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Opinion statement

Adults with glioblastoma multiforme (GBM), the most common primary brain tumor,
have an unacceptably poor outcome with conventional cytotoxic therapies. Malignant
gliomas are remarkably angiogenic, and vascular endothelial growth factor (VEGF) is
the dominant pro-angiogenic factor. Recent clinical trials targeting VEGF signaling
have achieved unprecedented rates of durable radiographic and clinical response,
while also confirming adequate safety among recurrent malignant glioma patients. An
array of additional clinical trials evaluating anti-angiogenic strategies are underway
for both recurrent and newly diagnosed malignant glioma patients. Promising results
of these approaches suggest that the treatment of GBM may represent an emerging

paradigm of anti-angiogenic therapy.

Direct targeting of GBM tumors with cytotoxic thera-
pies has achieved modest benefit due to several factors
including high rates of de novo and acquired resis-
tance, heterogeneity within and across tumors, and
limited delivery. The current standard of care includ-
ing surgery, radiation plus temozolomide yields
median progression-free and overall survivals of under
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7 and 15 months, respectively [1]. Furthermore, there
is no effective therapy established for recurrent
patients [2]. An evolving alternative therapeutic strat-
egy includes agents that attack GBM tumors indirectly
by targeting vital components of the supporting
extracellular matrix including the neovasculature.
Angiogenesis, the formation of new blood vessels
from pre-existing vasculature, is a required adaptation
for all tumors [3]. Tumor angiogenesis is orchestrated by
the simultaneous upregulation of multiple promoters
including vascular endothelial growth factor (VEGF),
acidic and basic fibroblast growth factor (FGF), inter-
leukins-8 and -6, hypoxia-inducible factor 1-alpha (HIF-
1a), and the angiopoietins, with the downregulation of
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endogenous angiogenesis inhibitors such as thrombo-
spondins, angiostatin, endostatin, and interferons
[4]. VEGF is the dominant pro-angiogenic factor and,
hence, is the primary focus of therapeutic anti-angio-
genic interventions.

Successful preclinical and clinical development of
therapeutic strategies targeting the VEGF axis has
rapidly evolved across multiple solid and hemato-
logic neoplasms. Although malignant gliomas have
long been recognized as highly angiogenic [5, 6]
and preclinical studies have validated targeting VEGF
signaling [7-22], clinical translation has lagged due

to toxicity concerns, particularly intracranial hem-
orrhage. Nonetheless, a recent ground-breaking
study evaluating bevacizumab plus irinotecan, not
only affirmed the safety of this approach, but also
reported unprecedented anti-tumor activity [23ee,
24ee]. Several additional clinical trials are moving
forward to build on these initial results that incor-
porate a variety of anti-angiogenic strategies
(Table 1). In this overview, we will examine angio-
genesis in malignant gliomas and the clinical
development of anti-angiogenic strategies for
patients with these tumors.

CNS Tumor Vasculature: Additional Complexity

¢ Although malignant gliomas are highly angiogenic [5, 6], perfusion
can be paradoxically limited. Malignant glioma blood vessels exhibit
complex tortuosity [66] with haphazard interconnections including
saccular and blind-ended extensions [67-69]. Furthermore, integrity
of the blood brain barrier (BBB), a morphologic, physiologic, and
functional protectant of the central nervous system (CNS), is variably
compromised in malignant glioma. Diffusion through the intact BBB,
normally restricted to small (<400 daltons), lipophilic, non-polar
compounds [70-72], is markedly enhanced in malignant gliomas due
to an incomplete basement membrane, diminished pericyte coverage,
fewer tight junctions, enlarged fenestrae, and increased pinocytosis
[73-75]. Furthermore, efflux proteins that normally actively extrude
otherwise diffusible molecules from the CNS, are inconsistently
present [70, 76-81]. The net result is leaky, intermittent, and unstable
blood flow which leads to regional hypoxia, acidosis, and markedly
increased interstitial pressure [82e, 83]. Spatially, areas of greatest
tumor cell density exhibit the highest vessel count, but often exhibit
the most dysfunctional blood flow and greatest permeability. In
contrast, advancing regions of infiltrating micrometastatic disease that
frequently extend several centimeters maintain a more intact BBB and
vascular patterns that resemble normal CNS tissue, as well as near-
normal interstitial fluid pressure gradients [84].

