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Abstract
Recursive reasoning is a powerful tool used extensively in problem solving. For us, recursive reasoning includes iteration, 
sequences, difference equations, discrete dynamical systems, pattern identification, and mathematical induction; all of these 
can represent how things change, but in discrete jumps. Given the school mathematics curriculum’s later emphasis on cal-
culus—the mathematics of change in continuous contexts—it is surprising that the curriculum seems to neglect recursive 
thinking after the early grades. Research shows that recursion supports the learning of algebra among younger students, but 
the lack of similar research with older students is concerning. In this paper we suggest possible affordances from teaching 
recursive modeling, including a basic model of the spread of contagious diseases. We also discuss different ways to present 
these models at various points in the curriculum that might develop connections between mathematics and the real world, 
and support students’ learning of mathematics. This leads to what we, as mathematicians, think would be interesting research 
questions for mathematical educators.

Keywords Discrete mathematics · Recursive thinking · Mathematical induction · Difference equations · Epidemics

1 Introduction

This article’s main purpose is to promote research on the 
effects of students learning recursive thinking and under-
standing recursion. By recursion, we mean, roughly speak-
ing, systematic sequential change, as opposed to the continu-
ous change studied in calculus. Recursion includes iteration, 
sequences, difference equations, discrete dynamical systems, 
and mathematical induction.

Our discussion focusses on a basic model of the spread of 
contagious diseases—presented in some detail and in ways 
that might be suitable in various places in a mathematics 
curriculum. This model is one of many recursive mathe-
matical models that students could study. Along the way, we 
suggest some possible affordances in student learning and 
positive effects on students’ attitudes toward mathematics. 

We also briefly discuss other recursive models that could 
engage students, show connections between mathematics 
and the real world, and support students’ learning of math-
ematics through the use of spreadsheets. This discussion 
raises important questions we hope mathematics education 
research will investigate.

We promote the study of recursive thinking because we 
believe the incorporation of iteration, recursion, and differ-
ence equations into school mathematics can lead to, among 
other things,

• easier and deeper learning of many topics in the current 
mathematics curriculum,

• increased student interest in and engagement with math-
ematics,

• expanded understanding of the nature of mathematics,
• better appreciation of the interplay between mathematics 

and other disciplines, and
• understanding of how mathematics can support many 

career choices, leading to a desire to continue learning 
mathematics.

Unfortunately, these beliefs are only marginally sup-
ported by the limited research on the relationship between 
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mathematical learning and the development of recursive 
thinking. In this paper we will indirectly reference these 
potential broad benefits of learning recursive thinking as 
we analyze a particular yet generalizable recursive model 
and suggest many specific researchable affordances that we 
hope will be pursued.

2  Background and literature review

We will not repeat the general argument for an increase 
in the teaching of discrete mathematics in the curriculum, 
but instead focus on one particular discrete topic, recursive 
thinking. By recursive thinking, we mean thinking in terms 
of cause-and-effect in which the same process keeps being 
repeated. For example, if a student continued to fold a piece 
of paper in half, the number of layers would double after 
each fold. A well-known recursive equation generates the 
Fibonacci sequence in which each number is the sum of the 
previous two.

As another example, to compute n!, we could start with 
a1 = 1, then compute a2 = 2a1, then a3 = 3a2, and so on. Com-
puter scientists call this iteration. They define recursion as a 
top-down approach. For example, to compute n!, they start 
with n, then go backwards to n(n-1)!, and continue until 
they get to 1 . To avoid confusion, we will call this top-down 
recursion or TD recursion, for short.

Top-down recursive programming is quite important 
in learning computer science and has been studied exten-
sively. Papert (1980) promoted learning computer literacy 
in primary and secondary education, using the TD recursive 
software Logo. Ansai and Uesato (1982) showed that ado-
lescents understood TD recursion much better if they were 
first familiar with iteration. Kurland and Pea’s (1985) study 
of 8–12-year-old students who had a year of experience 
working with Logo indicates that most avoid all but simple 
iterative programs. Many computer scientists have suggested 
a variety of models for teaching TD recursion, such as the 
Tower of Hanoi or the Eight Queens problem. One interest-
ing model that takes advantage of the top-down nature of the 
problem is parking cars (Wirth, 2008). Computer scientists 
tend to agree that teaching TD recursion is quite difficult. 
McCauley et al. (2015) gives a nice survey of the literature 
on the difficulty of teaching TD recursion. They note that 
hundreds of articles have been published related to the teach-
ing and learning of TD recursion, but there are less than 50 
research results.

This article focuses on iteration and not top-down 
recursion, using the terms “recursion” and “iteration” 
interchangeably.

There is some evidence that iterative tasks support ele-
mentary and middle school students’ transition from com-
putation to algebra. Blanton and Kaput (2005) indicate that 

a combination of iterative contextual problems combined 
with covariational reasoning can help students develop 
algebraic thinking, even as early as the second grade. In 
the January 2008 issue of ZDM—Mathematics Education, 
several articles (Amit & Neria, 2008; Carraher et al., 2008; 
Radford, 2008; Rivera & Rossi-Becker, 2008; Steele, 
2008; Yeap & Kaur, 2008) give evidence that iterative 
problems support learning algebra by students in grades 
3 through 8. The contextual and often hands-on iterative 
problems discussed in these papers supported the learning 
of algebra as students went from the iterative approach to 
developing formulas and generalization.

