of COVID-19 cases, the
Government of India further extended the lockdown two times
until 31 May 2020 with some conditional relaxation.
Moreover, night curfews were imposed during the entire
May (lockdown 3.0 and lockdown 4.0) month from 7 PM to
7 AM. The pandemic outbreak has caused a large economic
disruption in India. So, the Indian Government has allowed
restarting various industrial and other commercial activities
with 50 % of workforce called Unlock-1 during 01 June–30
June 2020 with strict guidelines. However, to tackle the emer-
gency and curb the dispersion of COVID-19, the Odisha
Government continued the night curfew from 7 PM to 5 AM
with an addition of complete shutdown of weekends during
entire June month of 2020.

The sudden change in emissions is expected to have a
drastic impact on air quality, and the situation can be used as
a natural experiment to simulate the sensitivity of certain pol-
lutants prevailing in ambient air. In this context, air quality
parameters such as carbon monoxide (CO), oxides of nitrogen
(NOx = NO + NO2), black carbon (BC), and ozone (O3) are
analysed. The measurements were carried out at CSIR—
Institute of Minerals and Materials Technology (IMMT) lo-
cated in the heart of Bhubaneswar city during March–June
2020 (Fig. 1). Bhubaneswar, the capital city of Odisha state
in eastern coastal India, is home to more than 8 lakhs people
(ht tps : / /www.census2011.co. in /census /c i ty /270-
bhubaneswar.html). The city, enlisted in the Government of
India smart city program, is undergoing significant
development in the construction of roads, shopping malls,
residential areas around the city, and the consequent
anthropogenic emissions. According to the 2018 RTO
database, a total of 76,946 vehicles were registered in the
Bhubaneswar city out of which 70% are personal vehicles.

Furthermore, the city is fenced with numerous point sources
of pollution like the thermal power plants, steel plants, cement
industries, mines, metallurgical plants, and manufacturing
industries in the north and north-west direction and two major
shipping harbours, one (Paradeep Port) ~ 100 km towards the
eastern direction and the other (Dhamra Port) ~ 159 km to-
wards the north-eastern part (Mahapatra et al. 2018). Despite
nationwide lockdown, the thermal power plants, steel process-
ing industries, mining activities, production and distribution
of thermal and coking coal, limestone, dolomite, manganese,
and chromite in and around Odisha were operational, as a part
of essential services (http://www.ecoti.in/tQMoEb80).
However, there was a reduction of ~ 60% of production
capacity due to a fall in the number of workers.

Apart from this, the study site is considered to be a strategic
location as it is a gateway of most of the polluted air mass that
reaches the BoB from the Indo Gangetic Plains (IGP), and the
heavily industrialised Chotta Nagpur Plateau region as well as
the western part of India (Mallik et al. 2019). Therefore, in the
current pandemic situation as various phases of lockdown
were imposed over this region, it was indeed a unique scenario
to understand the behaviour, source, and concentration of pri-
mary and secondary ambient air pollutants like CO, NOx, BC,
and O3. The data has been presented here to understand the
variation of measured pollutants in the perspective of the en-
vironment when anthropogenic emissions are curtailed. While
CO can give an insight into both anthropogenic and biogenic
emissions together with chemical processing in the atmo-
sphere, NOx and BC can give a direct insight into the emission
scenario w.r.t. gas and aerosol phases. Furthermore, O3 vari-
ations can give an insight into the photochemical processes
operating in the atmosphere. Thus, the primary goal of this
study is to evaluate and understand the change in the air qual-
ity of the region with a sudden reduction in anthropogenic
emissions. The change in emission regime provided an

Fig. 1 Location map pf sampling
site in CSIR-IMMT,
Bhubaneswar, Odisha
(marked as F1_)
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opportunity to generate baseline data for the region, which
will help to adopt new strategies to ensure better air quality.

