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Abstract
Much remains under-researched in how learners make use of domain-specific feedback. In this paper, we report on how 
learners’ can be supported to overcome logical circularity during their proof construction processes, and how feedback sup-
ports the processes. We present an analysis of three selected episodes from five learners who were using a web-based proof 
learning support system. Through this analysis we illustrate the various errors they made, including using circular reasoning, 
which were related to their understanding of hypothetical syllogism as an element of the structure of mathematical proof. 
We found that, by using the computer-based feedback and, for some, teacher intervention, the learners started considering 
possible combinations of assumptions and conclusion, and began realising when their proof fell into logical circularity. Our 
findings raise important issues about the nature and role of computer-based feedback such as how feedback is used by learn-
ers, and the importance of teacher intervention in computer-based learning environments.
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1 Introduction

In research on the teaching and learning of proof and prov-
ing, an under-researched issue is the extent to which students 
are competent in identifying logical circularity in proofs and 
how such competency can be enhanced (Hanna and de Vil-
liers 2008; Sinclair et al. 2016; Stylianides et al. 2016). Rips 
(2002) has argued that the psychological study of reasoning 
should include a natural interest in patterns of thought such 
as circular reasoning, since such reasoning may indicate 
fundamental difficulties that people may have in construct-
ing, and in interpreting, even everyday discourse. However, 
Rips claims that up until his study in 2002 there appeared to 
be no prior empirical research on circular reasoning. While 
Rips reports on a study of young adults, Baum et al. (2008) 
report findings with younger students—indicating that by 5 

or 6 years of age, children show a preference for non-circular 
explanations and that this appears to have become robust by 
the time youngsters are about 10 years of age.

While learners’ preference for non-circular explanations 
may be robust by the time they are 10 years old, within 
mathematics education Heinze and Reiss (2004) report that 
from grade 8 to 13 in Germany an unchanging two-thirds 
of pupils fail to recognise circular arguments in mathemati-
cal proofs. Such evidence illustrates that pupils are in need 
of considerable support in order to identify and overcome 
circular reasoning in mathematical proofs. As Freudenthal 
(1971) observed “you have to educate your mathematical 
sensitivity to feel, on any level, what is a circular argument” 
(p. 427). All these studies, and the statement by Freudenthal, 
suggest that there are still many aspects to be examined in 
order to have deeper understanding of students’ ways of 
thinking concerning deductive proofs, so that they can be 
provided with better learning support.

Considering the current situation and gaps described 
above, this paper explores issues of how learners’ can be 
supported to overcome logical circularity during their proof 
construction processes, and how feedback supports the pro-
cesses. We particularly focus on learners’ use of feedback 
as the latter is a key aspect of assessment for learning and 
something which is recognised as “one of the most powerful 
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influences on learning and teaching” (Hattie and Timper-
ley 2007, p. 81). Despite considerable research related to 
assessment and feedback there remain many open questions. 
In particular, much remains under-researched about how 
domain-specific formative feedback can improve learners’ 
learning processes. For example, Stylianides et al. (2016) 
state that it is necessary to investigate “productive ways for 
assessing students’ capacities to engage not only in produc-
ing proof but also to engage in processes that are ‘on the 
road’ to proof” (p. 344).

The aim of this paper is to consider an overarching ques-
tion of how feedback can support learners who accept or 
construct a proof with errors. In order to achieve this pur-
pose, in this paper we work with the following specific 
research questions (RQs), which we consider as useful to 
explore and expand our thinking on how to support students’ 
proving processes;

RQ1: What patterns of proof construction processes 
can be identified as learners use the web-based learn-
ing support system?
RQ2: How is the feedback from the online system 
used by learners to overcome logical circularity dur-
ing proof construction?

To address our research questions, we first clarify the 
nature of logical circularity in geometrical proofs and why 
students might accept or construct a proof that contains a 
logical circularity (Sect. 2). In particular we show that issues 
with propositions and hypothetical syllogism are the under-
pinning ideas that can inform feedback to support students’ 
proof learning. In Sects. 3 and 4, we review relevant litera-
ture on learners’ use of feedback, including computer-based 
feedback, and develop conceptual ideas for characterising 
the types of feedback provided by our web-based learning 
support system for learning deductive proofs (hereafter, the 
system). In Sect. 5, after describing our system, we provide 
our methodology for studying the use of computer-based 
feedback during the proof construction process. We present, 
in Sect. 6, an analysis of selected episodes collected as stu-
dents worked on proof problems using the system. These 
episodes qualitatively illustrate how learners who have just 
started learning to construct mathematical proofs made vari-
ous mistakes, including using circular reasoning, and how 
these relate to the use of their universal/singular proposi-
tions and hypothetical syllogisms in their proof construction 
processes. Finally, in Sects. 7 and 8, we discuss our findings 
and answer our research questions. Through answering our 
research questions and subjecting our findings to critical 
discussion, we aim to provide insights into productive ways 
of using assessment in proof learning, as well as into issues 
related to the teaching and learning of mathematics with 
computer-based learning environments, and methodological 
approaches to studying learning processes.

2  Logical circularity in geometrical proofs

We begin by clarifying logical circularity in deductive 
proving. In mathematics, Euclid’s Elements is one of the 
oldest texts that organised various mathematical state-
ments logically. Each proposition is carefully ordered so 
that only already-proved propositions are used to prove 
new propositions. Thus, for example, the proposition ‘the 
base angles of an isosceles triangle are equal’ is not proved 
by using an angle bisector, as is common in current text-
books, because this can fall into logical circularity if a 
geometric construction of angle bisector is proved by 
using the proposition that the base angles of an isosceles 
triangle are equal. Such an approach entails assuming just 
what it is that one is trying to prove (Weston 2000, p. 75). 
In logic, reasoning using circular arguments is considered 
a fallacy as the proposition to be proved is assumed (either 
implicitly or explicitly) in one of the premises, and this 
results in logical circularity.