Given this evidence that iterative tasks support learning 
algebra and that the curriculum includes a focus on pre-
paring for the study of continuous change—calculus and 
derivatives—the small number of studies on the continued 
use of iterative tasks at the secondary level and beyond is 
surprising. In one study (Weigand, 2004) grade 12 stu-
dents and university students used spreadsheets to study 
sequences, such as linear growth, an+1 = an + B, exponen-
tial growth an+1 = Aan, and logistic growth an+1 = an + P(B-
an); they also explored finite differences, i.e., an+1 − an , for 
different sequences. Weigand noted that success required 
a well-structured learning process and care to ensure 
that students not work on only a symbolic level without 
understanding. A second study (Harel, 2001) considers 
the introduction of induction through the use of naturally 
recursive contextual scenarios.

Given the studies showing iterative problems support 
learning algebra and the importance of top-down recur-
sion for computer science, we wonder why almost the 
only iterations seen in the secondary curriculum are Fibo-
nacci sequences and Pascal’s triangle. We think students’ 
schooling should build on the study of iterative change in 
the early grades.

We agree with the conclusions of Lannin et al. (2006) 
who studied the relationship between students develop-
ing explicit and recursive rules for a variety of contextual 
situations. In particular, they concluded that “As such, stu-
dents should be able to reason using explicit and recursive 
rules, and recognize the connections that exist between 
these two types of rules.” While their study was with pre-
algebra students, we believe the conclusions apply to sec-
ondary and college students.

The iterative problems used to promote algebraic think-
ing among pre-algebra students are usually engaging and 
playful for the students. Often, they are hands-on, with 
objects that are built with toothpicks or patterns made 
from stickers (Radford, 2008; Yeap & Kaur, 2008). We 
propose going beyond these simple iterative problems by 
introducing important iterative real-world models to sec-
ondary students to promote a more advanced and deeper 
algebraic understanding. We raise questions about this 
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proposal that we hope the mathematics education com-
munity will address.

3  A simple contagious disease model

In an effort to show the possible affordances arising from 
recursive models, we present a basic model of the spread 
of a contagious disease and consider various presentations 
and perspectives of it in following sections. This model, 
appropriate for both middle and secondary school students, 
is one representative of the type of recursive mathematical 
model that could be introduced in school mathematics. It 
is a simplified version of the susceptible/infected/recovered 
(SIR) models (Eggo, 2018; Smith & Moore, 2001), varia-
tions of which are currently in common use in epidemiology. 
Many of these models are continuous differential equations 
models. In practice, the implementation of these models is 
usually discrete in the sense that a computer applies discrete 
iterations to go forward in time under a variety of assump-
tions, much as our model does. In fact, the spread of a dis-
ease has both continuous and discrete aspects, neither being 
perfect. This is another reason students should study discrete 
mathematics as well as continuous mathematics.

This model will demonstrate that modeling itself is an 
iterative process. While a great deal can be learned from 
a simple model, the repeated replacement of simplifying 
assumptions with more realistic assumptions can lead to 
more realistic models, providing additional insight along 
the way.

For our model, we consider discrete intervals of time: 
our particular interval of time is the length of time a cohort 
of recently infected individuals is contagious. The model 
develops a projection of the spread of a contagious disease 
under the following assumptions that are easy for students 
to understand.

• There is a fixed population size.
• In each time interval, the population consists of suscep-

tible people, contagious people, and immune people.
• Each contagious person is contagious for just one time-

period, then becomes immune and remains immune.
• Each contagious person comes into contact with the 

same number of people while being contagious.
• Each susceptible person who comes into contact with a 

contagious person has the same probability of becom-
ing infected.

• Each susceptible person who becomes infected is con-
tagious in the next time-period.

As the model is developed, students can discuss how 
realistic they believe these assumptions are, and might 

suggest other assumptions or variations on these assump-
tions. For example, this model avoids mortality.

To get a sense of the model, students could construct 
three sequences related to the spread of a contagious dis-
ease. The first sequence is the number of susceptible indi-
viduals initially (i.e., the size of the first cohort of suscep-
tible persons), just after the first time-period, just after the 
second time-period, and so forth. The second and third 
sequences are the numbers of contagious and immune peo-
ple (i.e., the sizes of the cohorts of contagious and immune 
people) respectively during each time-period. Unlike many 
previously considered sequences, these are not arithmetic 
or geometric: they cannot be constructed by looking at the 
pattern of numbers but must be constructed by considering 
the contextual situation—unusual for school mathematics, 
but common in applied mathematics.

The method of presentation should depend on the stu-
dents’ ages, backgrounds, and abilities. For students who 
have not studied algebra, it is possible to start with a class-
room simulation in which the time-period for contagion 
is 1 day. For example, on the first day, 1 student is conta-
gious, 2 students are immune, and 17 are susceptible. They 
could also assume that each day, each contagious student 
contacts 5 other students and each susceptible student has 
a 50% chance of becoming infected if in contact with at 
least one contagious student. They could simulate this by 
drawing 5 names for each contagious person and flipping a 
coin for each susceptible person to determine if they became 
infected. Note that in this simulation, a susceptible person 
could come into contact with more than one contagious per-
son. One possible result is seen in Fig. 1, where we suppose 
that after the simulation, 4 students become contagious on 
Day 2.

Students in early grades could make a table of their 
results. Students in later grades could use sequence nota-
tion or function notation, such as 

Once students understand the context of the contagious 
disease model, they can start to develop a larger example 
using our assumptions. For example, consider a popula-
tion of 5000, of which initially none are immune, 100 are 

s1 = 17, c1 = 1, i1 = 2, or s(1) = 17, c(1) = 1, i(1) = 2.