Methodology

Measurement techniques

The in situ measurements of near surface CO was made in
Bhubaneswar using an online CO analyser (Horiba, APMA-
370). The analyser is based on cross modulation–type non-
dispersive infrared absorption at 4.67 μm vibration band and
has a detection limit of 50 ppb for a 60 s response time
(Mahapatra et al. 2014a). Simultaneously, the measurement
of NOx and O3 was carried with a chemiluminescene NOx

analyser (Thermo fisher scientific, 42i), and UV photometric
O3 analyser (Thermo fisher scientific,49i) respectively. The
NOx analyser works on the principle of chemiluminescence
effect produced due to oxidation of NO by O3 molecule at
630 nm and has a detection limit of 50 ppt with a response
time of 50 s. The O3 analyser works on the principle of ab-
sorption of UV radiation by atmospheric O3 at 254 nm. The
lower detection limit is 1 ppb with a response time of 20 s. All
instruments were periodically calibrated using NIST traceable
calibration standards and multi-channel calibrator. The
analysers drew ambient air samples in using a 2-m-long
polytetrafluoroethylene (PTFE) tubing placed at a height of
20 m above the ground level. Besides, PTFE filters were
placed at the sampling inlet of each analyser to remove dust
and larger particles. A more detailed description can be found
in Mahapatra et al. (2014a, 2019), Mallik et al. (2019).

In addition, BC measurements were performed using a
seven-channel (370, 470, 520,590, 660, 880, and 950 nm)
optical wavelength Aethelometer (Magee Scientific, AE33).
The instrument was equipped with 2.5-μm cut point of
PM2.5-cyclone along with a rain/insect guard, and was operat-
ed continuously at a flow rate of 2 L min−1. The 880-nm
wavelength was used to derive the BC concentration, as de-
scribed by the previous studies (Babu and Moorthy 2002).

Surface level meteorological parameters viz. temperature
(T), rainfall, relative humidity (RH), wind speed (WS), and
wind direction (WD) were continuously monitored and re-
corded during the study period with the help of an
Automatic Weather Station (AWS) mounted at the rooftop
of CSIR-IMMT.

Analysis of lockdown periods

This study adopts an intra-comparative approach to analyse
the impact of COVID-19 lockdown on the environment dur-
ing March–June 2020. The study period was divided into the
following phases:

& Pre-lockdown (PL: 01-21 March 2020)
& Lockdown 1.0 (L1: 22-14April 2020)
& Lockdown 2.0 (L2: 15April-03May 2020)
& Lockdown 3.0 (L3: 04-17 May 2020)
& Lockdown 4.0 (L4: 18-31 May 2020)
& Unlock 1.0 (UL: 01-30 June 2020)

Furthermore, a weekend shutdown was imposed by the
Odisha Government during the unlock period. Hence, the un-
lock period has been further sub divided into unlockweekdays
(UL-WDy) and unlock weekends (UL-WEd).

Results and discussion

Meteorology

Meteorology plays a key role in the formation and transport of
air pollutants (Bao and Zhang 2020; Yen et al. 2013). Hence,
surface T, rainfall, RH, WS, and WD were analysed for the
study period. Bhubaneswar experiences a tropical weather
condition with a hot and humid climate during the summer
months. Figure 2 shows the day to day variation of T and RH
observed during the study period. The daily mean surface T
varied in the range of 23–32 °C, whereas RH varied in the
range of 63–95%.

A total rainfall of ~ 11 mm was recorded during pre-
lockdown days while ~ 1 mm, ~ 32 mm, and ~ 9 mm during
L1, L2, and L3, respectively (Fig. S1). The increased rain
event during the end of April is attributed to a depression in
the BoB (Mahapatra et al. 2019; Fadnavis et al. 2011).
However, the maximum rain events resulting in ~ 76 mm
during L4 is due to cyclonic storm “Amphan”, which hit
Odisha coast on 20 May 2020.