Such circular reasoning can happen within a proof. For 
example, Bardelle (2010) provides an example of some 
undergraduate mathematics students in Italy being pre-
sented with the diagram in Fig. 1 as a ‘visual proof’ of 
Pythagoras’ theorem. The students were asked to use the 
figure to help them develop a written proof of the theorem.

Bardelle relates how one student focused on the rectan-
gles that surround the central square. By defining a as the 
short side and b the longer one (as in Fig. 2), the student 
used Pythagoras’ theorem to get c =

√

a2 + b2 and thence, 
by squaring both sides, the student obtained Pythagoras 
theorem c2 = a2 + b2. This is another, and rather local 
example, of a student using a circular argument or circulus 
probandi (arguing in a circle). While we acknowledge it is 
important to educate students to evaluate critically vari-
ous processes of circular reasoning between theorems or 
within proofs, in this paper we focus on the latter because 

Fig. 1  A ‘visual proof’ of 
Pythagoras’ theorem

Fig. 2  A rectangle from Fig. 1
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our focus is lower secondary school students who have just 
started learning deductive proofs.

In the case of the teaching of proof in geometry, trian-
gle congruency is commonly used (Jones and Fujita 2013). 
In this context at least two types of logical argument are 
employed to structure deductive reasoning. One is universal 
instantiation, which takes a universal proposition (such as, 
in congruent triangles all corresponding interior angles are 
equal) and deduces a singular proposition (for example, if 
∆ABD ≡ ∆ACD, then angle ABD = angle ACD). The other 
type of logical argument is hypothetical syllogism, where the 
conclusion necessarily results from the premises (Miyazaki 
et al. 2017a).

Appreciation of proof structure is recognised as an impor-
tant component of learner competence with proof (Heinze 
and Reiss 2004; McCrone and Martin 2009; Miyazaki et al. 
2017a), and this inclusion might relate to why students 
accept or construct a proof with logical circularity. For 
example, Kunimune et al. (2010) report on data from grade 8 
and 9 students, showing that as many as a half of grade 9 and 
two-thirds of grade 8 pupils were unable to determine why 
a particular geometric proof presented to them was invalid; 
that is, they could not see circular reasoning in the proof in 
which the conclusion (‘the base angles of an isosceles trian-
gle are equal’) was used as one of the premises for deducing 
the two triangles are congruent. We consider this oversight 
as being due to a lack of understanding of the role of syllo-
gism, which would lead to accepting or constructing a proof 
which includes a circular argument. A proof of the proposi-
tion ‘the base angles of an isosceles triangle are equal’, for 
example, can be done by connecting two deductions: (1) 
deducing two triangles are congruent; (2) deducing if two 
triangles are congruent then corresponding angles are equal. 
However, if a learner lacks an understanding of hypothetical 
syllogism, he or she may use ‘the base angles of an isosceles 
triangle are equal’ as one of the premises in order to deduce 
that the base angles of an isosceles triangle are equal. In so 
doing, he or she would be using a circular argument.

Our interest in this paper is in how students who accept or 
construct such proofs can be supported in their learning of 
proof structure, and we focus on the use of computer-based 
feedback in this paper as an example of a way of providing 
such support.

3  Feedback supporting learners’ proof 
construction processes

3.1  Feedback for learning

Feedback is one of the strategies for assessment of learn-
ing that is known to promote learning (Black and Wil-
iam 2009). Amongst many definitions of feedback, we 

take feedback as “information with which a learner can 
confirm, add to, and overwrite, tune, or restructure infor-
mation in memory, whether that information is domain 
knowledge, meta-cognitive knowledge, beliefs about self 
and tasks, or cognitive tactics and strategies” (Winne and 
Butler 1994, p. 5740). Shute (2008) identified two main 
functions of formative feedback: verification (simple 
judgement of whether an answer is correct) and elabora-
tion (providing relevant cues to guide the learner towards 
the correct answer). Clark (2012) states “The objective of 
formative feedback is the deep involvement of students in 
meta-cognitive strategies such as personal goal-planning, 
monitoring, and reflection” (p. 210), and, as such, it is 
related to self-regulated learning.

In the teaching and learning of mathematics, feedback 
can be used by students to choose appropriate procedures or 
improve problem-solving strategies. Rakoczy et al. (2013) 
found that written process-oriented feedback (i.e. “suggest-
ing how and when a particular strategy is appropriate” p. 64) 
might foster grade 9 students’ mathematical learning. This 
implies that certain types of feedback might be more effec-
tive than others. Hattie and Timperley (2007) claim that 
“Effective feedback must answer three major questions asked 
by a teacher and/or by a student” (p. 86), namely, ‘Where am 
I going? (What are the goals?)’, ‘How am I going? (What 
progress is being made toward the goal?)’, and ‘Where to 
next? (What activities need to be undertaken to make better 
progress?)’. In order to realise ‘how learners are going’, they 
identify the following four elements (p. 90):

• Task: “Feedback can be about a task or product, such as 
whether work is correct or incorrect.”

• Process: “Feedback information about the processes 
underlying a task also can act as a cueing mechanism 
and lead to more effective information search and use of 
task strategies.”

• Self-regulation: “Feedback to students can be focused at 
the self-regulation level, including greater skill in self-
evaluation or confidence to engage further on a task.”

• Self: “Feedback can be personal in the sense that it is 
directed to the “self,” which… is too often unrelated to 
performance on the task.”

They argue that while task-based feedback may be the 
least effective form, it can help when the task information 
is subsequently used for “improving strategy processing or 
enhancing self-regulation” (pp. 90–91).