Fig. 1  Example of simulation of contagious disease. Arrows indicate 
students moving from one cohort to another
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contagious, and 4900 are susceptible to the disease. These 
are the first cohorts. To develop the model, the students 
need to know the contact number, that is, how many peo-
ple each contagious person contacts. They also need to 
know the chance of infection, that is, the probability that 
a susceptible person becomes infected after contact with 
at least one contagious person. While it is not realistic, 
for ease of computation we add an additional assumption:

• Each susceptible person comes into contact with at most 
one contagious person.

With a large population and a relatively small number 
of infected, the results would be similar. For this example, 
suppose that, on average, each infected person contacts 
eight people, and the chance of infection is 20%. Students 
should be able to compute that the 100 contagious people 
come into contact with 8 × 100 = 800 people. Of these, 
students compute that the number of susceptible people 
contacted is

Finally, the number of these susceptible people who 
become infected, and therefore contagious is

which they might round to 157. This leaves 
4900–157 = 4743 susceptible people. The students now 
have computed the first and second cohorts, as seen in 
Table 1.

The development of Table 1 uses proportions in com-
puting the number of susceptible people contacted by 
contagious people, and averages or simple probability to 
compute the expected number of contacted susceptible 
people who become contagious. The class could discuss 
how realistic these computations are. They might com-
plain that we are assuming each contagious person comes 
into contact with exactly 8 different people and there is no 
overlap in those contacted by different infected individu-
als, which is not realistic. On the other hand, if the popula-
tion is large enough, does this use of average impact the 

800

(

4900

5000

)

= 784.

0.2 × 784 = 156.8,

result significantly? Students should also consider that the 
20% chance of infection is an approximation. This means 
that for cohort 2, we expect, on average, 157 contagious 
people, but are aware it could be slightly higher or lower.

Students should now use the same process to compute 
the third, fourth and fifth cohorts, seen in Table 1. This 
simple model provides an opportunity to talk about aver-
ages, with the computed numbers being an expected result 
on average, not necessarily an exact result.

Other models than contagious diseases can be devel-
oped with students, such as a variety of models of popula-
tion growth (Weigand, 2004). A population growth model 
with fixed growth rate is an+1 = Aan, which would result in 
exponential growth. The logistic equation an+1 = an + P(B-
an), has a linearly decreasing growth rate, and generally 
has no algebraic formula for its solution. We think it is 
important that students realize not all problems can be 
represented by explicit algebraic solutions and some must 
be studied using other methods, such as recursion and/or 
spreadsheets.

4  Recursion and the use of spreadsheets

The ease with which computations can be done with spread-
sheets in studying iterative problems supports students learn-
ing algebra (Tabach et al., 2013). While not being research 
studies, Cornell and Siegried (1991) and Maxim and Verhey 
(1991) have also argued that the learning of traditional math 
and algebra is supported through teaching recursion com-
bined with the use of spreadsheets. Their arguments sup-
port our view that the use of spreadsheets combined with 
recursive thinking is potentially a powerful educational tool 
in developing reasoning skills and meaningful applications 
while supporting the learning of traditional mathematics. 
These papers describe how the use of spreadsheets can be 
used in a variety of recursive models.

This section describes how spreadsheets might be used 
similarly for our contagious disease model. Students might 
realize that the same computations are repeated for each 
cohort. In particular:

• the estimated number of individuals contacted by the 
current cohort of contagious people is the number con-
tagious multiplied by the contact number;

• the estimated number of susceptible people coming into 
contact with a contagious person in the current cohort is 
found using proportions;

• the estimated number of contagious people in the next 
cohort is the product of the number of contacted suscep-
tible people and the chance of infection;

Table 1  First several cohorts of susceptible, contagious and immune 
people with population 5000, contact number 8, and likelihood of 
infection 20%

Time Period 1 2 3 4 5

Contagious 100 157 238 343 457
Susceptible 4900 4743 4505 4162 3705
Immune 0 100 257 495 838
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• the estimated size of the next cohort of susceptible peo-
ple is the result of subtracting the number of newly con-
tagious people from the previous cohort of susceptible 
people; and

• the estimated size of the next cohort of immune people is 
the sum of the previous cohort of contagious people and 
the previous cohort of immune people.

Here is where students can discover the power of arithme-
tic by using spreadsheets. Instead of continuing to compute 
by hand, the students can make a simple spreadsheet like 
Table 2. This spreadsheet is just a straightforward translation 
of the steps listed in constructing Table 1.

By copying down the last row, the spreadsheet will repeat 
all the computations, although some values will not be 
whole numbers. From looking at the numbers in the spread-
sheet, students can see that the number of contagious people 
increases to a maximum of 548 in cohort 7, then decreases to 
0. Similarly, the total number of immune people levels off at 
3540. This means that a total of 3540 people eventually had 
the disease and became immune, while 1460 escaped being 
infected. Students could discuss if it makes sense to look at 
the limit of the total immune in the spreadsheet, or if they 
should stop computing once the number of infected is less 
than 0.5, which occurs in the  19th time period with a total of 
3539 being immune, after rounding.

How can teachers determine whether using whole number 
quotients or rational values is more effective for their stu-
dents? Some students may find whole numbers more mean-
ingful and can use them to compute the values of the first 
few cohorts. Using rational numbers can reinforce that the 
results are only approximations. Either way, it is important 
for students to understand that rounding will not have much 
impact for relatively large populations, that the numbers are 
averages, and that variation is expected.

We believe that the use of spreadsheets will help transi-
tion the curriculum from the current formula-based system 
toward a more process-based system. Time, as well as care-
ful observation by researchers, is needed for us to learn how 
realistic our belief is.