¢ Glial tumors exhibit a prototypic “angiogenic switch,” in that induc-
tion of pro-angiogenic mediators and new blood vessel formation
hallmark the transformation from low-grade to high-grade gliomas
[85]. Because malignant gliomas are critically dependent on angio-
genesis, they have evolved a highly complex, broad, and redundant
network of genetic and cellular signaling cues that drive a remarkably
prolific, neovascular capability. VEGF, the dominant pro-angiogenic
factor, exists as six homologues (VEGF-A, VEGF-B, VEGF-C, VEGF-D,
VEGF-E, and placental growth factor) and as biologically active gly-
coprotein fragments generated by either alternative gene splicing or
protease cleavage [86]. VEGF is secreted by tumor cells, infiltrating
inflammatory cells, and platelets, and can be sequestered in the
extracellular matrix [87-92]. VEGF expression is prognostically rele-
vant [93] and typically is most concentrated adjacent to areas of
necrosis and hypoxia including pseudopalisading cells at the leading
edge [85, 94-100e].
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o Several hypoxia-dependent and hypoxia-independent mechanisms
contribute to abundant VEGF expression in malignant glioma [83, 85,
101-104]. Hypoxia, a common feature of GBM, enhances expression
and stabilization of hypoxia inducible factor-1a (HIF-1a), a tran-
scription factor that activates myriad target genes regulating tumor
angiogenesis, migration, and survival, including VEGF and VEGF
receptors (R) [85, 105-108]. Increased expression and activation of
many growth factors, often in parallel with their cognate receptors, are
linked with increased VEGF activity in malignant gliomas including
epidermal growth factor (EGF)/EGFR [109, 110], platelet-derived
growth factor (PDGF)/PDGFR [111-113ee], scatter factor/hepatocyte
growth factor (SF/HGF)/MET [114], insulin-like growth factor (IGF)/
IGFR [115, 116], stem cell factor/c-Kit [117], and fibroblast growth
factor (FGF) [98, 118-120]. In addition, the phosphatidylinositol
3-kinase (PI3K/Akt) and the Ras/mitogen-activated protein kinase
(MAPK) signaling pathways, which are commonly activated in GBMs,
lead to increased VEGF expression [109].

e Expression of VEGFRs (VEGFR-1, VEGFR-2, and VEGFR-3) and
co-receptors including the neuropilins, although very low in the
normal brain, is also markedly increased in malignant gliomas [94,
96-98, 121, 122]. Activation of VEGFRs by ligand binding triggers an
intracellular signaling cascade that promotes endothelial cell prolif-
eration, survival, activation, invasion, migration, and permeability
[102, 123]. VEGEF signaling also activates endothelial cell nitric oxide
synthase to generate nitric oxide [124] and signals bone marrow-de-
rived endothelial cell progenitors to mobilize to distant sites of tumor
angiogenesis [125-128].

e Several pro-angiogenic factors in addition to VEGF are also upregu-
lated in malignant gliomas [129] including FGF [130], tumor necrosis
factor-o (TNF-o) [131], interleukin-8 (IL-8) [132-134], interleukin-1,
interleukin-6, interferons [135], cyclooxygenase-2 (COX-2) [136], and
nitric oxide [137]. Furthermore, increased expression of factors
mediating endothelial cell invasion is also common in malignant
glioma including matrix metalloproteinases (MMP)-2 and MMP-9,
urokinase-type plasminogen activator (uPA) and its receptor (uPAR),
cathepsin-B, integrins avf3 and avfi5, and tenascin-C [138-143].
Many of these factors have been successfully targeted in preclinical
studies [27, 144-149]. Alternatively, endogenous angiogenesis
inhibitors, commonly deficient in GBMs, can be augmented to pro-
vide therapeutic benefit in preclinical studies [25, 148-152].

