Skip to main content
Log in

Research on calculus: what do we know and where do we need to go?

  • Survey Paper
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

In this introductory paper we take partial stock of the current state of field on calculus research, exemplifying both the promise of research advances as well as the limitations. We identify four trends in the calculus research literature, starting with identifying misconceptions to investigations of the processes by which students learn particular concepts, evolving into classroom studies, and, more recently research on teacher knowledge, beliefs, and practices. These trends are related to a model for the cycle of research and development aimed at improving learning and teaching. We then make use of these four trends and the model for the cycle of research and development to highlight the contributions of the papers in this issue. We conclude with some reflections on the gaps in literature and what new areas of calculus research are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alves, F. R. V. (2012). Exploração de noções topológicas na transição do Cálculo para a Análise Real com o GeoGebra. Revista Do Instituto Geogebra Internacional de São Paulo, 1, 165–179.

    Google Scholar 

  • Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Fuentes, S., Trigueros, M., et al. (2014). APOS theory: A framework for research and curriculum development in mathematics education. New York, NY: Springer.

    Book  Google Scholar 

  • Artigue, M. (1994). Didactical engineering as a framework for the conception of teaching products. In R. Biehler, R. W. Scholz, R. Sträßer, & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 27–39). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Artigue, M., & Mariotti, M. A. (2014). Networking theoretical frames: the ReMath enterprise. Educational Studies in Mathematics, 85, 329–355.

    Article  Google Scholar 

  • Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. E. (1997). Networking theoretical frames: the development of students’ graphical understanding of the derivative. The Journal of Mathematical Behavior, 16(4), 399–431.

    Article  Google Scholar 

  • Aspinwall, L., Shaw, K. L., & Presmeg, N. C. (1997). Uncontrollable mental imagery: graphical connections between a function and its derivative. Educational Studies in Mathematics, 33(3), 301–317.

    Article  Google Scholar 

  • Baldino, R. R., & Cabral, T. C. B. (1994). Os quatro discursos de Lacan eo Teorema Fundamental do Cálculo. Revista Quadrante, pp. 1–24.

  • Barbosa, S.M. (2009). Tecnologias da Informação e Comunicação, Função Composta e Regra da Cadeia. Doctoral Dissertation, UNESP, Rio Claro, Brazil.

  • Bergé, A. (2008). The completeness property of the set of real numbers in the transition from calculus to analysis. Educational Studies in Mathematics, 67, 217–235.

    Article  Google Scholar 

  • Bikner-Ahsbahs, A., & Prediger, S. (2014) (Eds.), Networking of theories as a research practice. New York, NY: Springer.

  • Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking: Information and communication technologies, modeling, experimentation and visualization. New York, NY: Springer.

    Google Scholar 

  • Britton, S., & Henderson, J. (2013) Issues and trends: a review of Delta conference papers from 1997 to 2011. Lighthouse Delta 2013: The 9th Delta Conference on teaching and learning of undergraduate mathematics and statistics, pp. 50–58.

  • Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221–266.

    Google Scholar 

  • Christensen, W. M., & Thompson, J. R. (2012). Investigating graphical representations of slope and derivative without a physics context. Physical Review Special Topics-Physics Education Research, 8(2). http://journals.aps.org/prstper/abstract/10.1103/PhysRevSTPER.8.023101.

  • Cobb, P. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23(1), 2–33.

    Article  Google Scholar 

  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schaubel, L. (2006). Design experiments in educational research. Educational Researcher, 32(1), 99–113.

    Google Scholar 

  • Code, W., Piccolo, C., Kohler, D., & MacLean, M. (2014, this issue). Teaching methods comparison in a large calculus class. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0582-2.

  • Davis, R. B., & Vinner, S. (1986). The notion of limit: some seemingly unavoidable misconception stages. Journal of Mathematical Behavior, 5(3), 281–303.

    Google Scholar 

  • diSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. Pufall (Eds.), Constructivism in the computer age (pp. 49–70). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Dullius, M. M., Araujo, I. S., & Veit, E. A. (2011). Ensino e Aprendizagem de Equações Diferenciais com Abordagem Gráfica, Numérica e Analítica: um experiência em Cursos de Engenharia. Bolema. Boletim de Educação Matemática (UNESP. Rio Claro. Impresso), Vol. 24, pp. 17–42.