From these existing studies, and given that what makes 
feedback most effective for learners is complex, it remains 
uncertain whether, or how, a combination of task- and pro-
cess-based feedback might be effective when students are 
learning sophisticated mathematical topics such as deduc-
tive proving.
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3.2  Learners’ use of computer‑based feedback

The use that learners make of computer-based feedback, 
defined as “assessment feedback to students created and 
delivered using a computer” (Marriott and Teoh 2013, p. 5), 
continues to be a growing interest in educational research 
(Wang 2011; Bennett 2011; Attali and van der Kleij 2017). 
Based on their meta-analysis, Hattie and Timperley (2007) 
reported that computer-assisted instructional feedback is 
one of the effective forms of feedback in that it can provide 
cues or reinforcement for improving learning. Narciss and 
Huth (2006, p. 310) termed informative tutoring feedback 
as that providing “strategically useful information for task 
completion, but [which] does not immediately present the 
correct solution” and bug-related tutoring feedback as that 
“guiding students to detect and correct errors.” They found 
both to be particularly effective because such feedback can 
provide useful strategies to correct errors as well as requir-
ing learners to apply corrective ways to further attempts to 
solve the problems. This is similar to process-based feedback 
described above.

Nevertheless, learning with computer-based feedback is 
not clear-cut. For example, Attali and van der Kleij (2017) 
report on their experimental research in which they exam-
ined the feedback effects of different question formats 
(multiple choice/constructed response), timing (immediate/
delayed) and types (knowledge or results/correct responses/
elaborated feedback). They found that the effects of different 
types of feedback and timing can vary and that this might 
be related to learners’ initial responses to the problems and 
their prior knowledge concerning the problem. As such, 
elaborated (or process-based) feedback is useful in general, 
but when the learners’ prior knowledge to the problem is 
low, it is not particularly effective. In contrast to this finding, 
Fyfe et al. (2012) found that feedback can be more beneficial 
for learners with little prior knowledge compared with those 
who have some knowledge. Perhaps, as Attali and van der 
Kleij (2017) wrote, it is important that “Prior knowledge 
is considered to be the most important factor to consider 
for adapting instruction to an individual learner” (p. 167), 
something that might indicate the importance of human 
interventions in the computer-learning environment. Pan-
ero and Aldon (2016) also reported that, with technology-
based learning environments, both teachers and students 
might become more effective at using feedback by seeking 
efficient ways of using it.

Of these many complexities, one interesting area that 
needs further study is domain-specific computer-based 
feedback in advanced mathematical topics, such as proving, 
as the existing studies have rather focused on “lower-level 
learning outcomes such as rote memorisation” (Attali and 
van der Kleij 2017, p. 155).

4  A web‑based system to support 
the learning of deductive proofs 
in geometry

4.1  Online feedback provided by the system

Given the various errors that learners can make in the pro-
cess of learning to prove, they are likely to benefit from 
support and feedback not only in recognising errors but also 
in ways to refine their proof in accordance with the type of 
error they may be making. Our system is designed to support 
such learning (the current system is online at http://www.
schoo lmath .jp/flowc hart_en/home.html). In particular, the 
system is designed to support overcoming of students’ dif-
ficulties in proofs that are particularly related to the use of 
universal/singular propositions and hypothetical syllogisms 
(see Sect. 2). As we showed in an earlier study, adopting a 
flow-chart format and closed/open problems can enrich the 
learning experience of the use of universal/singular proposi-
tions and hypothetical syllogism (see Miyazaki et al. 2017b).

In our system, flow-chart proofs (see Ness 1962) are 
used and various proof problems in geometry are available, 
including ones that involve the properties of parallel lines 
and congruent triangles. Learners tackle proof problems by 
dragging sides, angles and triangles to cells of the flow-chart 
proof and the system automatically transfers figural to sym-
bolic elements so that learners can concentrate on logical 
and structural aspects of proofs. Feedback is shown when 
answers are checked. The geometry proof problems include 
both ordinary proof problems such as ‘prove the base angles 
of an isosceles triangles are equal’ (an example of a ‘closed’ 
problem) and problems by which learners construct different 
proofs by changing premises under the given limitation to 
draw a conclusion (these we categorise as ‘open’ problems). 
In the latter case, the correct answers can be reviewed so that 
students may be encouraged to find other proofs.

For example, the problem in Fig.  3 is intentionally 
designed so that learners can freely choose which premises 
they use to prove that AB = CD (note that information such 
as AB//CD is not stated explicitly at this level of problem 
because this problem is for practicing how to use singu-
lar and universal propositions with two-step reasoning in 
later stages the problems are stated with more mathemati-
cal rigor). A learner might decide, for instance, that a sin-
gular proposition that ∆ABO and ∆CDO are congruent 
may be used to show that AB = CD by using the universal 
proposition ‘If two figures are congruent, then correspond-
ing sides are equal’. Based on OA = OC as an assumption, 
∆ABO ≡ ∆CDO can be shown by assuming BO = DO and 
angle BOA = angle DOC using the SAS condition. However, 
other solutions are also possible. One approach might be to 
use the fact that ∆ABO ≡ ∆CDO can be shown by assuming 

http://www.schoolmath.jp/flowchart_en/home.html
http://www.schoolmath.jp/flowchart_en/home.html
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OA = OC, angle BOA = angle DOC and angle OAB = angle 
OCD, using the ASA condition for congruency. Two stars 
show this problem has two solutions, and each of them 
changes to yellow when found. As learners can construct 
more than one suitable proof, we refer to this type of prob-
lem situation as ‘open’. This open situation can be used to 
scaffold students’ understanding of the structure of proofs, in 
particular the use of universal propositions and thinking for-
wards/backwards to seek premises and conclusions in proofs 
(see Miyazaki et al. 2015, for the case without technology).

4.2  Domain‑specific computer‑based feedback 
for supporting students’ learning of deductive 
proofs

In the main, our system gives bug-related tutoring feedback 
(Narciss and Huth 2006); that is, once a learner clicks ‘Check 
your answers’, something which can be done at any time, the 
system checks for any error via a database. These errors are 
recognised in terms of the use of singular/universal proposi-
tions and hypothetical syllogism. For example, Fig. 3 shows 
feedback for a proof of an ‘open’ problem where the proof falls 
into logical circularity. In this case, the conclusion AB = CD is 
used as the one of three conditions to deduce the congruence 
of triangle ∆ABO ≡ ∆CDO. As a result, the system shows a 
message ‘You cannot use the condition to prove your conclu-
sion!’. This message does not provide a correct answer but is 

designed to prompt the learner to think why they received such 
a message and to re-examine their proof.