5  Algebraic notation for recursion 
and difference equations

As described in §2, there is evidence that students as 
early as the second grade can discover recursive patterns 
in contextual situations and use the recursive pattern to 
develop algebraic formulas. Of particular interest is how, 
in several studies, students developed linear functions 
from recursive patterns that involved repeated addition. 
In one study (Carraher et al., 2008), third grade students 
considered the number of people who could sit around a 
long collection of tables. Each time a table was added, 
two more people could sit. Students translated `add 2’ into 
2t + 2 , thus translating repeated addition into multiplica-
tion, developing an algebraic formula. Rivera and Becker 
(2008) conducted a 3-year longitudinal study of middle 
school students in which they developed linear functions 
using different methods. Some students used a constructive 
method in which the same amount was added each time, 
resulting in the formula 3n + 1 for counting the smallest 
number of toothpicks needed to make n connected squares. 
Other students used a deconstructive method in which they 
had overlapping parts in which they had to then subtract 
an appropriate amount, yielding 4n − (n − 1) for the same 
problem. Amit and Neria (2008) had a similar result with 
sixth and seventh grade students who in studying a til-
ing problem observed that after each iteration, the num-
ber of tiles increased by 8 leading to correct formulas, 
such as 8n + 8 or 16 + [(n − 1)8] , depending on how they 
saw the problem. In that study and a study by Yeap and 
Kaur (2008) with fifth grade students, nonlinear problems 
were considered, in which the amount added each time 
increased, resulting in a quadratic expression. This shows 
the continued development of the relationship between 
recursion and algebra as students advance.

These studies and others indicate that students look for 
patterns, which they should continue to do. Several people 
have proposed different methods for connecting recursion 
and algebra. In the Now/Next method (Hart, 1997; Hart & 
Martin, 2016; Hart et al., 2008; Lannin et al., 2006; Martin 
& Hart, 2012), students would write the arithmetic sequence 
for the toothpick problem in Rivera and Becker (2008) as

while the use of difference equations and sequence nota-
tion (Dossey, 1991, 1997) would result in

where so = 1 for sequence 1). In this case, the closed-form 
solution

(1)Next = Now + 3

sn+1 = sn + 3,

sn = 3n + 1

Table 2  Spreadsheet template for contagious disease model

A B C D

1 Cohort Contagious Susceptible Immune
2 1 100 4900 0
3  = A2 + 1  = 0.2*8*B2*(C2/5000)  = C2-B3  = D2 + B2
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is easily found, as did the students in that study, demon-
strating that repeated addition can lead to multiplication.

Similarly, repeated multiplication leads to exponentiation, 
as seen by either using the Now/Next method,

or the first order difference equation

Letting so = 1 results in the closed-form exponential 
solution

Such exponential results arise in the mathematics of 
finance and in population dynamics.

These sequences have the additional advantage that they 
can be developed within interesting contextual settings. 
For example, the buildup in the plasma of a repeatedly 
taken medicine (Sandefur et al., 2018) in which r is the 
fraction eliminated each time-period and d is the repeated 
dose results in the recursive equation

This medicine model can also be written as a difference 
equation using sequence notation,

As students progress in their mathematics and the recur-
sive problems become more complex, the sequence nota-
tion style must replace the Now/Next method. A difference 
equation of the form

where the amount being added is a function of n , is 
called nonhomogeneous. In Yeap and Kaur (2008) stu-
dents developed both a recursive and quadratic closed 
form solution when adding consecutive odd integers, 
sn+1 = sn + 2n + 1 . In Amit and Neria (2008), students 
generated both the recursive and quadratic formula 
for the total number of candles lit over Hanukah where 
each day one more candle is lit than the day before, 
sn+1 = sn + n + 1 . Some additional examples of difference 
equations similar to Eq. 4 are

• counting how many handshakes occur among n people if 
each pair shakes hands exactly once (Sandefur, 1997),

• counting the number of seats in a theater (Burrell et al., 
1991), and

• a model of skydiving and acceleration of gravity (Hart 
et al., 2008).

(2)Next = 3Now,

sn+1 = 3sn.

sn = 3n.

Next = (1 − r) × Now + d.

(3)sn+1 = (1 − r)sn + d.

(4)sn+1 = sn + f(n),

The sequence approach works well for second order mod-
els, such as the Fibonacci sequence, written as

sn+2 = sn+1 + sn.
Our contagious disease model involves several changing 

variables with each value depending possibly on previous 
other values. It is described by the system of equations

or, after substituting,

which is the more traditional form.

6  Graphing

We believe discrete models combined with the use of 
spreadsheets can help students better understand graphs of 
functions because they can generate the graphs themselves, 
within a contextual setting. In these cases, the variables have 
meaning for the students.

Some spreadsheet models result in traditionally studied 
graphs. Parabolic graphs result from difference equations 
of the form Eq. 4 where f (n) is linear. Exponential graphs 
occur for models of radioactive decay and for models of the 
buildup and elimination of drugs (Sandefur, 1992; Sandefur 
et al., 2018).

Beyond that, some recursive models result in non-tradi-
tional graphs; it seems to us that this can enrich students’ 
understanding of and appreciation for mathematics. The 
analysis of the spread of contagious diseases leads to non-
traditional graphs. Using our model of contagious disease 
spread Eq. 5, we could graph the number of contagious 

cn+1 = (0.2)(8)
(

cn
)

(

sn

5000

)

sn+1 = sn − cn+1
in+1 = in + cn

(5)
cn+1 = (0.2)(8)

(

cn
)

(

sn

5000

)

sn+1 = sn − (0.2)(8)
(

cn
)

(

sn

5000

)

in+1 = in + cn

Fig. 2  Number of infected in each cohort with population 5000, con-
tact number 8 and a likelihood of infection of 20%
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people in each time-period, as seen in Fig. 2. We only plot-
ted points because we are only generating the number of 
contagious persons in discrete time-periods. We could also 
smoothly connect the points, as in Fig. 3. This suggests 
that while we are considering discrete time intervals, there 
is probably a more gradual spread of infection occurring 
within each time-period so that the number of contagious 
people is increasing or decreasing during each time-period. 
Through models such as this, students can generate and dis-
cuss graphs that are not graphs of the standard functions 
(polynomials, rational functions, exponential functions) 
normally graphed in school. By considering graphs such as 
Fig. 3, students can interpret the meaning of the variables 
from the graphs. In this way, graphs represent more than 
just a relationship between two abstract variables. The fact 
that the students generate the graphs should give them more 
ownership over and investment in the graphs than they have 
when interpreting a graph given in a textbook. 