  • Eichler, A., & Erens, R. (2014, this issue). Teachers’ beliefs towards teaching calculus. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0606-y.

  • Ellis, J., Kelton, M. L., & Rasmussen, C. (2014, this issue). Student perceptions of pedagogy and associated persistence in calculus. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0577-z.

  • Ferrini-Mundy, J., & Graham, K. (1991). An overview of the calculus curriculum reform effort: issues for learning, teaching, and curriculum development. American Mathematical Monthly, 98(7), 627–635.

    Article  Google Scholar 

  • Furinghetti, F., & Paola, D. (1988). Wrong beliefs and misunderstandings about basic concepts of calculus (age 16–19). In Proceedings of the 39th rencontre internationale de la CIEAEM, 1987 (pp. 173-177). Sherbrooke, Canada.

  • Gravemeijer, K. (1994). Developing realistic mathematics education. Utrecht, The Netherlands: CD Press.

  • Gray, E., & Tall, D. (1994). Duality, ambiguity, and flexibility: a “proceptual” view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116–140.

    Article  Google Scholar 

  • Hähkiöniemi, M. (2004). Perceptual and symbolic representations as a starting point of the acquisition of the derivative. In Hoines, M. J. & Fuglestad, A. B. (Eds.), Proceedings of the 28th Annual Meeting of the International Group for the Psychology of Mathematics Education, Vol. 3, pp. 73–80.

  • Hannula, M. S. (2012). Exploring new dimensions of mathematics-related affect: embodied and social theories. Research in Mathematics Education, 14(2), 137–161.

    Article  Google Scholar 

  • Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: epistemic actions. Journal for Research in Mathematics Education, 32, 195–222.

    Article  Google Scholar 

  • Hershkowitz, R., Tabach, M., Rasmussen, C., & Dreyfus, T. (2014). Knowledge shifts in a probability class: a case study. ZDMThe International Journal on Mathematics Education. doi:10.1007/s11858-014-0576-0.

  • Javaroni, S. (2007). Abordagem geométrica: possibilidades para o ensino e aprendizagem de Introdução às Equações Diferenciais Ordinária, Doctoral Disssertation. Rio Claro, Brazil: UNESP.

    Google Scholar 

  • Job, P., & Schneider, M. (2014, this issue). Empirical positivism, an epistemological obstacle in the learning of calculus. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0604-0.

  • Kabael, T. (2010). Cognitive development of applying the chain rule through three worlds of mathematics. Australian Senior Mathematics Journal, 24(2), 14–28.

    Google Scholar 

  • Keene, K. (2007). A characterization of dynamic reasoning: reasoning with time as parameter. Journal of Mathematical Behavior, 26, 230–246.

    Article  Google Scholar 

  • Keene, K. A., Hall, W., & Duca, A. (2014, this issue). Sequence limits in calculus: using design research and building on intuition to support instruction. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0597-8.

  • Kelly, A. E., Lesh, R. A., & Baek, J. Y. (Eds.). (2008). Handbook of design research methods in education: Innovations in science, technology, engineering, and mathematics learning and teaching. London: Routledge.

    Google Scholar 

  • Kouropatov, A., & Dreyfus, T. (2014, this issue). Learning the integral concept by constructing knowledge about accumulation. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0571-5.

  • Larsen, S., Johnson, E., & Weber, K. (2013). (Eds.) The teaching abstract algebra for understanding project: designing and scaling up a curriculum innovation. Journal of Mathematical Behavior, 32(4).

  • Lesh, R., & Kelly, A. (2000). Multi-tiered teaching experiments. In A. Kelly & R. Lesh (Eds.), Handbook of research in mathematics and science education (pp. 197–230). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Marrongelle, K. (2004). Context, examples, and language: students uses of physics to reason about calculus. School Science and Mathematics, 10(6), 258–272.

    Article  Google Scholar 

  • Moreno-Armella, L. (2014, this issue). An essential tension in mathematics education. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0580-4.

  • Morgan, R. V., & Warnock, T. T. (1978). Derivatives on the hand-held calculator. Mathematics Teacher, 71(6), 532–537.

    Google Scholar 

  • Nemirovsky, R., & Rubin, A. (1992). Students’ tendency to assume resemblances between a function and its derivative, TERC Working Paper 2–92, Cambridge.

  • Orton, A. A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14(3), 235–250.