We take feedback from the system as ‘information given 
by the computer to learners, which they can use to check their 
answers, modify their answers and strategies for better proof 
constructions, and seek different proofs’. For describing such 
feedback in detail, we use Hattie and Timperley’s framework 
‘Where am I going?’, ‘How am I going?’ and ‘Where to next?’.

Our system provides cues for ‘Where am I going?’ by 
clearly stating the goal of the problem, and for ‘Where to 
next?’ by giving a message such as ‘This is correct! But it 
is not the only answer. Find out more!’ or ‘You have found 
all answers’. The system also provides ‘How am I going?’ 
feedback through task-, process- and self-regulation feedback. 
‘Self’ type feedback is outside the remit of our web-based sys-
tem because it is more linked to the role of the teacher. Table 1 
summarises the overall features of the system’s feedback for 
‘How am I going?’.

Our research interest is in how the above computer-based 
feedback, in particular information for ‘How am I going?’ 
(task/process/self-regulation based), is used in the context of 
learners construction of deductive proofs in geometry.

Fig. 3  Feedback for circular arguments from the system
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5  Methodology

5.1  Study design, data collection and participants

We initially piloted the English-language version of the 
system in 2010–13 in the UK with a range of individual 
or grouped learners (with groups of up to 4). These learn-
ers had previously learned about congruent triangles, but 
none had much prior experience of deductive proof based 
on properties of lines and angles and congruent triangles. 
They used our web-based system to tackle one or more of 
the problems, either with or without explicit instructions 
from researchers. During this pilot study, it was gradually 
noticed that students often misused universal propositions 
in order to justify their reasoning, and produced proofs 
with logical circularity when they undertook open proof 
problems with two steps of reasoning.

As stated above, the web-based proof learning system 
was primarily developed to support learners’ learning of 
deductive proofs in geometry. During the pilot studies, 
it was evident that the system provided a research tool 
not only to reveal students’ lack of understanding of syl-
logism, but also to study the learning processes by exam-
ining how learners respond to feedback messages from 
the system when they make various errors. Therefore, we 
decided to collect data systematically from a total of 15 
learners’ experiences using the system, focusing on their 
errors and how they used feedback during sessions that 
took 30–60 min. The typical session comprised the fol-
lowing structure:

• First learners were introduced to the system by interview-
ers, during which it was explained how to use it with an 
introductory open problem. One computer was shared 
within small groups in order to encourage their collabo-
rative learning and dialogue. If necessary, learners were 
reminded of the conditions for congruent triangles.

• Following this introduction, they were asked to under-
take one or two more relatively easy open problems. 

This was used for the interviewers to assess their initial 
understanding of the structure of proofs.

• Finally, they were asked to solve problems that include 
two steps in the proof, and, if they were very success-
ful, then more difficult problems.

Participants’ activities were observed and recorded by 
a video camera. As stated above, we particularly used the 
problems with one or two steps in the proof, as our par-
ticipants had relatively little experience in constructing 
geometrical proofs. The interventions from the interview-
ers were kept to a minimum, because we wanted to see 
how the feedback from the system would be used by the 
learners. However, we sometimes had to give ad hoc inter-
ventions when they totally lost the notion of what they had 
to do, or needed clarification on what to do, etc. This is 
something we learnt from our early trialling; that learners 
can spend too long a time on just one proof problem and 
develop some frustrations towards learning proofs—which 
was not our primary research interest.

For this paper, we have selected three cases from our 
data; one case was a pair of high-attaining secondary 
school students aged 14 years (WS1 and WS2), a second 
case was an individual undergraduate primary trainee 
teacher (R), while the third case was a pair of undergradu-
ate primary trainee teachers (J1 and J2). We chose these 
three cases because we found interesting reactions to the 
system, and the feedback received, during the proving 
processes as well as their experiencing of correct/incor-
rect reasoning. Table 2 summarises their activities and the 
durations of the video data.

5.2  Data analysis procedure

After initial examinations of the video data, we selected the 
following problem-solving episodes from each case, and 
then extracted in total 432 utterances, and then numbered 
them for data analysis.

Table 1  Types of feedback provided by the system

Type of feedback Example

Task Indicating simple errors by suggesting the alternative choice of universal/singular proposition is the correct answer
 “Be careful of the order of comparisons”
 “Is this a correct reason to draw the conclusion?”
 “You may select again a condition of congruence of two triangles”

Process Not only indicating errors related to the use of universal/singular propositions and hypothetical syllogism but also cue-
ing to search for a better solutions or relationships without directly telling correct answers

 “Let’s find the included angles of these two sides”
 “Let’s find two angles at the end of this side”
 “You cannot use the conclusion to prove the conclusion!”
Hint for reminding conditions of congruent triangles

Self-regulation For encouraging them to find alternative answers, learners can review already completed proofs by clicking yellow stars
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• WS1 and WS2: Lesson II-2 (64 utterances), III-1 (76 
utterances), III-2 (63 utterances)

• J1 and J2: II-1 (29 utterances), III-1 (36 utterances), III-2 
(65 utterances), V-1 (37 utterances)

• R: II-2 II-2 (16 utterances), III-2 (46 utterances)

We chose these cases because these episodes were par-
ticularly related to learners’ use of universal propositions 
and errors of logical circularity, as well as their reactions 
to feedback including overcoming difficulties in their proof 
construction processes. The methodological challenge was, 
as Stylianides et al. (2016) pointed out, how to assess and 
analyse students’ processes on the road to proof. To do so 

we first identified in total 36 proof construction ‘phases’. 
Each phase commenced with learners’ attempts to construct 
a proof and ended when they managed to complete a cor-
rect proof or they completely lost their directions despite 
receiving feedback of various kinds from the system. By 
identifying these phases we were able to examine the learn-
ers’ proof construction processes more closely. For identi-
fied phases, we undertook a detailed qualitative analysis to 
ascertain patterns of proof construction processes in terms 
of errors which learners made (informed by Sect. 2) and the 
types of feedback they received (informed by Sect. 3) and, 
where necessary, interventions by the interviewers. We use 
this analysis as evidence to answer our research questions.

