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Abstract
Background Serum amyloid A (SAA) is secreted by liver hepatocytes in response to increased inflammation whereupon it
associates with high-density lipoprotein (HDL) and alters the protein and lipid composition of HDL negating some of its anti-
atherogenic properties.
Aims To identify variants within the SAA gene that may be associated with SAA levels and/or cardiovascular disease (CVD).
Methods We identified exonic variants within the SAA genes by deoxyribonucleic acid (DNA) Sanger sequencing. We tested the
association between SAA variants and serum SAA levels in 246 individuals with and without CVD.
Results Increased SAA was associated with rs2468844 (beta [β] = 1.73; confidence intervals [CI], 1.14–1.75; p = 0.01),
rs1136747 (β = 1.53 (CI, 1.11–1.73); p = 0.01) and rs149926073 (β = 3.37 (CI, 1.70–4.00); p = 0.02), while rs1136745 was
significantly associated with decreased SAA levels (β = 0.70 (CI, 0.53–0.94); p = 0.02). Homozygous individuals with the
SAA1.3 haplotype had significantly lower levels of SAA compared with those with SAA1.1 or SAA1.5 (β = 0.43 (CI, 0.22–
0.85); p = 0.02) while SAA1.3/1.5 heterozygotes had significantly higher SAA levels compared with those homozygous for
SAA1.1 (β = 2.58 (CI, 1.19–5.57); p = 0.02).
Conclusions We have identified novel genetic variants in the SAA genes associatedwith SAA levels, a biomarker of inflammation
and chronic disease. The utility of SAA as a biomarker for inflammation and chronic disease may be influenced by underlying
genetic variation in baseline levels.
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Introduction

Chronic diseases such as diabetes mellitus and cardiovascular
disease (CVD) are increasing global health concerns [1, 2] that

require concerted preventative efforts coupled with develop-
ment of effective treatment options [3]. In addition to the more
established CVD risk factors, such as smoking, diabetes, hy-
pertension, and dyslipidaemia, it is becoming clearer that
chronic inflammation also plays a significant role in the de-
velopment of atherosclerosis [4].

Serum amyloid A (SAA) protein concentrations increase
up to 1000-fold in response to infection, injury and inflamma-
tion [5–8]. SAA is secreted by liver hepatocytes or by macro-
phages, vascular endothelial cells and adipocytes [5–8]. SAA
is an amphipathic alpha-helical apolipoprotein (apo) [9] in-
volved in the mobilisation of cholesterol for tissue repair and
regeneration and undertakes a Bhousekeeping^ role in normal
tissues [10, 11]. However, there is increasing evidence that
implicates SAA in the pathological processes of multiple
chronic diseases [12]. When released, SAA readily associates
with high-density lipoprotein (HDL), becoming the major car-
rier of this protein in the circulation [13, 14]. HDL is tradi-
tionally considered to be atheroprotective; however, evidence
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suggests its association with SAA causes a change in the pro-
tein and lipid composition of HDL which negates some of its
anti-atherogenic properties as it transitions to a pro-
atherogenic state [13, 15, 16]. SAA has been detected in foam
cells within atherosclerotic lesions and may lead to plaque
instability [6, 17–19].

There are four human SAA genes (SAA1-4) within a 150-kb
region on the short arm of chromosome 11 [20]. SAA1 and
SAA2 encode acute phase proteins (ASAA) that are released in
response to inflammatory stimuli, SAA3 is a pseudogene, and
SAA4 is constitutively expressed [21]. Several variants in
SAA1 and SAA2 have been previously reported in association
with SAA levels, CVD, and carotid intima media thickness
(cIMT) risk [22–24].

Furthermore, SAA1 has several transcripts, (SAA1.1, 1.2,
1.3, 1.4, and 1.5) defined by two non-synonymous single nu-
cleotide polymorphisms (SNPs) in exon 3 at positions 2995C/T
(rs1136743) and 3010C/T (rs1136747). These genotypic com-
binations define three haplotypes that correspond to SAA1.1
(52Val, 57Ala), SAA1.3 (52Ala, 57Ala), and SAA1.5 (52Ala,
57Val) [25–27]. Previous studies have reported association of
these haplotypes with amyloidosis and rheumatoid arthritis [25,
26, 28–31]. SAA1.5 has been shown to have a higher binding
affinity for HDL and a slower clearance rate from the circula-
tion, in comparison to SAA1.1 and SAA1.3 [32, 33].