Wind pattern

The wind rose plot shows the dominance of wind patterns
from the south direction indicating the profound influence of
marine air mass during the study period (Fig. 3). The 5-day-
backward air masses arriving at Bhubaneswar were tracked
using NOAA Air Resource Laboratory (ARL) Hybrid Single-
Particle Model at 100 m agl for different phases of the study
period (Draxler and Hess 1998; Draxler 1999; Dutkiewicz
et al. 2009; Tiwari et al. 2013; Stein et al. 2015) (Fig. S2).
Moderate Resolution Imaging Spectroradiometer (MODIS),
aboard Aqua, and Terra satellites (C6 version), derived from
NASA FIRMS, were used to understand the impact of bio-
mass and crop residue burning over the study site (Giglio et al.
2003, 2016). Fires with 80% and above detection confidence
were only considered to side step any bias due to false fires.
Although distinct fire events were observed in central India
during L1 and L2, the prevailing air mass mostly of marine
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origin indicates the inconsequential impact of regional fire
events over the study site (Fig. S2).

Diurnal variability of air pollutants

The average diurnal variation of surface CO, NOx, BC, and O3

over the study site is shown in Fig. 4. The diurnal variation of
CO, NOx, and BC show a bi-modal pattern during PL. The
primary pollutants showed a build-up during the morning, and

late evening due to an increase in emission sources (mostly
traffic-related as the study site situated close to National
Highway-16) and suppressed boundary layer that helps trap
the pollutants in the lower troposphere. Conversely, higher
dilution leads to lower value of these species during noon
(Nair et al. 2002; David and Nair 2011). Furthermore, photo-
chemical consumption of NOx and CO also results in their
lower value during the daytime. Previous reports also ob-
served a distinct bi-modal peak in almost all the seasons for

Fig. 3 Wind rose plot showing
local wind direction and
distribution of wind speed (m/s)
over the study site (Bhubaneswar)
for a March, b April, c May, d
June month respectively

Fig. 2 Variation in daily average
temperature and daily average
relative humidity in Odisha
during March–June 2020
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CO, NOx (Xie et al. 2016; Zhao et al. 2016; Yadav et al. 2016;
Jang et al. 2017; Zheng et al. 2017), and BC (Babu et al. 2002;
Beegum et al. 2009; Mahapatra et al. 2014b; Kompalli et al.
2014; Talukdar et al. 2015; Vaishya et al. 2017; Rana et al.
2019) depicting the influence of anthropogenic emissions in
urban areas. In addition, analysis of tropospheric CO by
Ghude et al. (2011) and Girach and Nair (2014) over Indian
subcontinent have revealed that CO emissions in eastern India
is mostly dominated by coal combustion from the thermal
power plants along with biofuel and biomass burning.
However, during the current lockdown phases, we could not
observe prominent bi-modal peaks for CO, NOx, and BC.
Thus, the suppressed rush hour peaks for three pollutants is
a direct indication of lockdown effects, and such suppression
have not been observed during similar time periods in previ-
ous years over the study site (Mahapatra et al. 2014a, b). The
suppressed peaks for CO and NOx during the various lock-
down phases can be attributed to curtailment in vehicular
movements. Furthermore, for species like NOx, which have
strong local sources and short residence times, the reduction is
muchmore drastic with high pre-lockdown to lockdown ratios
compared to a pollutant like CO with regional sources and a
much longer residence time (more than 30 times that of NOx).
Similarly, the residence time of BC of a few days to a week is
intermediate between NOx and CO, and hence BC can provide
a wider coverage compared to NOx in terms of source
contributions. The lifetimes of these pollutants are in the
order CO > BC > NOx. The L1/PL values for these gases
are 0.98, 0.73, and 0.32, respectively. Likewise, Jain and
Sharma (2020) also highlighted a statistically significant
plummet in NO2 (~ 51%) in five megacities of India viz.
Delhi, Mumbai, Chennai, Kolkata, and Bangalore. However,
unlike the pollutants discussed above, the diurnal pattern of
surface O3 shows a distinct noon peak during PL and L1 (Fig.
4a), a notable feature of an urban region (Lal et al. 2000;
Nishanth et al. 2012; Gaur et al. 2014; Yadav et al. 2016).
The O3 concentration starts building up immediately after
sunrise, attains maximum value (PL, 30 ppbv; L1, ~ 34 ppbv)
during noontime, and then decreases. The daytime increase in
concentration is attributed to the photo-oxidation of precursor
gases such as CO, CH4, and NMHCs in the presence of NOx