For example, phase III-2/Ph2 in Table 3 is the second 
phase of proof construction lesson III-2. In this phase, WS1 
and WS2 were undertaking a proof requiring two steps in an 
open problem context with the interviewer T.

In this example, pair WS1 and WS2 started their proof 
construction with errors. As they did not notice that they 
were using the conclusion to prove the conclusion (utter-
ances 24–28), we categorised them as lacking an under-
standing of syllogism. Subsequently, following the process-
based feedback related to logical circularity (e.g., utterance 
28) and task-based feedback related to the use of a universal 
proposition (e.g., utterance 32), they noticed that they used 
the conclusion (as well as a wrong universal proposition) in 
their proof and corrected these by themselves (utterances 
29–32). In utterance 33 they received feedback on a correct 
answer. The interviewer T encouraged them to find another 

Table 2  Participants’ proof construction experience with the system

Participants Activities

WS1 and WS2 Lesson II-2 (one step open proof, 8 min)
Lesson III-1 (two steps open proof, 8 mi)
Lesson III-2 (two steps open proof, 7 min)
Lesson IV-4 (one step open proof, 12 min)

J1 and J2 Lesson II-1 (one step open proof, 5 min)
Lesson IV-3 (one step open proof, 13 min)
Lesson III-1 (two steps open proof, 6 min)
Lesson III-2 (two steps open proof, 6 min)
Lesson V-1 (closed two steps open proof, 10 min)

R Lesson II-1 (one step open proof, 7 min)
Lesson II-2 (one step open proof, 4 min)
Lesson IV-3 (one step open proof, 11 min)
Lesson III-1 (two steps open proof, 6 min)

Table 3  Analysis example of proof construction by WS1 and WS2 in III-2/Ph2

Utterance Subjects Transcript Description/analysis

24 WS2 Right. Two pairs of sides… included angles are equal. So it 
would be that one and that one, that one and that one, and 
that one and that one (angles ABO and ACO)

Proof construction with errors as they were using the conclu-
sion ‘angles ABO = ACO’ as one of the premises of their 
proof

25 WS1 No, we cannot use those angles [ABO and ACO] again, so WS1 now suggested ABO and ACO cannot be used as they 
are the conclusion

26 WS2 Yes but ABO and ACO, if you do that, here… So, that one 
and that one, BO and CO

WS2 still used ABO and ACO. WS1 did not notice this time. 
Also, the process-based feedback was ignored

27 WS1 Change [indicating a tab from ‘angles’ to ‘sides’] WS1 suggested ‘if congruent then sides are equal’
28 WS2 [Click, feedback]  Process-based feedback (circular argument) was given
29 WS1 No? Ah, look at that, you can’t, we used those two [ABO 

and ACO]
WS1 noticed again ABO and ACO were used thanks to the 

process-based feedback
30 WS2 Oh. [changing angles, click. Feedback, as the angle is not 

included anymore] Ah, that is wrong now, because if 
we use these two we need to change these two [sides to 
AO = AO] [click, feedback] Uhmm

Process-based feedback (cuing to seek correct pairs of 
angles) was given

31 WS1 Maybe…
32 WS2 Oh, yes that one, wrong one, that is why [indicating a tab 

from ‘sides’ to ‘angles’]
WS2 noticed the wrong universal proposition was used, but 

after this task based-feedback, they could complete a cor-
rect proof

33 T Well done. Try once more, then you can delete all red 
indications. Click that one, then all go. Yes

Move to the next problem
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proof. We summarise this proof construction process as a 
pattern ‘Proof construction with errors → Process/task based 
feedback → Proof construction without errors’. Our approach 
to the analysis of our qualitative data is to see what patterns 
can be identified in each case.

We are aware that the sample size is small and therefore 
we do not intend to propose generalised findings. Also, we 
do not claim effectiveness of the web-based system based 
on a few sessions; that is, we do not intend to claim that by 
using our system learners can completely overcome their dif-
ficulties in their learning of proof. Yet, as proving consists of 
rather complex mathematical processes, we consider qualita-
tive analysis is necessary prior to undertaking a larger-scale 
study. As the students’ proof construction processes that we 
identified contain a rich source of information, we use these 
data as a step towards more in-depth research.

6  Findings

6.1  Patterns in the proof construction process

By following the above procedure of analysis, we identified 
a total of 36 proof construction phases. Based on an analysis 
of these 36 proof construction phases, we could identify 12 
patterns of proof construction (see Table 4) grouped into 
four broad categories:

• Proof construction without errors (PC without Es)
• Starting proof construction with errors, reacting to feed-

back, finishing without errors (PC with Es → FB → PC 
without Es)

• Starting proof construction with errors, reacting to feed-
back with interventions, finishing without errors (PC 
with Es → FB with interventions → PC without Es)

• Starting proof construction with errors, reacting to feed-
back with interventions, finishing with errors (PC with 
Es → FB → PC with Es).

Necessary interventions were forms of ad hoc support by 
the interviewers, which were given when the participants 
were completely lost after they received feedback from the 
system. The 12 patterns of proof construction, grouped into 
the four broad categories, are summarised in Table 4.

Figure 4 shows the process of proof construction by each 
of the three sets of learners, WS1 and WS2, J1 and J2, and 
R (with the shaded boxes being identified patterns in each 
phase of the proof construction).