An important aspect of graphing that arises from recur-
sive models is the study of asymptotes. Our experience 
indicates that students, even college students, often do not 
understand the significance of an asymptote. The exponen-
tial closed form solution to the medicine example 3) is dif-
ficult for students to discover. If students make graphs of 
solutions using spreadsheets, they will see that over time, the 
amount of drug will level off at a horizontal asymptote. This 
asymptote is the desired equilibrium amount of medicine 
in the plasma for that given dose. This is easy for students 
to understand. For Eq. 3, this equilibrium is achieved when 
sn+1 = sn (or Next = Now), so to determine this, students sub-
stitute x for sn+1 and sn and solve

for x, giving x = d∕r . In reality, x and r are usually known 
and this formula is used to find the appropriate dose, d = xr. 
Note that the important information has been found without 
the use of a closed formula.

Another example of meaningful asymptotes arises from 
population growth models, such as the logistic equation,

x = (1 − r)x + d

The variable r is called the intrinsic growth rate and L 
is called the carrying capacity. If the intrinsic growth rate r 
is reasonably small, graphs of pn have a horizontal asymp-
tote at p = L . Students could discover that this is reasonable 
since this is the value for which the change in population, 
pn+1 − pn , is zero. The horizontal asymptote is found by 
solving the equation

where x is substituted for pn and pn+1 in Eq. 6. Note that 
there is a second solution, p = 0 , which is also an equilib-
rium value: if the population is extinct, it remains extinct. This 
shows the difference between a stable equilibrium, L, and an 
unstable equilibrium, 0. Thus, solving equations relates to 
asymptotes and gives a reason for understanding both.

A variation on the medicine problem (Sandefur et al., 2018) 
assumes that some of the medicine is being absorbed from the 
plasma into the liver and vice versa, which is true for vitamin 
A. This gives a pair of equations, such as

where dn and ln are the amount of the drug in the plasma and 
liver, respectively, after n time periods. For these equations, a 
is the size of the dose of medicine, b is the fraction eliminated 
by the kidneys, r is the fraction absorbed from the plasma into 
the liver and s is the fraction absorbed from the liver into the 
plasma. A spreadsheet graph will show horizontal asymptotes 
for both dn and ln . By substituting x for dn and dn+1 , and y for 
ln and ln+1 and solving the pair of linear equations, we hope 
students will come to understand equilibrium: these values are 
the equilibrium amounts of the medicine in both the plasma 
and liver. We also intend that students understand how these 
values are related.

Figure 4 is the graph of the sizes of the immune cohorts in 
our contagious disease model, which are also the total numbers 

(6)pn+1 − pn = r
(

1 − pn∕L
)

pn.

x − x = r(1 − x∕L)x,

(7)
dn+1 − dn = a − bdn − rdn + sln
ln+1 − ln = −sln + rdn

Fig. 3  Number infected in each cohort with points connected by 
curves Fig. 4  Immune people over time with population 5000, contact num-

ber 8 and a chance of infection of 20%
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infected over time. It has the traditional S shape with a hori-
zontal asymptote, often associated with contagious disease 
models and population growth models. The asymptote in this 
case is different from the medicine models and the population 
model in that there is no unique solution for the equilibrium 
value. In particular, to solve for the equilibrium values for the 
contagious disease model 5), substitute x for sn andsn+1 , y for 
cn and cn+1 , and z for in andin+1 , to get the equations

The third equation implies y = 0 , which makes sense: 
for the epidemic to die out, there can be no contagious peo-
ple. This means that the values for z and x can be anything. 
Here is a natural example of a system of three equations and 
three unknowns which, mathematically, has an infinite set 
of solutions. On the other hand, since the equilibrium for 
sn and in must be integers and sn + in must equal the size of 
the population, realistically speaking, there is not really an 
infinite set of equilibrium values.

Figure 4, like the medicine and population models, is an 
example in which the horizontal asymptote has real-world 
significance. Unlike the medicine models and the popula-
tion model, the asymptote for the contagious disease model 
Eq. 5 cannot be determined from the equations alone, but 
also depends on sizes of the initial cohorts.

7  Understanding parameters: physical 
distancing

The Common Core State Standards for Mathematics (http:// 
www. cores tanda rds. org/ Math/) recommends that students 
understand the value of parameters in a variety of contextual 
situations. For example, while students may determine that 
a parameter shifts a parabola vertically or horizontally, they 
should see the value of parameters in a broader, real-world 
context. Watson and Chick (2011) discuss an exploration 
of polynomials involving a variety of parameters, but the 
goal of the example was to construct a polynomial with cer-
tain characteristics, not to see how the parameters affected 
a realistic outcome. On the other hand, Lingefjӓrd (2006) 
discusses models with a variety of parameters related to real 
outcomes, but the models are at an advanced level, inap-
propriate for school mathematics. Berry (2002) argues that 
students can explore simpler models if they use a Computer 
Algebra System, and gives an example of the design of a 
drink can.

y = (0.2)(8)(y)
(

x

5000

)

x = x − (0.2)(8)(y)
(

x

5000

)

z = z + y

Most of the recursive models described previously in this 
article have one thing in common, one or more parameters 
that affect the outcome of the model. For example, drug 
model Eq. 3 has two parameters, the elimination rate r , over 
which we have little control, and the size of the dose of 
medicine, d , over which we do have control. Changing these 
parameters within a spreadsheet changes both the horizontal 
asymptote and the rate at which we approach this asymptote. 
Thus, recursive modeling combined with the use of spread-
sheets gives a simple way for students to explore mathemati-
cally where their explorations lead to insight into a model 
of interest.