We sought to identify coding variants associated with SAA
levels in SAA1, SAA2, and SAA4 in a well-characterised cohort
of individuals, with and without CVD.

Materials and methods

Study participants

Study participants were recruited following attendance at the
nuclear cardiology and renal clinics at the Royal Victoria and
Belfast City Hospitals, between October 2015 and February
2017.

Evaluation of cardiovascular outcomes

CVD status was determined on the basis of a myocardial per-
fusion scan or by a previous diagnosis of angina or stroke. The
test was interpreted by a consultant cardiologist or an associate
specialist, and the presence or absence of myocardial ischae-
mia or infarction was noted. The degree of image abnormality
was rated using a semi-quantitative model comprising 20
myocardial segments each scored from 0 (normal) to 4 (se-
verely abnormal). The score for each segment was summed to
give an overall total; summed scores greater than 2 were des-
ignated as abnormal and represented significant myocardial
ischaemia or infarction, thus indicating an underlying

diagnosis of coronary artery disease (CAD). Summed scores
of 2 or less were deemed normal and not in keeping with flow-
limiting CAD. The difference between summed stress and rest
scores was designated the summed difference score (SDS) and
reflected the burden of myocardial ischaemia detected. Thus,
individuals with a summed score of less than 2 were allocated
into the Bno CVD^ status group, and those with a score greater
than 2 into the BCVD^ status group.

Isolation of HDL2 and HDL3 from serum

HDL2 and HDL3 were isolated from freshly thawed serum by
rapid ultracentrifugation at 100,000 rpm according to the
method of McPherson et al. [34]. This was a three-step pro-
cedure, taking 6 h in total. Firstly, crude HDL was isolated
from serum by rapid flotation and sedimentation followed by
isolation of HDL2 and HDL3 via two rapid flotation steps.
Lipoproteins were stored immediately at − 80 °C until re-
quired for analysis.

Measurement of serum amyloid A

SAA levels were measured in serum samples isolated from
whole blood following centrifugation at 3000 rpm at 4 °C for
10 min using an enzyme-linked immunosorbent assay
(ELISA, Invitrogen™ Human SAA kit KHA0011C, CA,
USA) using a Grifols Triturus automated ELISA system
(Vicopisano, Italy) as per the manufacturer’s instructions.
The coefficients of variation for SAA were 2.8%
(interspecific) and 8.0% (intraspecific).

Genotyping

DNA was amplified by polymerase chain reaction (PCR)
using oligonucleotide primers and annealing conditions listed
in the supplementary information (supplementary Table 1)
using Taq PCR mastermix kit (Qiagen, Hilden, Germany).
PCR clean-up was conducted using Exoprostar-1 step mix
as per manufacturer’s instructions (GE Healthcare Life
Sciences, Little Chalfont, UK) and Sanger cycle sequencing
using BigDye™ Terminator v3.1 Cycle Sequencing Kit
(Thermo Fisher Scientific). Ethanol precipitation and DNA
sequencing were completed by Genomic Core Services,
Queen’s University Belfast, UK.

Statistical analysis

The chi-square and one-way analysis of variance (ANOVA)
tests for trend were used to investigate the differences in qual-
itative (CVD status) and quantitative (serum SAA levels)
traits, respectively. Regression analysis was used to adjust
for the potential confounders (SPSS, version 21, SPSS, Inc.,
Chicago, IL).
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Results

Subject characteristics

A total of 252 participants were recruited to the study; how-
ever, serum and DNA samples were only available for 246
participants; these were split into two categories, no CVD
(n = 100) and CVD (n = 146) (Table 1). A significant but mod-
est correlation between SAAwith age and estimated glomer-
ular filtration rate (eGFR) (r = 0.15, p = 0.03 and r = − 0.19,
p < 0.001, respectively) was detected. Females tended to have
higher serum SAA levels than males (30 mg/L (25, 36) vs.
19 mg/L (16, 23); p < 0.001).