(Lal et al. 2000). However, lower O3 concentration during the
night is due to inhibition of photochemistry, titration of O3 by
surface emissions of NO, and loss due to surface deposition
(Mallik et al. 2015). The pronounced elevated diurnal pattern
during L1 suggests a higher rate of photochemical production
of O3 from precursors compared to O3 destruction (Resmi
et al. 2020). The O3 chemistry during L1 could be due to
locally/regionally emitted precursors along with atmospheric
transport from the Chota-Nagpur region and the north-western
parts of Odisha state (Fig. S2). This is evinced by very similar
background concentration observed during night time in PL
and lockdown periods. A cloudy sky due to rain events (Fig.

S1) on several days during L2, L3, L4, and UL along with
reduced precursor levels inhibits photochemical production of
O3 leading to the suppressed diurnal variation of O3 (Ghosh
et al. 2015). Furthermore, the standard deviation (SD) in O3

values during the current study is of the order of less than 20%
while the year to year changes in O3 is of the order of 36–45%,
implying the impacts of lockdown (Table 1).

Day-to-day variability of air pollutants

The daily (24 h) averaged temporal variation of air pollutants
viz., CO, NOx, BC, and 8 h averaged surface O3 are shown in
Fig. 5. An overall average reduction of ~ 14%, ~ 67%, ~ 47%,
and ~ 14% for CO, NOx, BC, and O3 respectively, are ob-
served during the entire lockdown phase, compared to the pre-
lockdown period. However, the decline in the concentration of
pollutant level in the UL period is attributed to change in
meteorology due to the onset of monsoon. The minimum,
maximum, mean, and standard deviation of the pollutants
during different study phases are summarised and presented
in Table 1.

ThemeanCO and BC levels show a notable reduction from
L1 (CO, 526.95 ± 136.19 ppbv; BC, 1.31 ± 0.34 μg m−3) to
L4 (CO, 368.24 ± 131.44 ppbv; BC, 0.93 ± 0.37 μg m −3),
revealing a change of ~ 30% and 29% respectively. However,
a two-sample t test shows an insignificant (p > 0.8) decline in
the concentration of CO during L1 as compared to PL. CO is
released during incomplete combustion processes viz. burning
of fossil fuel, biomass, garbage as well as from photo-
oxidation of methane (CH4), and other hydrocarbons
(Fishman and Seiler 1983; Cros et al. 1988; Mahata et al.
2018). Furthermore, the ozone monitoring instrument (OMI)
time series of area-averaged methane (CH4) mole fraction in
the air for March–June 2020 over 20–21° N, 85–86° E
(https://giovanni.gsfc.nasa.gov/giovanni/) shows no
substantial change in CH4 concentration during the
observation period (Fig. S3). This can be attributed to the
much longer lifetime for CH4 and sources like agriculture,
waste, biomass, and biofuel as well as natural sources, making
a much larger contribution to CH4 emissions compared to
fossil fuels (Bousquet et al. 2011; Saunois et al. 2016;
Kavitha et al. 2018). All these sources in and around
Bhubaneswar might result in a build-up of CO concentration
during L1. Furthermore, CO has a longer lifetime due to a
combination of CO production and loss chemistry, being con-
trolled by OH radical, which is mostly well buffered (Mallik
et al. 2018). Nonetheless, a significant reduction in mean CO
during L2 over PL could be due to the extended lockdown
phase, across the entire country, resulting in a continuous fall
in anthropogenic emissions over the study region. CO concen-
tration decreased further from 219.29 ± 66.62 ppbv during
weekdays to 177.29 ± 66.62 ppbv during the weekend of
UL period due to the imposed curfews, along with the change
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in seasonal meteorology, i.e., transition between pre-monsoon
to,monsoon season. CO and NOx, which share many common
anthropogenic emission sources (Mallik et al. 2015) were
found to be weakly associated (r = 0.4) over Bhubaneswar
(Fig. 6). The low CO/NOx values imply the predominance
of vehicular emissions compared to point sources which cor-
roborated by a significant reduction of NOx level during the
lockdowns.