Table 4 and Fig. 4 capture several points related to 
learners’ proof construction processes, and feedback use 
(this is, of course, still limited to the context of proof con-
struction with the system). First, it seems J1 and J2 have 
sound understanding as they have successfully completed 

proof constructions, often without any formative feedback 
from the system. R often started proof constructions with 
errors, but after receiving feedback from the system and ad 
hoc interventions by the interviewer, could complete two-
step proofs. Meanwhile, on one occasion, R did attempt 
to construct a proof that included a circular argument 
(III-1/Ph3). WS1 and WS2 received much feedback from 
the system, plus ad hoc interventions by the interviewer, 
e.g., explaining the goals of tasks, two-step proofs, etc. 
Sometimes they lost their directions (e.g., II-2/Ph1 and 3 
or III-1/Ph2 and 4). Towards the end of the session, they 
started completing proofs with feedback only from the sys-
tem without ad hoc support by the interviewer, and in fact 
received less feedback. However, they still constructed a 
proof with a circular argument.

6.2  Students’ use of feedback

While J1 and J2 could use both process- and task-based 
feedback well to improve their proofs, both R, and WS1 
and WS2, in contrast, needed interventions by the inter-
viewer (as captured in Fig. 4) in addition to feedback from 
the system. For example, the interviewer had to clarify 
the goal of a two-step proof for R. In a first attempt, R 
needed a further clarification of how to complete a proof 
in a flow-chart form (III-1/Ph2). While R could use task-
based feedback well to correct the proof format in gen-
eral, further clarification from the interviewer was needed 
when R received the first process-based feedback in III-1/
Ph3. This further clarification related to why a circular 
argument is not allowed in a proof, as well as how to use 
singular propositions properly.

For the case of WS1 and WS2 in their II-2 and III-1 
phase, their proof construction started from ‘PC with 
Es → Process FB → PC with Es’ or ‘PC with Es → Pro-
cess/task FB → PC with Es’, meaning they could not use 
feedback from the system by themselves and their learning 
was a rather ineffective trial–error approach. Ad hoc inter-
ventions by the interviewer were necessary. In particular, 
they really struggled to construct a correct proof with two 
steps (III-1/Ph2 and III-1/Ph4), showing confusion about 
using singular propositions.

36 WSs [trying several proofs and then received feedback as they 
used BO = CO twice]

37 WS2 Let’s use these ones, because they are bigger (AB = CD 
again)

38 WS1 We just used this one!
39 WS2 Hang on. [feedback, you cannot use the conclusion …]
40 WS1 We just used them, just used them
41 WS2 That is wrong!
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42 WS1 Leave that one. Maybe that one and that one… how about 
that one (AB) and that one (BO), the line that one (AB) 
and that one (BO) [WS1 is highly confused now]

43 WS2 You cannot re-use it
44 WS1 Why not?
45 WS2 No [feedback for using the same sides of the triangle 

twice] BO and BO, you cannot use the same one twice

After this failure, the interviewer suggested that they 
start again, and not use the SSS condition. With these ad 
hoc interventions they finally managed to complete cor-
rect proofs with process-based feedback from the system 
as well as a clarification by the interviewer (III-1/Ph5 and 

Ph6). These cases indicate that the feedback from the system 
might not be enough and it might be necessary to intervene 
in students’ early proving processes, if they repeatedly make 
mistakes in both singular and universal propositions (e.g., 
the pattern ‘PC with Es → Process/task FB → PC with Es’).

6.3  Learners’ experience with circular reasoning 
with the system

In the lesson III-1, J1 and J2 completed the two proofs 
with little difficulty. On being prompted by the interviewer, 
they then tried to find a different proof, and, in the phase 
III-1/Ph3 (categorised as ‘PC without Es’), they not only 

Table 4  Patterns in proof construction processes with the web-based system

PC proof construction, FB feedback, Es errors, Intv intervention by an interviewer

Category Pattern Description

PC without Es PC without Es Learners construct a correct proof without errors, 
receiving no process/task based feedback from the 
system

Self-regulation FB → PC without Es Learners construct a correct proof without errors, 
receiving self-regulation based feedback

Self-regulation FB + Intv → PC without Es Learners construct a correct proof without errors, 
receiving self-regulation based feedback and inter-
vention

Intv-PC without Es Learners construct a correct proof without errors with 
short interventions

PC with Es → FB → PC without Es PC with Es → task FB → PC without Es Learners start constructing a proof with errors, but 
after receiving only task based feedback, learners 
construct a correct proof

PC with Es → process FB → PC without Es Learners start constructing a proof with errors, but 
after receiving only process based feedback, learn-
ers construct a correct proof

PC with Es → process/task FB → PC without Es Learners start constructing a proof with errors, but 
after receiving both process and task based feed-
back, learners construct a correct proof

PC with Es → FB with Interven-
tions → PC without Es

PC with Es → task FB + intv → PC without Es Learners start constructing a proof with errors, but 
after receiving task based feedback, learners con-
struct a correct proof with intervention clarifying 
feedback

PC with Es → process FB + intv → PC without Es Learners start constructing a proof with errors, but 
after receiving process based feedback, learners 
construct a correct proof with intervention clarify-
ing feedback

PC with Es → process/TASK FB + Intv PC without 
Es

Learners start constructing a proof with errors, 
but after receiving both process and task based 
feedback, learners construct a correct proof with 
intervention clarifying feedback

PC with Es → FB → PC with Es PC with Es → process FB → PC with Es Learners start constructing a proof with errors and 
receive process based feedback but they are not able 
to correct their errors, resulting losing completely 
their directions

PC with Es → process/task FB-PC with Es Learners start constructing a proof with errors and 
receive both process and task based feedback but 
they are not able to correct their errors, resulting 
losing completely their directions
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refuted using the SSS condition for the problem (utter-
ances 27–28), but also eliminated other possibilities for 
answers (utterances 31–36). This illustrates their capacity 
to identify logical circularity, grasping the relationship 
between premises and conclusion; that is, as a combination 
of universal instantiations and syllogism.