Preliminary screening

Preliminary screening of DNA from 46 individuals included
23 individuals with the lowest levels of SAA (< 10 mg/L) and

23 individuals with the highest SAA levels (> 70 mg/L). PCR
and DNA sequence analysis of all 12 exonic regions (4 exons
from SAA1, SAA2, and SAA4) was undertaken to identify
SNPs with a minor allele frequency (MAF) greater than 5%
in association with SAA levels. Several SNPs were identified
in SAA1 exons 1, 3, and 4 and also SAA2 exon 4 (data not
provided). No SNPs with a MAF > 5% were identified in
SAA1 exon 2, SAA2 exons 1, 2, and 3 or any exons of SAA4.
As such, DNA sequence analysis was restricted to SAA1
exons 1, 3, and 4 and SAA2 exon 4 in the remaining 200 study
participants.

Variants associated with serum amyloid A levels

Nineteen SNPs were identified in exons 1, 3, and 4 of SAA1
and exon 4 of SAA2 in the 246 study participants. Of these,
three SNPs were significantly associated with higher levels of
SAA (rs149926073: β = 3.37; CI, 1.70–4.00; p = 0.02;

Table 1 Subject characteristics
for controls and cases of
cardiovascular disease

Control (n = 150) CVD (n = 102) p value

Age (years) 65 (10) 66 (9) 0.52

Males, n (%) 83 (55) 60 (59) 0.34

Diabetes, number with diabetes (%) 55 (37) 40 (39) 0.39

DBP (mmHg) 81 (81) 81 (81) 0.76

SBP (mmHg) 132 (118, 148) 135 (123, 151) 0.31

MABP (mmHg) 98 (90, 106) 98 (90, 108) 0.75

HDL cholesterol (mmol/L) 1.3 (1.0, 1.6) 1.2 (1.0, 1.5) 0.64

LDL cholesterol (mmol/L) 2.2 (1.7, 2.9) 2.0 (1.5, 2.6) 0.07

Total cholesterol (mmol/L) 3.8 (3.0, 4.8) 3.6 (3.1, 4.3) 0.10

Troponin (ng/L) 9.9 (5.0, 16.0) 10.5 (5.8, 15.7) 0.72

HbA1c (mmol/mol) 49 (39, 62) 51(38, 69) 0.35

CRP (mg/L) 2.91 (1.22, 5.35) 2.82 (0.95, 4.70) 0.86

eGFR (mL/min/1.73 m2) 97(75, 116) 95 (71, 110) 0.70

Weight (kg) 87 (78, 100) 87 (76, 102) 0.84

Demi span (cm) 80 (80) 81 (81) 0.30

Anti-platelet, n (%) 46 (38) 56 (55) < 0.001*

Anti-coagulant, n (%) 27 (19) 20 (20) 0.49

Anti-oestrogen, n (%) 1 (0.7) 1 (1.0) 0.65

Anti-convulsants, n (%) 9 (6.2) 11 (11) 0.13

Anti-hypertensives, n (%) 53 (37) 32 (32) 0.26

Hypoglycaemics, n (%) 38 (26) 32 (32) 0.21

Statins, n (%) 95 (66) 78 (77) 0.04*

Corticosteroids, n (%) 28 (19) 15 (15) 0.24

Beta-blockers, n (%) 43 (30) 49 (49) < 0.001*

ACE inhibitors, n (%) 38 (26) 42 (42) < 0.001*

Calcium channel blocker, n (%) 33 (22.8) 23 (22.5) 0.55

Nitrates, n (%) 4 (2.8) 27 (26.7) < 0.001*

Diuretics, n (%) 36 (24.8) 29 (28.7) 0.30

NSAIDs, n (%) 7 (4.9) 6 (6.0) 0.46

Where * indicates significance, p ≤ 0.05
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rs1136747: β = 1.53; CI, 1.11–1.73; p = 0.01; and rs2468844:
β = 1.73; CI, 1.14–1.75; p = 0.01) and one was associated
with lower levels of SAA (rs1136745: β = 0.70; CI, 0.53–
0.94; p = 0.02) (Table 2).