However, there is a notable reduction of ~ 47% in BC
during the entire lockdown as compared to PL. This could
be due to curtailment of vehicular emission, which is consid-
ered to be dominant source over the study site (Mahapatra
et al. 2014b). The BC concentration during UL weekdays
(1.16 ± 0.34 μg m−3) was observed to slightly increase in
comparison to L4 due to relaxation in vehicle movement dur-
ing daytime (7 AM to 7 PM); however, a slight decrease in BC

Table 1 Statistics of measured
O3, NOx, CO and BC during
March–April 2020 at
Bhubaneswar (PL, pre-lockdown;
L1, lockdown 1.0; L2, lockdown
2.0; L3, lockdown 3.0; L4, lock-
down 4.0; UL, unlock 1.0)

CO (ppbv)

Phases (date 2020) Minimum Maximum Mean SD

PL (01/3–21/3) 367.08 660.85 535.41 84.74

L1 (22/3–14/4) 276.06 837.67 526.95 133.19

L2 (15/4–03/5) 219.07 620.42 445.44 101.47

L3(04/5–17/5) 198.13 673.96 493.41 126.08

L4 (18/5–31/5) 178.54 527.71 368.24 131.44

UL (01/6–30/6) 93.54 395.00 208.09 64.41

Weekday during UL 93.54 395.00 219.29 66.62

Weekend during UL_shutdown 99.77 252.50 177.29 66.62

NOx (ppbv)

Minimum Maximum Mean SD

PL (01/3–21/3) 8.63 25.49 16.00 5.08

L1 (22/3–14/4) 2.57 10.86 5.13 1.96

L2 (15/4–03/5) 2.72 7.38 4.58 1.33

L3 (04/5–17/5) 3.33 9.31 5.61 1.65

L4 (18/5–31/5) 1.54 15.55 5.97 4.56

UL (01/6–30/6) 0.97 7.39 3.44 1.72

Weekday during UL 1.51 7.39 3.88 1.55

Weekend during UL_shutdown 0.96 5.35 2.23 1.55

BC (μg m−3)

Minimum Maximum Mean SD

PL (01/3–21/3) 0.84 2.83 1.79 0.51

L1 (22/3–14/4) 0.86 2.09 1.31 0.33

L2 (15/4–03/5) 0.45 1.17 0.75 0.19

L3 (04/5–17/5) 0.56 1.36 0.85 0.24

L4 (18/5–31/5) 0.68 2.06 0.93 0.37

UL (01/6–30/6) 0.62 2.04 1.11 0.33

Weekday during UL 0.64 2.04 1.16 0.34

Weekend during UL_shutdown 0.62 1.48 1.01 0.34

O3 (ppbv)

Minimum Maximum Mean SD

PL (01/3–21/3) 20.86 32.76 27.45 3.53

L1 (22/3–14/4) 21.06 40.15 28.34 5.46

L2 (15/4–03/5) 17.70 24.44 21.10 2.11

L3 (04/5–17/5) 19.02 30.58 21.88 2.86

L4 (18/5–31/5) 16.95 28.34 22.83 3.84

UL (01/6–30/6) 17.23 34.06 22.15 3.91

Weekday during UL 17.23 34.05 21.70 3.84

Weekend during UL_shutdown 18.01 29.42 23.39 3.84
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(1.01 ± 0.34 μg m −3) concentration during weekend is due to
the imposition of weekends curfew.