27 J2 You could do all the …
28 J1 All the sides?
29 J2 Yes… actually no, because…
30 J1 and J2 You are trying to prove [AB = CD] …
31 J1 And if you can’t use this line [AB] 

then we can’t use the other angle… 
because it is not included…

32 J2 You mean those [ABO and CDO]?
33 J1 Yes, it is not included [as AB cannot 

be used]… and we’ve already got 
others…

34 J1 How about AO-OAB-AB?
35 J2 You cannot use these, because…
36 J1 Because these ones [AB and CD] 

which we are trying to prove…

In particular, they exchanged their thoughts about a pos-
sible proof before they actually constructed a proof with 
SSS, and without support from the system during their 
attempts. They also explored very similar reasoning during 
Lesson III-2 on why angles ABO = ACO (the conclusion) 
cannot be used as one of premises.

In the case of J1 and J2, they could argue why a proof 
cannot contain a circular argument without any feedback 
from the system. However, the other two cases are quite 
different from J1 and J2 in terms of dealing with a cir-
cular argument. For example, R firstly constructed cor-
rect answers by using SAS and ASA individually during 
phase III-1/Ph2 and 3, recognised as ‘PC with Es → Pro-
cess/task based FB → PC without Es’. This suggests that 
R could understand universal instantiation. However, R 
considered that it would be possible to use the SSS condi-
tion as one of the answers of the open problem to prove 
AB = CD, which indicated that R was lacking understand-
ing of hypothetical syllogism. R then tried to change the 
condition (ASA) and then complete a proof (Fig. 5, left). 
This failed because R used angles ABO = CDO instead of 
angles OAB = OCD.

The system gave the message “Let’s find two angles at 
the end of this side” (Fig. 5, right), encouraging R to find 
a different angle or side of the triangle (utterance 27), as 
well as prompting R to explain why the proof was wrong. 
As shown below, R still had difficulty identifying the error 
(utterance 33), but managed to correct the mistake (utter-
ance 35).

33 R: Am I not using the same lines?
34 T: You are using the same lines
35 R: … but angles are not on the same lines…
36 T: That is right

This was a short but important moment for R, and 
finally, after some thought in silence (2 s), R noticed the 
correct proof was the one already completed. R reasoned 
that it was not possible (utterances 37–44 below) to create 
different proofs using SSS because in this case R realised 
that AB = CD had to be used as one of premises, which 
had already been rejected by the system. This shows that 
R might have started developing an understanding of this 
aspect of syllogism.

37 R: [2 s silence] I don’t think there is any more answer
38 T: No. So you are confident, just two [answers]?
39 R: Yes
40 T: Yes that is right. Because in this problem these two 

(AO = CO) are assumed already. So you need to use, like 
you did, if you choose angles AOB and COD, and angles 
ABO and CDO, then

41 R: … they are not on that line
42 T: That is right. That is right. And we have discussed, we can-

not use that one
43 R: Because
44 T: Yes, because this is…
45 R: What you are trying to find! [laugh]
46 T: That is right! [laugh]

In the case of R, the process-based feedback worked 
well, but for WS1 and WS2 it was a lot more difficult than 
expected for them to understand why the conclusion can-
not be used as one of the premises in deductive proofs. For 
example, in the proof construction process of WS1 and 
WS2 (III-1/Ph2), without any hesitation, their first attempt 
involved using the SSS condition (Fig. 6).

They could identify pairs of sides and angles in their 
proof (Fig. 6), but they made a mistake as they put ‘angles 
AOB = COD are congruent’, rather than ‘triangles OAB 
and OCD’; regardless, they chose SSS as a condition of 
triangle congruence. This suggests that they also did not 
have a good understanding of universal instantiation. More 
importantly, they failed to notice that they should not use 
the conclusion AB = CD in their proof. The system first 
highlighted the mistake of logical circularity. After receiv-
ing the message that “You cannot use the conclusion to 
prove your conclusion!”, and with additional ad hoc inter-
ventions from the interviewer, they started considering 
that AB = CD should not be used in their proof in III-2/
Ph5. With this consideration they began to understand why 
AB = CD should not be used.
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However, when they started a new problem in III-2, they 
still used the conclusion as one of the premises in their 
proof. Thus, the cases from WS1 and W2 illustrate that the 
understanding of the meanings and roles of premises and 
conclusions might be very difficult for learners who have 
just started learning mathematical proof. Moreover, from 
the point of view of structure of proof, their experience 

shows that they did not see the whole structural relationship 
between premises and conclusion. In order to identify the 
circular argument as a serious error, learners need to under-
stand at least the role of syllogism which connects premises 
with conclusions.

On the positive side, WS1 and WS2 gradually received 
less and less feedback from the system, and towards the end 

Fig. 5  A proof constructed by R (above) and feedback (below)
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of the activity (Lesson III-2), at least WS1 started grasping 
why the conclusion cannot be used in their proofs (III-2/Ph4, 
‘Self-regulation FB-PC without Es’).

46 WS1 [Reviewing the already answered proofs] 
Three angles we can use, we have used 
two, so it must be the other one

47 WS2 [Suggesting ABO again]
48 WS1 No, which could be. Go back
49 WS2 So we use these ones [BAO and CAO]
50 WS1 Yes
51 WS2 So then that one [ABO]
52 WS1 No, middle one [AOB]
53 WS2 But that one was used?
54 WS1 No wasn’t
55 WS2 No wasn’t [laugh]. So if we use that one 

[AOB] [completing a proof]

As can be seen from the dialogue above, reviewing 
already-answered proofs (self-regulation) was useful in guid-
ing WS1 and WS2 to construct a different proof by them-
selves (utterance 46). While WS2 still suggested using angle 
ABO, which is the conclusion, WS2 was very confident that 
they should not use it. This resulted in their constructing a 
correct proof without formative feedback from the system. 
At this point they had received both process- and task-based 
feedback from the system, and the ways they performed with 
the system indicate they had started internalising feedback 
from the system and could correct errors by themselves.