In a linear regression analysis, three of the four SNPs
remained significantly associated with SAA: rs1136745 (β =
0.65; CI, 0.48–0.24; p = 0.01), rs2468844 (β = 1.43; CI, 1.13–
1.79; p < 0.001), and rs1136747 (β = 1.43; CI, 1.13–1.80;
p < 0.001) following adjustment for age, gender, eGFR, and
the presence of diabetes (Table 3). All four SNPs were shown
to exert independent effects following inclusion within a single
linear regression model together with gender, diabetes, eGFR,
and age: rs1136747 (β = 1.30; CI, 1.35–1.65; p = 0.03);

rs149926073 (β = 2.66; CI, 1.11–6.33; p = 0.03), rs2468844
(β = 1.32; CI, 1.55–1.67; p = 0.02), and rs1136745 (β = 0.72;
CI, 0.54–0.74; p = 0.03), with all SNPs remaining significantly
associated with SAA levels (p < 0.05; Table 3).

Associations of genetic variants with cardiovascular
disease status

No significant associations between CVD status and SAA
variants were detected (p > 0.05; Table 4).

Serum amyloid A 1 haplotypes

Genotypic combinations of rs1136743 and rs1136747 defined
three haplotypes previously reported in association with SAA:
SAA1.1 (52Val, 57Ala), SAA1.3 (52Ala, 57Ala), and SAA1.5
(52Ala, 57Val). Between-group comparisons of haplotype
combinations and SAA and CVD status showed SAA1.3 ho-
mozygotes had significantly lower SAA than SAA1.1 homo-
zygotes (9.1 mg/L (4.9, 19) vs. 21 mg/L (11, 45); p = 0.02,
Table 5, Fig. 1). SAA1.5 homozygotes had higher SAA con-
centrations than those homozygous for SAA1.1, although this
failed to reach significance (p > 0.05). Heterozygous individ-
uals with SAA1.3/1.5 had significantly higher SAA levels than
SAA1.1/1.1 homozygotes (55 mg/L (17, 87) vs. 21 mg/L (11,
45); p = 0.02, Table 5, Fig. 1), which remained significant
following adjustment for age, gender, eGFR, and diabetes.

Between-group comparisons of haplotype combinations and
HDL2SAA showed that SAA1.3 homozygotes had significantly

Table 2 Linear regression
analysis of single nucleotide
polymorphisms associated with
serum amyloid A levels (n = 246)

Exon SNP Minor allele MAF βeta (95% CI) p value

SAA1 exon 1 rs11024595 T 0.26 0.73 (0.61–1.01) 0.06

rs2445166 A 0.10 0.72 (0.51–1.00) 0.09

rs11545466 G 0.07 0.83 (0.56–1.18) 0.27

rs549103464 Insertion 0.07 1.07 (0.87–1.25) 0.65

SAA1 exon 3 rs11024597 T 0.34 0.97 (0.81–1.19) 0.83

rs149926073 A < 0.01 3.37 (1.70–4.00) 0.02*

rs1136743 C 0.32 3.55 (0.89–1.32) 0.40

rs11545468 C 0.08 0.82 (0.55–1.13) 0.20

rs1136745 C 0.16 0.70 (0.53–0.94) 0.02*

rs1136747 T 0.24 1.53 (1.11–1.73) 0.01*

SAA1 exon 4 rs15790 T 0.08 1.28 (0.94–1.80) 0.11

rs145680768 C < 0.01 0.95 (0.31–2.33) 0.75

rs12218 T 0.46 1.22 (0.93–1.41) 0.19

rs1059571 G < 0.01 0.73 (0.19–0.97) 0.32

SAA2 exon 4 rs11540206 A < 0.01 1.14 (0.61–3.79) 0.37

rs149402852 A < 0.01 0.83 (0.28–1.33) 0.21

rs116861605 A 0.01 2.69 (0.68–2.16) 0.51

rs2468844 G 0.18 1.73 (1.14–1.75) 0.01*

Given the skewed distributions, variables were log transformed; data in the table shows anti-logged values.Where
* indicates a significant result p ≤ 0.05

Table 3 Adjusted linear regression analysis of variants associated with
serum amyloid A levels