Emerging Insights: Potential Mechanisms of Anti-Angiogenic Therapy

¢ Growing evidence suggests that anti-angiogenic agents may affect
tumors at multiple levels. First, by decreasing the blood supply,
tumors can be deprived of vital nutrients and oxygen. Second, anti-
angiogenic agents may sensitize tumor endothelial cells to cytotoxins
[153, 154e]. Third, anti-angiogenic agents can counteract a surge in
VEGF and/or accelerated tumor cell repopulation induced by cell
killing following cytotoxic therapy [155e, 156].

o A fourth hypothesis contends that anti-angiogenic agents may selec-
tively “prune” tumor vasculature, thereby transiently normalizing per-
fusion to improve chemotherapy delivery [ 157, 158e]. In support of this
model, lowered interstitial fluid pressure (IFP), higher oxygen content,
and decreased permeability were observed in an orthotopic GBM model
following anti-angiogenic therapy [159-161]. Furthermore, decreased
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perfusion, vascular volume, microvessel density, and IFP, along with
increased pericyte coverage, were observed among colorectal cancer
patients treated with bevacizumab plus chemotherapy [162ee]. Further

clinical evidence supporting the vascular normalization hypothesis was
recently reported among recurrent GBM patients treated with the pan-

VEGEFR inhibitor, AZD2171 (cedarinib, AstraZeneca, UK). Using an
extensive battery of sophisticated imaging modalities, responding

patients also had evidence of decreased tumor vessel size, permeability,

blood volume, and blood flow [26ee].

e Fifth, anti-angiogenic agents have also recently been shown to target
cancer stem cells. Brain tumor stem cells, identified by CD133

(prominin-1) cell surface expression, exhibit marked proliferative

capacity, extensive self-renewal, diverse differentiation capability, and

the ability to recapitulate complex tumors following xenotransplan-
tation [163-165]. Recent studies demonstrate that GBM stem cells
generate highly angiogenic and aggressive tumors upon xenotrans-
plantation due to substantially upregulated VEGF expression com-
pared to minimally active and essentially non-angiogenic tumors
derived from CD-133 negative cells [166ee]. Additional studies sug-

gest that the self-renewal and tumor-forming abilities of CD-133 po-

sitive cells are critically dependent on a bi-dimensional interaction
with endothelial cells within the immediate microenvironment, re-
ferred to as the perivascular niche [167ee]. Of note, anti-angiogenic
therapy, including bevacizumab and metronomic chemotherapy,
suppresses GBM stem cell tumorigenicity [166ee-168e]. The cumu-
lative findings to date suggest that effective anti-angiogenic therapy

may target GBM stem cells directly and may also critically perturb the
perivascular niche required for stem cell well-being [169e].

Clinical Studies: Targeting VEGF

¢ Based on phase III trials demonstrating survival improvements for
patients with colorectal, breast, lung, and pancreatic cancer treated

with bevacizumab (BV) plus cytotoxic chemotherapy [170], an initial

study of BV plus the topoisomerase-1 inhibitor irinotecan among
patients with recurrent malignant glioma (Camptosar, Pfizer, New

York, USA) was performed [23ee, 24ee, 171]. The primary endpoint
was 6-month PFS. Irinotecan was included in the study regimen be-

cause it has modest activity among recurrent malignant glioma pa-

tients including a radiographic response rate of 5-15% and a median

PFS of approximately 12 weeks [172-176].

e Adult patients with measurable, recurrent grade 3 or 4 malignant
glioma with up to three prior relapses were eligible. Patients were

required to have a Karnofsky performance status of 260%, adequate

bone marrow, hepatic and renal function, no evidence of blood on

pretreatment imaging, and be at least six weeks from prior surgery and
four weeks from prior radiation therapy or chemotherapy (6 weeks for
nitrosoureas). Prior BV treatment or current warfarin administration

excluded patients.

¢ A total of 68 patients enrolled including an initial cohort of 32
patients treated with BV (10 m/kg) and irinotecan every two weeks,

followed by a second cohort of 36 patients treated with BV every three

weeks (15 mg/kg) and irinotecan on weeks 1, 2, 4, and 5 (Fig. 1).