7  Discussion

In this paper our focus is the use of domain-specific com-
puter-based feedback by students who are learning the struc-
ture of proof but accept or construct a proof with logical 
circularity. In order to study this issue, we conceptualised 
students’ difficulties in terms of the use of universal/singular 
propositions and hypothetical syllogism (Sect. 2). The ways 
that feedback provided by the system is related to students’ 
difficulties is shown in Sect. 4. In Sects. 6.1–6.3 we provide 
our analysis of learners’ proof processes using feedback 
from the system and, in some cases, ad hoc interventions. 
Now we discuss our findings in relation to our research ques-
tions, although, as we have already noted, these are neces-
sarily tentative because of the sample size.

In terms of the patterns of proof construction processes 
(RQ1), as we demonstrated in Table 4 and Fig. 4, we iden-
tified various patterns of use of the feedback by learners 
during their proof construction processes. These patterns 
include proof constructions started without errors (‘PC 
without Es’), ones that started with errors but by using 
feedback from the system, learners could manage to correct 
their errors and construct proofs without errors (‘PC with 
Es → FB → PC without Es’), ones that started with errors 
but, following interventions, finished without errors (‘PC 
with Es → FB with Interventions → PC without Es’), and 
ones that started with errors and then finished with errors 
(‘PC with Es → FB → PC with Es’). For example, in the case 
of J1 and J2 their patterns were mostly ‘PC without Es’ or 
‘PC with Es → FB → PC without Es’. Other learners (e.g., 

Fig. 6  WS1 and WS2’s proof in III-1/Ph2
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WS1 and WS2) appeared to have difficulties with why a 
circular argument cannot be used in a proof (e.g., ‘PC with 
Es → FB → PC with Es’).

We found, as did Panero and Aldon (2016) and Attali 
and van der Kleij (2017), that in computer-based learning 
environments the teacher’s role continues to be important. 
Here we found that feedback from the system was useful 
for the interviewers to give specific ad hoc interventions for 
some learners who were relying on trial–error based learn-
ing or ‘PC with Es → FB → PC with Es’ loops (e.g., WS1 
and WS2, II-2/Ph3–4 or III-1/Ph4–5). Thus, while we found 
that computer-based feedback can be effective to improve 
learning (as did Narciss and Huth 2006 and; Wang 2011), 
human intervention cannot be under-estimated. This conclu-
sion applies, in particular, for those who have limited under-
standing. In our study context, if patterns of attempted proof 
construction such as ‘PC with Es → feedback → PC with Es’ 
are repeatedly observed, then the feedback from the system 
might not be enough and interventions might be necessary.

In terms of how feedback was used to overcome logical 
circularity in proofs (RQ2), both task- and process-based 
feedback (Hattie and Timperley 2007) supplied by the sys-
tem provided guidance on what might help learners con-
struct correct proofs. Our cases showed that learners started 
bridging the gap in their logic in syllogism (e.g., R, and WS1 
and WS2 towards the end of their proving) after receiving 
both task- and process-based feedback. Self-regulated feed-
back rarely occurred in our cases, although learners were 
directed to what different proofs could be produced (e.g., 
WS1 and WS2, III-2/Ph4).

Overall, in order to support students’ learning, this con-
clusion suggests, for all cases, that considering possible 
combinations of premises and conclusion, and checking 
whether or not a proof falls into logical circularity, some-
times prompted by the system’s feedback in the open prob-
lem contexts, are useful to overcome logical circularity. 
This result echoes what Freudenthal (1973) suggested, that 
in order to make learning mathematics meaningful “the first 
step is to doubt the rigour one believes in at this moment” 
(p. 151).

8  Conclusion

With feedback recognised as one of the effective ways to 
improve learning, our aim was to explore how domain-
specific, computer-based, ‘bug-related’ tutoring feedback 
(Narciss and Huth 2006) is used by learners in order to 
overcome their difficulties in their proof construction pro-
cesses, especially when there was logical circularity in their 
deductive proving. We took three cases with five learners 
and examined their proof construction processes. It was still 
challenging for us to assess how the students were ‘on the 

road’ to proofs (Stylianides et al. 2016). Our methodological 
approach was to segment the proof construction processes 
into ‘phases’, and record what errors the learners made and 
their reactions to the feedback given by the system. We 
found that through learners receiving both task- and process-
based feedback supplied by our online learning system, this 
helped them overcome logical circularity in their proving 
and to construct correct proofs.

Our findings raise important issues about the nature and 
role of computer-based feedback. For example, while both 
Rakoczy et al. (2013) and Hattie and Timperley (2007) 
state that feedback for effective strategies (process-based) 
is more effective than just stating right or wrong answers 
(task-based), it may be that for advanced topics, such as 
proofs, the combinations of both types might be necessary 
including human interventions. Also, the use of feedback 
might be related to learners’ understanding of proofs, and 
this suggestion again echoes the claims of other studies on 
learners’ prior knowledge and understanding and feedback 
use (e.g., Fyfe et al. 2012; Attali and van der Kleij 2017). 
In order to investigate these points in more depth, a larger 
data set is needed set in order to evaluate if the learning with 
open proof problems and the system, including the feedback 
format and timing, can effectively improve students’ under-
standing of deductive proof with computer-based learning.

Our study is limited to congruency-based geometrical 
proof using the flow-chart format and, in particular, ‘open’ 
proof tasks. Even so, we obtained rich data from our sample 
and found that our methodological approach worked well. 
Nevertheless, the challenge still exists to examine, for exam-
ple, how to assess proof construction processes in wider 
contexts such as progressing from ‘open’ to ‘closed’ (i.e., 
single solution) problem formats with more mathematically-
rigorous conditions. In addition to this, insights are needed 
into how computer-based feedback can be used to support 
proving processes in other proof formats (such as two col-
umn proofs), or in topics such as algebra. On top of this, 
insights are needed into what pedagogical approaches would 
be necessary in the classroom. A related issue that Sinclair 
et al. (2016, p. 706) identify in relation to overcoming logi-
cal circularity in deductive proving is learners “understand-
ing the need for accepting some statements as definitions 
to avoid circularity”. Further research into all these matters 
should enrich understanding of the teaching and learning of 
mathematical proofs and proving, not only logical circularity 
within proofs but also logical relationships between theo-
rems, which we did not explore much in this paper.
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