During the study period, there was a transport of air masses
exclusively from the marine region (Fig S2). It has been re-
ported that pollutants like CO and BC are also evinced over
the Indian Ocean due to the coastal anthropogenic activities
(Girach et al. 2020; Venkataraman et al. 2005). Hence, there is
a chance of regional transport of CO and BC to the study site
through the marine air masses in regions between the coast
and the southern site of the measurement location (Fig. S2).
These regions include residential areas within Bhubaneswar
city as well as slums and villages on the outskirts of the city all
the way up to the coast. All these regions will have some
activities related to CO emissions like biomass and garbage
burning, brick kilns, and ancillary activities. Assuming an

average wind speed of 10 m/s, an air parcel would take about
16 h to reach from Puri (or the coast) to Bhubaneswar, cover-
ing a distance of 60 km. This travel time is much lower than
the lifetime of NOx (τ < 2 days), BC (τ < 7 days), as well as
longer lived O3 and CO. Thus, despite being southerly in
direction, the winds can still carry the impact of continental
emissions to the vicinity of Bhubaneswar. However, the study
site witnessed several rain events over the region for the entire
L2 phase (Fig. S1), which could have resulted in wet scaveng-
ing of pollutants like O3 and BC, and hence the reduction in
pollutant concentration was quite prominent during the L2
phase.

A t test shows an insignificant overall increment of ~ 3% (p
> 0.2) for O3 in low NOx conditions during L1 as compared to
PL (Fig. 4). The mean O3 value was 27.45 ± 3.64 ppbv during

Fig. 4 Diurnal variation of a
surface CO, b surface NOx, c BC,
and d surface O3 during pre-
lockdown, lockdown1.0,
lockdown 2.0, lockdown 3.0,
lockdown 4.0, and unlock-1 at
Bhubaneswar

Fig. 5 Temporal variation of a
CO and BC b NOx and O3 during
pre-lockdown, lockdown 1.0,
lockdown 2.0, lockdown 3.0,
lockdown 4.0, and unlock-1
(March–June 2020) at
Bhubaneswar. The blue-coloured
background portion represents
imposition of night curfew be-
tween 7 PM and 7 AM while the
yellow-coloured background por-
tion represents imposition of
night curfew between 9 PM and 5
AM.The small boxes represent
minimum concentration gases
observed during the study period
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PL, which rises to 28.33 ± 5.63 ppbv during L1. An enhance-
ment in the O3 level during L1with favourable meteorological
conditions was also observed in other parts of eastern India
(Sharma et al. 2020b) along with Barcelona, Spain (Tobias
et al. 2020), and China (Huang et al. 2020). Similarly, O3

concentration was found to be higher during lockdown (25
March–17 May 2020) as compared to before lockdown (10–
20 March 2020) in five major cities of Rajasthan (Sharma
et al. 2020a). However, apart from L1, the concentration of
O3 is lower than the PL concentration. Likewise, Sharma et al.
(2020b) reported diminution of O3 concentration in the west-
ern, northern, and southern regions of India during the lock-
down phases.

The photochemical chain reaction which produces O3 is
controlled by complex non-linear chemistry (Seinfeld and
Pandis 1998; Tiwari et al. 2015) as represented in equations
(1) to (3):

NO2 þ hv→NOþ O* ð1Þ

O2 þ O*→O3 ð2Þ

O3 þ NO→NO2 þ NO ð3Þ

Henceforth, it is evident from the above equations that NOx

concentrations significantly control O3 photochemistry.
Several previous studies over the Indian subcontinent revealed
that vehicular emissions are the major source of NOx

(Aggarwal and Jain 2015; Jain et al. 2016). Recently, Singh
and Chauhan (2020) also reported a significant reduction in
tropospheric NO2 over eastern India during lockdown as com-
pared to the same period of 2019. Similarly, Xu et al. (2020)
reported a significant reduction in primary pollutants due to
lockdown in Hubei Province, Wuhan, Jigmen, and Enshi in
Central India. Hence, a prominent reduction of ~ 65% in NOx

during L1 compared to PL over the study site facilitates O3

accumulation in the urban atmosphere. However, a lack of
precursor transport mediated by cleaner marine air masses
and cloudy sky due to frequent rain events during L2, L3,
L4, and UL reduced O3 production over the study site. Fig.
S4 shows the daytime relationship between O3 and NOx dur-
ing the six different lockdown phases. An anti-correlation (r =
− 0.75) between O3 and NOx during PL (Fig. S4a) is attributed
to an increase in O3 concentration during daytime due to