The irinotecan dose for patients on CYP-3A enzyme-inducing
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Cohort 1 (n = 32) MRI Figure 1. Treatment
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anti-epileptic drugs (EIAEDs), including phenytoin, carbamazepine,
oxcarbazepine, phenobarbitol, and primidone, was 340 mg/ m? while
those not on EIAEDs received 125 mg/m? [177]. Patients were eval-
uated with a complete physical examination and MRI after each
6-week cycle. MacDonald criteria [178] were used to classify response.
In addition, radiographic response also required stable or improved
T2, and fluid attenuated inversion recovery (FLAIR) signal abnor-
malities. Patients with clinical decline felt to be due to underlying
tumor, regardless of imaging findings, were classified as progressive.
Patient characteristics for both cohorts are summarized in Table 2.
Enrolled patients had a median of two prior episodes of progressive
disease and all had received prior temozolomide-based chemoradia-
tion.

Overall, toxicity was acceptable. Two CNS hemorrhages occurred
(3%) including a patient in cohort one after 10 cycles of therapy, and
a patient on enoxaparin in cohort two after 9 cycles. Four patients
from each cohort (12%) developed thromboses, including one patient
with an arterial cerebrovascular stroke. Therapy was discontinued in
four patients (6%) due to fatigue or gastrointestinal toxicity, and in
two patients due to grade 2 proteinuria.

Table 2. Characteristics of patients treated with bevacizumab plus irinotecan [23ee, 2400¢]

Characteristics

Number of patients
Male:Female

Median age (years; range)
Karnofsky Performance Status
Grade IV:Grade III
Median number of progressions (range)
Median time from diagnosis (months; range) 14 (3-66) 42 (3-165)
Anticonvulsant EIAED:non-EIAED

Cohort 1 Cohort 2
32 36
21:11 24:12
49 (27-66) 46 (18-62)
80 (60-100) 80 (60-100)
23:9 12:24
2 (1-3) 2 (1-3)

14:18 17:19
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e The rate of radiographic response in comparison to historical
benchmarks is summarized in Table 3. Of note, despite being more
heavily pretreated and having failed prior temozolomide, patients
treated with BV plus irinotecan had much higher rates of radiographic
response compared to patients treated with temozolomide [179, 180].
The rates of radiographic response and stable disease did not differ
between patients on cohorts 1 and 2. Figure 2 demonstrates repre-
sentative MRI images of response to bevacizumab plus irinotecan.
Salvage therapies for GBM patients historically achieve single-digit
response rates with most patients progressing initially (Table 3)

[2, 180, 181]. In contrast, the ratio of PD to response for patients
treated with BV plus irinotecan was reversed. Specifically, the majority
of patients responded while only a single-digit rate of progressive
disease (6%) was observed. Finally and most encouragingly, clinical
and neurologic status commonly reflected radiographic findings in
that most patients with a radiographic response also improved neu-
rologically, with most also able to taper or discontinue chronic
dexamethasone dosing. Of note, similar rates of radiographic response
to BV plus chemotherapy were recently described in two, smaller,
additional reports [52e, 53e].

Furthermore, responses to BV and irinotecan were durable (Table 3).The
median PFS for grade 3 and 4 patients was nearly two-fold greater than
that achieved with temozolomide at first recurrence, and the 6-month
PFS rate was greater [179, 180]. Of note, six patients with recurrent GBM
(18%) completed a year of therapy, including five patients with no
hypermetabolic activity on FDG-PET imaging at therapy completion,
suggesting the absence of residual active tumor. Similarly, 7 patients with
recurrent grade 3 tumors (21%) completed one year of therapy including
six with negative FDG-PET scans at study completion.

In addition, median overall survival for patients treated with BV plus
irinotecan significantly surpassed that reported in the literature
(Table 3) [179-181]. While it is possible that decreased permeability
and lowered contrast uptake induced by BV may have contributed to
the radiographic response rate, the considerably improved rates of PFS
and OS observed with BV plus irinotecan therapy strongly support an
underlying anti-tumor action of this regimen.

A randomized study comparing GBM patients at first or second
recurrence to either BV alone or the combination of BV plus irinotecan
has recently been performed to further assess the anti-tumor activity of
these agents. However, in a recent report of 15 recurrent malignant
glioma patients treated with 15 mg/kg of BV alone every 3 weeks, only
2 patients achieved a PR (13%), while 5 were stable (33%) and 8
progressed (53%) [54]. Although these results are preliminary, they
suggest an inferior disease control rate by BV alone compared to that
achieved with BV plus irinotecan.