SNP Beta (95% CI)1 p value1 Beta (95% CI)2 p value 2

rs1136745 0.65 (0.48–0.24) 0.01 0.72 (0.54–0.74) 0.03

rs2468844 1.43 (1.13–1.79) < 0.001 1.32 (1.55–1.67) 0.02

rs149926073 1.53 (0.70–3.37) 0.29 2.66 (1.11–6.33) 0.03

rs1136747 1.43 (1.13–1.80) < 0.001 1.30 (1.35–1.65) 0.03

Given the skewed distributions, variables were log transformed; data in
the table shows anti-logged values. Beta values1 and p1 represent results
of SNPs in the adjusted model alone, adjusting for gender, age, estimated
glomerular filtration rate (eGFR), and diabetes. Beta values2 and p2

represent all four SNPs together in an adjusted model, adjusted for gen-
der, age, eGFR, and diabetes
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lower HDL2SAA than SAA1.1 homozygotes (0.25 mg/L (0.11,
0.57) vs. 0.70 mg/L (0.26, 2.50); p = 0.04), which remained
significant following adjustment for age, gender, eGFR, and
diabetes (beta estimate = 0.56; 95% confidence intervals,
0.26–0.88; p = 0.02, Table 6). Heterozygous individuals with
SAA1.3/1.5 had significantly higher HDL2SAA levels than
SAA1.1/1.1 homozygotes (4.06 mg/L (2.78, 6.00) vs.
0.70 mg/L (0.26, 2.50); p < 0.01, Table 6), which remained
significant following adjustment for age, gender, eGFR, and
diabetes (beta estimate = 2.03; 95% confidence intervals,
1.47–6.27; p < 0.001, Table 6).

Between-group comparisons of haplotype combinations
and HDL3SAA showed that SAA1.3 homozygotes had signif-
icantly lower HDL3SAA than SAA1.1 homozygotes (4.0 mg/

L (2.0, 7.0) vs. 10 mg/L (5.0, 24); p = 0.01), which remained
significant following adjustment for age, gender, eGFR, and
diabetes (beta estimate = 0.48; 95% confidence intervals,
0.12–0.60; p < 0.001, Table 6). Individuals heterozygous for
SAA1.3/1.5 had significantly higher HDL3SAA levels than
SAA1.1/1.1 homozygotes (43 mg/L (26, 60) vs. 10 mg/L
(5.0, 24); p < 0.001, Table 6), which remained significant
following adjustment for age, gender, eGFR, and diabetes
(beta estimate = 2.15; 95% confidence intervals, 2.05–14.7;
p < 0.001, Table 6).

No significant associations between SAA1 haplotypes and
CVD status were detected in either unadjusted or in analyses
adjusted for lipid levels, blood pressure, age, and diabetes
(p > 0.05) (Table 7).

Table 4 Regression analysis of
serum amyloid A single nucleotide
polymorphisms in CVD (n = 100)
and controls (n = 146)

SNP Minor allele Controls, n (%) CVD, n (%) Odds ratio (95% CI) p value

rs11024595 T 49 (17) 33 (16) 0.94 (0.59–1.63) 0.98

rs2445166 A 26 (9) 15 (7) 0.80 (0.40–1.61) 0.54

rs11545466 G 18 (6) 11 (5) 0.89 (0.42–1.89) 0.74

rs549103464 Insertion 18 (6) 12 (6) 1.00 (0.70–1.43) 0.99

rs11024597 T 99 (33) 61 (30) 0.95 (0.65–1.38) 0.78

rs1136743 C 94 (31) 59 (29) 0.94 (0.64–1.39) 0.76

rs11545468 C 19(6) 19 (9) 1.71 (0.85–3.44) 0.13

rs1136745 C 42 (14) 31 (15) 1.23 (0.70–2.16) 0.47

rs15790 T 22 (7) 16 (8) 1.03 (0.54–2.00) 0.93

rs145680768 C 4 (1) 0 (0) 0.00 (0.00) 1.00

rs12218 T 122 (41) 88 (43) 1.06 (0.71–1.60) 0.77

rs1059571 G 6 (2) 0 (0) 0.00 (0.00) 1.00

rs112509629 T 0 (0) 5 (2) 0.00 (0.00) 1.00

rs11540206 A 1 (0.3) 4 (2) 6.07 (0.67–55.1) 0.11

rs149402852 A 4 (1) 3 (1) 1.10 (0.24–5.03) 0.90

rs116861605 A 7 (2) 6 (3) 1.27 (0.41–3.91) 0.68

rs2468844 G 60 (20) 27 (13) 0.65 (0.41–1.04) 0.07

rs149926073 A 4 (1) 3 (1) 1.15 (0.51–5.26) 0.86

rs1136747 T 68 (23) 41 (20) 0.89 (0.57–1.40) 0.63

Table 5 Difference in serum amyloid A levels between serum amyloid A 1 haplotypes (n = 246)