Our infectious disease model provides many opportuni-
ties for students to explore the effects of parameters. For 
example, in Table 2 and Fig. 4, we see that, with a popu-
lation of 5000, a contact number of 8 and a likelihood of 
infection of 20%, the total eventually infected stabilizes 
at about 3540. Since 3540∕5000 = 0.708 , about 70% of 
the population becomes infected. This suggests that the 
population will develop herd immunity when 70% of it 
is immune.

One advantage of using spreadsheet models combined 
with recursive thinking and traditional mathematics is that 
surprising results can often occur. That is the case for the 
study of contagious diseases: simple explorations with 
parameters lead to some interesting results. For example, 
students could try different values for the contact num-
ber, say 7 instead of 8. This is easy to accomplish using a 
spreadsheet. The result is that only 2865 eventually become 
infected, telling us that 2865∕5000 = 0.573 , or just over 57% 
of the population, become infected. This is in contrast to 
70% with contact number 8. Also, the peak number infected 
in any time-period is smaller, 339 versus 548 in cohort 7. 
This demonstrates to students how the effect of physical dis-
tancing works. Again, students could try larger and smaller 
numbers for the contact number to see the effects. Students 
could discuss how we could reduce the contact number; one 
example might be limiting the size of gatherings. Different 
surprising results occur for the logistic equation Eq. 6 in 
which case, erratic (chaotic) behavior occurs for growth rates 
that are too large.

Instead of decreasing the contact number, students could 
consider the impact of changes in the likelihood of infection 
by using different values in the spreadsheet model. They 
could discuss ways to decrease the likelihood of infection 
such as by people being careful wearing masks or staying 
a little further apart when they do come into social con-
tact with each other, just as they could discuss the medicine 
model with different size doses and different elimination 
rates.

Class discussions could result in students seeing that the 
product of the contact number times the likelihood of infec-
tion plays a key role in the examples; for instance, a contact 

http://www.corestandards.org/Math/
http://www.corestandards.org/Math/
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number of 16 and likelihood of infection of 10% results in 
the same total number eventually immune, 3540. If students 
consider the spreadsheet model, they should see why this is. 
In cell B3 of Table 2, what is important is the number

We will call the product of the contact number and the like-
lihood of infection, the reproductive number. Note that this 
is only the average number of contagious people in one of 
our time-periods for each contagious person in the previous 
time-period if the immune cohort of the previous time-period 
is empty. In our computations, we might use this one number 
instead of using both the contact number and the likelihood of 
infection, but using these two parameters gives us more insight 
into the model. This is similar to using a growth rate instead of 
a birth rate and death rate in population models.

We do note one caveat in these explorations. If the repro-
ductive number is too large, 1.8 in our example, then the num-
ber of people contacted by contagious people in some cohorts 
might exceed the number of people in the population, 6093 in 
cohort 5 for this example. A refinement of the model can limit 
the number of contacts to the size of the population.

Once students understand the effect of the reproductive 
number on the total eventually infected, they can continue to 
take advantage of the use of spreadsheets to reexamine the 
model by varying other parameters in the model such as popu-
lation size, initial number infected, and likelihood of infection. 
For example, if they use a different initial contagious cohort, 
say 50, the model predicts that only 3487 people catch the dis-
ease, which is not much different than the 3540 who catch the 
disease with an initial cohort of 100. In fact, if only 1 person 
is initially infected, 3432 people still become infected. Thus, 
the initial cohort of infected people seems to have little effect 
on the final outcome, as long as the initial cohort is reason-
ably small.

We have found that the reproductive number significantly 
impacts the spread of the disease but the size of the initial 
cohort of infected individuals has much less impact. We have 
also found that some values for parameters lead to unrealistic 
results, such as a large value for the reproductive number leads 
to more people contacted than the population size. Similar 
results occur for the logistic equation Eq. 6 since changes in 
the parameter L result in significant changes in the long-term 
population size, but changes in the parameter r have no effect 
on the long-term population size but can result in strange, even 
unrealistic results if r is too large. Parameters have different 
effects, some large and some small.

1.6 = 8 × 0.2 = 16 × 0.1.

Students could also discover other effects of changes in 
parameters. They might explore and discover that if the repro-
ductive number is less than 1, then the number of infected 
decreases, but if it is greater than 1, the number of infected 
will increase before decreasing.

In Table 3, the second row gives the number of newly con-
tagious using the reproductive number 1.6. The last row lists 
the case rate of infection, R, for each cohort; that is, R is the 
average number of persons infected by each member of the 
cohort. R is the rational number computed by dividing the 
number of new cases in the next cohort by the number of new 
cases in the current cohort (Eggo, 2018). Just as when the 
reproductive number is less than 1, when R is less than 1 the 
contagious disease is abating.