    Article  Google Scholar 

  • Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: first steps towards a conceptual framework. ZDM—The International Journal on Mathematics Education, 40(2), 165–178.

    Article  Google Scholar 

  • Radford, L. (2003). Gestures, speech, and the sprouting of signs: a semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70.

    Article  Google Scholar 

  • RAND Mathematics Study Panel. (2003). Mathematical proficiency for all students: Toward a strategic research program in mathematics education. Santa Monica, CA: RAND Corporation.

    Google Scholar 

  • Rasmussen, C. (Ed.) (2007). An inquiry oriented approach to differential equations. Journal of Mathematical Behavior, 26(3) (special issue).

  • Rasmussen, C., Wawro, M., & Zandieh, M. (2012). Four lenses for examining individual and collective level mathematical progress. Paper presented at the annual meeting of the American Educational Research Association, Vancouver, Canada.

  • Salinas, P. (2013). Approaching calculus with SimCalc: linking derivative and antiderivative. In S. J. Hegedus & J. Roschelle (Eds.), The SimCalc vision and contributions (pp. 383–399). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Schoenfeld, A. (1994). Some notes on the enterprise (research in collegiate mathematics education, that is). Research in Collegiate Mathematics Education, 1, 1–19.

    Google Scholar 

  • Sealey, V. (2014). A framework for characterizing student understanding of Riemann sums and definite integrals. The Journal of Mathematical Behavior, 33, 230–245.

  • Sfard, A. (1991a). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Sfard, A. (1991b). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36.

    Article  Google Scholar 

  • Shadish, W. R., Cook, T. D., & Campbell, D. T. (2001). Experimental and quasi-experimental designs for generalized causal inference. Boston: Houghton Mifflin.

    Google Scholar 

  • Soares, D. S. (2012). Uma abordagem pedagógica baseada na análise de modelos para alunos de biologia: qual o papel do software? Doctoral Dissertation, UNESP, Brazil.

  • Soares, D. S., & Borba, M. (2014, this issue). The role of software Modellus in a teaching approach based on model analysis. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-013-0568-5.

  • Swidan, O., & Yerushalmy, M. (2014, this issue). Learning the indefinite integral in a dynamic and interactive technological environment. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0583-1.

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169.

    Article  Google Scholar 

  • Thompson, P. W. (1992). Notations, conventions, and constraints: contributions to effective uses of concrete materials in elementary mathematics. Journal for Research in Mathematics Education, 23, 123–147.

    Article  Google Scholar 

  • Thompson, P. W., & Silverman, J. (2008). The concept of accumulation in calculus. In M. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics (pp. 117–131). Washington, DC: The Mathematical Association of America.

    Google Scholar 

  • Tinto, V. (2004). Linking learning and leaving. In J. M. Braxton (Ed.), Reworking the student departure puzzle. Nashville, TN: Vanderbilt University Press.

    Google Scholar 

  • Törner, G., Potari, D., & Zachariades, T. (2014, this issue). Calculus in European classrooms: curriculum and teaching in different educational and cultural contexts. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0612-0.

  • Trigueros, M., & Martínez-Planell, R. (2010). Geometrical representations in the learning of two-variable functions. Educational Studies in Mathematics, 73(1), 3–19.

    Article  Google Scholar 

  • Weigand, H.-G. (2014, this issue). A discrete approach to the concept of derivative. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0595-x.

  • White, N., & Mesa, V. (2014, this issue). Describing cognitive orientation of Calculus I tasks across different types of coursework. ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-014-0588-9.

  • Yoon, C., Thomas, M. J., & Dreyfus, T. (2011a). Grounded blends and mathematical gesture spaces: developing mathematical understandings via gestures. Educational Studies in Mathematics, 78(3), 371–393.

    Article  Google Scholar 

  • Yoon, C., Thomas, M. J., & Dreyfus, T. (2011b). Gestures and insight in advanced mathematical thinking. International Journal of Mathematical Education in Science and Technology, 42(7), 891–901.

    Article  Google Scholar 

  • Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. Research in Collegiate Mathematics Education. IV, 103–127.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Rasmussen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmussen, C., Marrongelle, K. & Borba, M.C. Research on calculus: what do we know and where do we need to go?. ZDM Mathematics Education 46, 507–515 (2014). https://doi.org/10.1007/s11858-014-0615-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-014-0615-x

Keywords

Navigation