As stated above, many patients with radiographic response reported
by Vredenburgh et al. also improved neurologically [23ee, 24ee].
Similarly, parallel radiographic and clinical improvement, as reflected
in the required daily dose of dexamethasone, was observed among
eight patients with CNS tumors and radiation necrosis treated with
BV. Of note, seven of the eight patients also received chemotherapy
with BV. Specifically, a 48% (22% SD) average decrease in T1-
weighted post-Gd-contrast measurements and a 60% (18% SD) de-
crease in FLAIR changes were reported, while all patients on pre-
treatment dexamethasone therapy substantially reduced
dexamethasone by an average of 8.6 mg (3.6 mg) per day [55e].
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Axial Plane

Coronal Plane

Coronal Plane

Axial Plane

Figure 2. T-1 weighted MRI scans following gadolinium administration demonstrating representative complete
(panel a) and partial (panel b) radiographic responses of recurrent GBM patients following treatment with
bevacizumab plus irinotecan
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e Multiple additional studies are ongoing to evaluate alternative BV-

based regimens for recurrent malignant glioma patients. Two separate
single-arm studies combining BV with protracted, metronomic dosing
schedules of either temozolomide or etoposide are underway, while
the Radiation Therapy Oncology Group (RTOG) is randomizing
recurrent GBM patients to receive BV with either protracted tem-
ozolomide (75 mg/m?/day for 21 days each month) or irinotecan
every 2 weeks. An additional study combining BV plus daily erlotinib
is also underway.

Preclinical studies confirm that inhibition of VEGFR signaling
potentiates radiotherapy in GBM models [182, 183]. Therefore, sev-
eral single institutional studies are underway to evaluate the addition
of BV to temozolomide chemoradiation for newly diagnosed GBM
patients. In addition, a multi-center, randomized phase III clinical
trial for newly diagnosed GBM patients is being planned.

VEGF receptor tyrosine kinase inhibitors

Decoy ligand: VEGF-TRAP

e Receptor tyrosine kinase (RTK) inhibitors are typically small mole-

cules that competitively block tyrosine or serine/threonine kinase
domains located intracellularly. Preliminary results of VEGF RTK
inhibitors under evaluation for malignant glioma patients have been
reported. Nine of 16 patients (56%) treated with cediranib (AZD2171,
AstraZeneca, UK), a potent, oral, pan-VEGFR, PDGFR, and c-kit
inhibitor, achieved a radiographic response, while 3 additional
patients achieved stable disease. In addition, 8 of 11 patients (73%)
were able to reduce pretreatment corticosteroid dosing. The median
time to progression was 15.8 weeks. Elegant collaborative imaging
studies revealed that decreased contrast enhancement was accompanied
by significant decreases in tumor vessel size, permeability, blood vol-
ume, and blood flow, consistent with “normalization” of tumor vessels.
Of note, reversal of tumor vessel normalization was observed following
drug interruption [26ee]. A multi-center, randomized clinical trial is
planned to evaluate cediranib versus lomustine versus the combination
of cediranib plus lomustine in patients with recurrent GBM.

e Vatalanib (PTK787/Z2K222584; Novartis, NJ, USA), a potent inhibitor

of VEGFR1-3, has been evaluated following single-agent administra-
tion as well as in combination with either temozolomide or lomustine
chemotherapy. Only modest rates of radiographic response and pro-
gression-free survival were reported which may have been affected by
suboptimal dosing [50, 51]. A phase I study of vatalanib plus the
PDGEFR inhibitor, imatinib mesylate, for recurrent malignant glioma
patients has recently completed, and a clinical trial of Vatalanib plus
radiotherapy and temozolomide for newly diagnosed GBM patients is
ongoing.

Several additional RTK inhibitors targeting VEGF are currently being
evaluated in ongoing clinical trials for malignant gliomas (Table 1).

e VEGF-TRAP (Regeneron, NY, USA) acts as a soluble decoy VEGF

receptor that binds circulating VEGF thereby preventing it from
interacting with its receptors on tumor endothelial cells [63, 64]. In
preclinical GBM xenografts, VEGF-TRAP potentiates radiotherapy
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[65¢]. The North American Brain Tumor Consortium recently initiated
a single-arm phase II trial of VEGF-TRAP monotherapy among pa-
tients with recurrent malignant glioma following temozolomide fail-
ure, while a multi-center clinical trial incorporating VEGF-TRAP with
temozolomide chemoradiotherapy is planned for newly diagnosed
GBM patients.