Students should learn to look for reasons behind patterns. 
For example, an examination of Tables 1 and 3 along with 
the spreadsheet can help students see why the number of 
new cases may increase from cohort to cohort, but eventu-
ally decreases. In particular, there are about the same num-
ber of contagious people in cohorts 5 and 8, and therefore 
about the same number of contacts. But the number of sus-
ceptible persons in the population is decreasing, and so the 
number of vulnerable (susceptible) contacts is decreasing. 
After that, as long as the parameters do not change, both 
the numbers of new cases and the proportion of susceptible 
contacts are decreasing. This analysis shows that once the 
number of new cases starts decreasing, it will continue to 
decrease. To see that it eventually reaches zero may not be 
accessible to students, but students with an understanding 
of mathematical induction can see this by proving that any 
decreasing sequence of natural numbers is finite.

Finally, students could explore how the initial population 
size affects the spread of the disease. Students should try 
varying the initial population size, but keep the initial num-
ber infected at 100 and infection rate at 8(0.2) = 1.6. It would 
be unreasonable to compare the total number of infected 
for a population size of 5000 versus a population size of 
1,000,000. Instead, students should compare the proportion 
infected, which they would discover is about the same. In 
other words, the initial population size seems to have little 
effect on the total percent eventually infected. This suggests 
that instead of looking at fixed population sizes, we could 
look at the fraction of the population contagious, suscep-
tible and immune. Doing this would mean using decimals 
for the initial contagious, susceptible and immune cohorts; 
with the 3 decimals adding to one. Students investigating 
this model would be learning to compare apples to apples, 

Table 3  The third row is the 
case rate of infection, the 
proportion infected by current 
number of infected

Cohort 1 2 3 4 5 6 7 8 9

Newly infected 100 157 238 343 457 542 549 459 317
R 1.57 1.52 1.44 1.33 1.19 1.01 .84 0.69 0.59
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that is, percent infected, not total infected, increasing their 
appreciation of the use of proportions.

In summary, by varying different important parameters 
systematically, students should gain insight into the effect 
each parameter has on the model. While the contagious 
disease model may be a little more complicated, the medi-
cine models 3) and 7) can also be explored by changing the 
parameters for the rates of elimination, the rates of transmis-
sion between plasma and liver, the size of the dose, and the 
starting amount of medicine. Similarly, the logistic model 
can be explored by determining the effect resulting from 
the intrinsic growth rate r and the carrying capacity L. One 
result is that whether there is a horizontal asymptote or not 
depends only on the value for r.

Students exploring recursive models are learning how to 
explore as mathematicians do. In addition, students studying 
our contagious disease model might gain an appreciation for 
how mathematics is used in the fight against COVID-19, and 
against contagious diseases in general.

8  Research questions

Previous sections discussed how we believe recursive mod-
eling can be easily and effectively interspersed throughout 
the curriculum, with the potential of supporting student 
learning.

In summary:

• §3: a recursive model using proportions and averages in 
a significant context.

• §4: spreadsheets used to systematically explore a model.
• §5: connections among recursive modeling with differ-

ence equations, sequence notation, and function notation.
• §6: connections between recursion and graphical repre-

sentations, particularly asymptotes.
• §7: parameters within the context of a recursive model.

While we emphasized one particular model to exemplify 
our ideas in some detail, in Sects. 3, 5, 6 and 7 we also 
noted recursive representations of linear, exponential, and 
other non-linear functions. These representations could be 
used at many places in the curriculum to support learning 
about these important function families. This section pre-
sents some questions, followed by brief discussions, that we 
hope mathematics education researchers will address. The 
answers to these questions might provide insight on how 
recursive thinking can support and broaden the school cur-
riculum while developing students’ mathematical thinking.

o What are the different cognitive challenges for learners 
inherent in the recursive form compared to the closed-
form?

We have given examples in which explicit solutions 
to recursive problems are easily developed, and in which 
explicit solutions are difficult or impossible to generate. 
What are the advantages of each? This probably depends on 
the models and the age of the students. For example, some 
practicing secondary teachers have used simple recursive 
problems (Bannard, 1991; Burrell et al., 1991; Reinthaler, 
1997), to have their students generate closed-form linear 
and parabolic solutions to simple difference equations. On 
the other hand, for the drug models 3) and 7), finding the 
equilibrium and using spreadsheet graphs to explore gives 
most of the needed information. The closed formula for the 
Fibonacci sequence is both difficult to derive and does not 
give much information other than the limiting growth rate, 
while writing the sequence out by hand leads to patterns, 
such as the alternation between two odd numbers followed 
by one even number—which are easy to prove from the 
construction. Some equations, such as the logistic equation 
Eq. 6 and contagious disease model 5), generally do not have 
closed-form solutions so that other types of analyses must 
be used to gain information from the model. This leads us 
to ask, when a closed-form solution to a recursive model is 
not readily available, what are the developmental advantages 
of each approach to writing a recursive model, such as the 
Now-Next method, and sequence notation?

More generally, these considerations raise this basic 
question.

o How does exploring with recursive models change stu-
dents’ perceptions of and attitudes toward mathematics?

Even where no closed-form solution exists, students can 
explore, for example noticing how asymptotes give a lot of 
information in the drug, contagious disease, and population 
models. In most math models, mathematicians cannot find 
closed-form solutions; so they use other methods to try to 
glean information from the model. Thus, students exploring 
such models are acting more like mathematicians. While 
some students may enjoy manipulating formulas, other 
students may become engaged with mathematics through 
exploring meaningful contexts and reflecting on the structure 
of the results of a model, especially when technology such 
as spreadsheets automates tedious calculations.

o How are students’ algebraic and graphic skills enhanced 
by learning to move among representations in recursive 
models? Does analyzing recursive models encourage 
students to be more flexible and move fluidly among 
different modes of analysis?