Fig. 6 Relationship of CO and NOx over Bhubaneswar during a pre-lockdown, b lockdown 1.0, c lockdown 2.0, d lockdown 3.0, e lockdown 4.0, and f
unlock-1
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photochemical production and decrease in NOx due to photo-
chemical decomposition as well as boundary layer dilution
(Lal et al. 2014; Ghosh and Sarkar 2016). The titration of O3

at higher NOx levels during PL was not observed during the
lockdown periods (Fig. S4 b & c). Nonetheless, a lack of
correlation between O3 and NOx during lockdown (Fig. S4
b, c, d & e) indicates O3 chemistry is complex, and its pro-
duction does not simply increase with NOx reduction. During
L1, the enhancement in O3 concentration in lowNOx emission
might be due to a change in volatile organic carbon (VOC)
and NOx ratio. However, in the absence of concomitant mea-
surements of VOC, it is not possible to estimate the exact
production potential of O3.

We also made an attempt to compare the complete lock-
down period (April–May 2020) pollution scenario with the
available data for the same period of previous years. The
mean and sigma of CO, O3, and BC for different periods of
observation are presented in Table 2. Immediate previous
years (2016–2019) for all the pollutants were not available,
so we compared the measurements during 2014–2015,
when these measurements are available for O3, CO, and
BC. There was a more than 40% reduction in O3 and
50% reduction in BC concentration of the current period
(2020) in comparison to the same period of the previous
years of observation. The 1-sigma standard deviations of
these gases during the lockdown period are much less com-
pared to the year-to-year variation (Table 2). This supports
the fact that apart from local/regional meteorology, the
various lockdown phases had a significant effect in bring-
ing about a reduction in the concentration of various pri-
mary as well as secondary pollutants. The overall reduction
in O3 can be attributed to lower precursor levels, also im-
pacted by the lower amount of transported precursors as
well as inhibiting meteorological conditions like rain
events and cloud cover. Interestingly, we did not observe
as much reduction in CO as it is emitted through both
anthropogenic and biogenic sources, and its lifetime is in-
trinsically related to the chemical processing in the atmo-
sphere. Even during the complete lockdown phase during
April–May 2020, biofuel emissions could be significantly
active for cooking purposes (in the city slums as well as in
the surrounding villages). Furthermore, OH radical, the

main chemical scavenger of CO, is mostly well buffered
in NOx ranges encountered during the study period (Mallik
et al. 2018).

Conclusion

The extent of change in air quality is studied over
Bhubaneswar, an urban city in eastern India, during an un-
precedented nationwide lockdown scenario. A significant re-
duction of primary pollutants, like NOx (~ 67%) and BC (~
47%) reveals that a reduced traffic pollution and essential
anthropogenic activities led to better air quality during lock-
down periods. There was a more than 40% reduction in O3

and a 50% reduction in BC concentration of the current period
(2020) in comparison to the same period of the previous years.
This supports the fact that apart from local/regional meteorol-
ogy, the various lockdown phases had a significant effect in
bringing about a reduction in the concentration of various
primary as well as secondary pollutants. The overall reduction
in O3 was attributed to lower precursor levels, as well as
inhibiting meteorological conditions like rain events and
cloud cover. Among CO, NOx, BC, and O3, CO was the least
impacted from the lockdown due to lower contribution of
fossil fuels to CO sources and a much longer atmospheric
lifetime mediated by natural chemical processing in the atmo-
sphere. The nationwide lockdown has provided a unique op-
portunity for the researchers and policymakers to take a closer
look at the impact of emission reductions on air quality and
develop balancedmitigation strategies for controlling multiple
pollutants.
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