Clinical Studies: Targeting Other Angiogenic Mediators

FGF inhibitors

o Although thalidomide can inhibit both bFGF and VEGF angiogenic
signaling [56], only modest anti-tumor activity was observed among
recurrent patients treated with either single-agent thalidomide or
thalidomide plus carmustine [57-60]. Disappointing results were also
reported among newly diagnosed GBM patients treated with thalid-
omide plus temozolomide [61, 62]. Additional studies with thalido-
mide are unlikely based on the lack of an optimal biologic dose and
its association with several limiting toxicities including fatigue, poly-
neuropathy, and thromboses. Interferons-« and -f§ can also block FGF-
mediated angiogenesis [37]. Unfortunately, these agents also exhibit
limited efficacy and frequent toxicity [38-41].

e FGFR TKIs are under development including TKI-258 (Novartis
International AG, Basel, Switzerland) and XL-999 (Exelexis Inc., South
San Francisco, CA, USA). These agents may provide improved efficacy,
yet incur less toxicity due to enhanced specificity. Furthermore, lower
toxicity profiles may facilitate combination with complementary anti-
angiogenic agents.

Metronomic Chemotherapy

e Low-dose, protracted administration schedules of conventional cyto-
toxic chemotherapeutic agents, also referred to as metronomic che-
motherapy, inhibit angiogenesis by impairing endothelial cell
proliferation and survival [42]. Preclinical studies demonstrate activity
of this approach in malignant glioma models [43-45]. Although well-
tolerated, limited anti-tumor benefit has been observed to date among
recurrent malignant glioma patients [46]. However, initial reports
suggest that regimens combining metronomic chemotherapy with
complementary anti-angiogenic agents may improve efficacy [47-49].
Additional clinical trials combining metronomic chemotherapy with
more potent anti-angiogenic agents, such as bevacizumab, are
ongoing.

Anti-integrin therapy

o Integrins, cell surface receptors widely expressed on GBM cells and
tumor endothelium, interact with multiple extracellular ligands,
including vitronectin, fibronectin, laminin, fibroblast-growth factor,
MMP-2, thrombospondin, fibrin, and fibrinogen, via an arginine-
glycine-aspartic acid (RGD) peptide sequence to modulate intracel-
lular signal transduction and promote tumor cell invasion, migration,
proliferation, survival, and angiogenesis [142, 184-186].

¢ Integrin inhibitors including cilengitide (EMD 121974, Merck KgaA,
Darmstadt, Germany), a cyclic RGD peptide that competitively binds
avf3 and avfi5 integrin receptors [27-29], are active in preclinical
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GBM models [30-32]. Clinical activity was reported in a recent phase I
study among recurrent GBM patients treated with single-agent cilen-
gitide including objective radiographic responses in 5 of 51 patients
(10%) and stable disease in 16 patients (31%) for a median of

5.4 months across a wide range of cilengitide dose levels [33e]. Cil-
engitide is very well tolerated with no dose-limiting toxicities occur-
ring in two separate phase I studies despite dose levels up to 2400 mg/
m? twice weekly [33e, 34]. Additional anti-tumor benefit was recently
reported in a phase II study that randomized recurrent GBM patients
to either an intermediate-low (500 mg) dose or an intermediate-high
(2000 mg) dose. In this study, no reproducible toxicities were
observed on either arm, and outcome trended more favorably among
patients treated at the higher dose level, including a 6-month PFS of
15% [35]. An additional trial evaluating intratumoral pharmacody-
namics and pharmacokinetics of cilengitide is ongoing by the NABTC
among recurrent GBM patients treated with cilengitide prior to
scheduled, debulking surgery. Furthermore, preliminary results of a
trial with cilengitide (500 mg twice weekly) plus temozolomide che-
moradiotherapy among newly diagnosed GBM patients recently
reported encouraging 6-month PFS and OS at 12 months, and con-
firmed safety of this approach [36]. A similar single-arm trial evalu-
ating cilengitide dosed at 2000 mg in combination with
temozolomide chemoradiotherapy is being conducted by the New
Approaches to Brain Tumor Therapy (NABTT) cooperative group
among newly diagnosed GBM patients. Finally, a multi-center, ran-
domized phase 3 study for newly diagnosed GBM patients is planned.