Related to the previous question, there is a close rela-
tionship between recursive models, algebra, and graphs. As 
discussed in §2, there is evidence that recursive thinking 
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supports younger students’ algebraic understanding, such 
as observing a relationship between repeated addition and 
linear functions. In what other ways does a recursive view 
strengthen students’ understanding of linear functions? 
Given this evidence related to linear functions, it seems 
surprising that there has been little work looking at how a 
recursive view relates to students’ understanding of expo-
nential functions.

Even more, recursive models involve exploring relation-
ships among formulas, parameters, asymptotes, and equilib-
ria, within contextual situations. In what ways do such recur-
sive explorations further enhance students’ algebraic and 
graphical understanding? Does considering graphs within 
a context lead to a better understanding of the relationships 
among the different variables and parameters in a problem? 
For example, determining the effects of a parameter on an 
expression is often difficult, as in determining that for the 
quadratic function

it may be unintuitive to discover that increases in the 
parameter b results in the parabola being shifted upward 
while increases in a results in the parabola shifting to the 
left. On the other hand, in recursive models, there is a con-
textual relationship between the parameter and the graph that 
makes the results more intuitive. For example, increasing 
the infection rate increases the horizontal asymptote for the 
total infected while increasing the elimination rate for a drug 
results in the horizontal asymptote decreasing.

The fact that recursion involves moving among context, 
formulas, and graphs may increase students’ flexibility in 
problem solving. We note that Alcock and Weber (2010) 
found that college students tend to lack flexibility in their 
approaches to proving, preferring either a referential or syn-
tactic approach. Will working recursively increase students’ 
mathematical flexibility?

o How does the contextual use of simple probabilities and 
proportions in the development of models affect stu-
dents’ understandings of proportional reasoning, prob-
ability, and statistics?

In what ways will recursive modeling support students’ 
understanding of statistics? The model of the spread of a 
contagious disease predicts exact values similar to predict-
ing that half of some number of flips of a coin will be heads. 
On the other hand, a statistical result predicts a result with 
some degree of variation. These are two different ways to 
explore the same situation. How will students react to these 
different approaches?

In addition to comparing deterministic versus statistical 
results, recursive models often use proportional reasoning, 

y = (x + a)2 + b

such as in our model of contagious disease spread. Not only 
is proportional reasoning used in development of models 
like this, but the results may include predictions of averages 
and expected values.

9  Discussion

We believe the use of difference equations and spreadsheets 
to explore and analyze naturally recursive real-world situ-
ations has the potential to enhance students’ understand-
ing of and attitudes toward mathematical reasoning and 
applications.

While our primary model is the study of contagious 
diseases, we identified other topics that could be used. We 
focused on contagious diseases to show one way combin-
ing recursion and current affairs can engage students in 
mathematics.

Various sources of recursive problems are appropriate 
for study by students at lower levels of school (DeBellis 
et al., 2009; Malkevitch & Meyer, 1974; Seymour & Shedd, 
1973). The curriculum project Core Plus incorporates recur-
sive modeling throughout its texts (Hart, 1997). Through-
out this article, we mentioned other sources of problems 
appropriate at the middle and secondary levels (Cornell & 
Siegried, 1991; Hart et al., 2008; Sandefur, 1997; Sandefur 
et al., 2018). It is a little more difficult to find truly applied 
models similar to our disease model. One source of applica-
tions of difference equations with examples similar to our 
model is Sandefur (2002). Its examples include the buildup 
and elimination of caffeine or alcohol, the effects of selec-
tion and mutation on the genetic makeup of a population, 
and sustainable harvesting models. They all can be adapted 
to the middle or secondary mathematics classroom, similar 
to the ways we adapted the contagious disease model in this 
paper.

We argued that students’ early exposure to recursive pat-
terns, such as sequences or repeated patterns of colors or 
shapes, should be built upon—not dropped as it currently 
is. To do this effectively, studies should be conducted to 
determine how the different forms of recursion can develop 
sound habits of thinking and reasoning. What models and 
approaches are most age appropriate? How should students 
progress from verbal descriptions (add 4) to the Now-Next 
approach to sequence notation and to difference equations? 
At what point and how should spreadsheets be introduced? 
How do recursive models support students’ understanding of 
basic arithmetic operations, and of probability and propor-
tions? Do recursive models support students’ understanding 
of and ability to interpret graphs?

The questions just suggested are basic. We believe there is 
even more power from introducing realistic applied contexts. 
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The idea behind our disease model was to show that, with 
some basic mathematics (addition, proportions, multipli-
cation) and spreadsheets, students at a variety of levels 
can explore meaningful and significant examples, helping 
to develop student agency. It not only allows them to see 
how the mathematics they are learning is used in practice, 
it lets them experience mathematics by developing reason-
able assumptions and the corresponding mathematical rela-
tionships. That is, students can begin to have a sense of the 
power of mathematics to help them see meaningful patterns 
in real-world situations.

Realistic recursive models provide a rich area for edu-
cational studies on the effects of these models on students’ 
learning and valuing mathematics. We believe these applied 
problems are likely to have a positive impact on students’ 
attitudes toward mathematics by letting them experience real 
mathematics. How does studying these problems improve 
students’ abilities to reason and explore? How does having 
students write clearly about the justifications for and the 
shortcomings of their assumptions affect their reasoning and 
mathematical communication skills? How does explaining 
their conclusions based on their explorations improve their 
writing and reasoning?

In short, we believe significant benefits can result from 
the increased introduction of recursion in the mathematic 
curriculum. We hope that the mathematical education com-
munity studies these possibilities in the near future.
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