Evolving Challenges

Assessing activity

Toxicity

¢ Increasing controversy questions the reliability of traditional assess-

ment of malignant glioma based on contrast-enhanced MRI. For
example, the phenomenon of “pseudo-progression” is increasingly
recognized following conventional temozolomide chemoradiation for
newly diagnosed GBM patients [187]. Conversely, potent anti-VEGF
agents may decrease permeability and lessen contrast enhancement
resulting in a potential “pseudo-response.” Clarification of this critical
issue will require further clinical investigation evaluating additional
imaging approaches such as positron emission tomography (PET)
[188-190], magnetic resonance spectroscopy [191], and complemen-
tary MRI techniques, such as dynamic contrast-enhanced MRI [192-
194], dynamic susceptibility MRI [195-197], arterial spin labeling
[198], and high-resolution magnetic resonance angiography [199, 200].

e The distinct toxicities of anti-angiogenic therapeutics present addi-

tional challenges for neuro-oncology patients [201]. Fatigue, although
nearly universal in frequency, is tolerable in a majority of cases.
Similarly, hypertension can be managed in most cases. An increased
risk of thromboses [202], including arterial events, as well as impaired
wound healing, is also a well-described sequela of these agents and
must be carefully considered among treated patients, particularly
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Biomarkers

Resistance

when administered within several weeks of surgery. Although expe-
rience to date indicates a low risk of intracranial hemorrhage, clini-
cians must maintain vigilant awareness, and patients should avoid
exposure to additional risk factors for bleeding. Intestinal perforation
has also been observed among recurrent malignant glioma patients,
particularly those with pre-existing intestinal polyps. Nasal septal
perforation has also been observed. Reversible posterior leukoen-
cephalopathy (RPLS), a syndrome of acute cortical blindness and
hypertension with subcortical white matter T2 and FLAIR changes, has
been reported following BV therapy [203, 204]. Fortunately, most
cases resolve with stringent blood pressure control. Finally, toxicities
associated with long-term use of anti-angiogenic agents remain poorly
defined.

e The identification and validation of biomarkers of activity will greatly

enhance optimal integration of anti-angiogenic therapeutics into
successful treatment strategies for neuro-oncology patients. For
example, biomarkers may better define optimal dosing schedules,
more rapidly identify patients likely to benefit (or conversely to fail),
and predict the emergence of resistance [205]. Effective biomarkers
must be sensitive, specific, cost-effective, efficient, and associated with
low rates of interoperator variability. Promising candidate biomarkers
include correlative imaging parameters [53e, 2069], as well as circu-
lating factors such as plasma VEGF [26ee, 207-211], bFGF [26Gee,
211], tumor stromal-derived factor-1 (SDF1a) [26ee], and viable cir-
culating endothelial cells [26ee, 127, 208, 212].

Initially, lack of resistance to anti-angiogenic therapeutic strategies was
predicted based on the normal and stable genetic makeup of tumor
vasculature relative to the genomic instability and mutation frequency
typically present in tumors [213]. However, treatment failure among
initially responsive patients suggests that resistance to anti-angiogenic
agents is relevant. Several potential mechanisms of resistance have been
identified including compensatory upregulation of alternative angio-
genic factors such as PDGF/PDGFR-f and Ang-1/Tie-2 following VEGF
inhibition [214, 215], increased mobilization of pericytes, the secretion
of endothelial cell survival factors [214], and the ability of glioma cells to
induce a more invasive phenotype, accompanied by normal host blood
vessel co-option and eventual gliomatosis [12, 216-219]. Future regi-
mens that target multiple angiogenic mediators as well as regimens that
inhibit key mediators of both tumor angiogenesis and invasion may help
circumvent some emerging resistance mechanisms [19, 45, 220].
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