Haplotype n (%) Mean serum SAA,
mg/L (IQR)

Beta (95% CI)1 p value1 Beta (95% CI)2 p value2

1.1/1.1 109 (46) 21 (11, 45) Reference Reference

1.1/1.3 19 (8) 16 (3.7, 73) 0.74 (0.45–1.21) 0.23 0.80 (0.48–1.33) 0.40

1.1/1.5 80 (34) 26 (15, 70) 1.25 (0.93–1.67) 0.14 1.32 (0.79–1.79) 0.07

1.3/1.3 9 (4) 9.1 (4.9, 19) 0.43 (0.22–0.85) 0.02* 0.34 (0.17–0.69) < 0.001*

1.3/1.5 7 (3) 55 (17, 87) 2.58 (1.19–5.57) 0.02* 2.48 (1.16–5.32) 0.02*

1.5/1.5 11 (5) 32 (11, 72) 1.51 (0.81–2.82) 0.19 1.50 (0.79–2.83) 0.21

Given the skewed distribution, SAA was log transformed; data in the table shows anti-logged values; results are expressed as geometric means
(interquartile range (IQR)).Where * indicates a significant result p ≤ 0.05. All haplotype combinations were compared to the reference 1.1/1.1 haplotype,
where p value1 reflects the unadjusted model; p value2 reflects the adjusted model (age, gender, estimated glomerular filtration rate (eGFR), and
diabetes)
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Fig. 1 Variation in serum amyloid A levels by haplotype (n = 246)
showing median and interquartile range. Between-group comparisons
of haplotype combinations and SAA levels showed SAA1.3
homozygotes had significantly lower SAA than SAA1.1 homozygotes

(*p = 0.02). Heterozygous individuals with SAA1.3/1.5 had
significantly higher SAA levels than SAA1.1/1.1 homozygotes
(*p = 0.02)

Table 6 Differences in SAA levels in HDL2 and HDL3 fractions between serum amyloid A 1 haplotypes (n = 246)

Haplotype n (%) Mean SAA mg/L (IQR) Beta estimate (95% CI)1 p value1 Beta estimate (95% CI)2 p value2

HDL2SAA

1.1/1.1 109 (46) 0.70 (0.26, 2.50) Reference Reference

1.1/1.3 19 (8) 0.60 (0.21, 1.58) 0.91 (0.75, 1.20) 0.66 0.79 (0.60, 1.17) 0.80

1.1/1.5 80 (34) 0.80 (0.31, 2.50) 1.12 (0.70, 2.05) 0.50 1.23 (0.77, 2.54) 0.27

1.3/1.3 9 (4) 0.25 (0.11, 0.57) 0.64 (0.33, 0.97) 0.04* 0.56 (0.26, 0.88) 0.02*

1.3/1.5 7 (3) 4.06 (2.78, 6.00) 1.94 (1.46, 5.10) < 0.001* 2.03 (1.47, 6.27) < 0.001*

1.5/1.5 11 (5) 0.60 (0.27, 1.61) 0.93 (0.31, 2.29) 0.74 0.84 (0.22, 2.09) 0.49

HDL3SAA

1.1/1.1 109 (46) 10 (5.0, 24) Reference Reference

1.1/1.3 19 (8) 10 (3.0, 33) 0.99 (0.73, 1.36) 0.96 1.06 (0.74, 1.49) 0.79

1.1/1.5 80 (34) 12 (6.0, 29) 1.17 (0.69, 2.87) 0.34 1.25 (0.74, 3.53) 0.23

1.3/1.3 9 (4) 4.0 (2.0, 7.0) 0.58 (0.18, 0.79) 0.01* 0.48 (0.12, 0.60) < 0.001*

1.3/1.5 7 (3) 43 (26, 60) 2.11 (2.04, 11.1) < 0.001* 2.15 (2.05, 14.7) < 0.001*

1.5/1.5 11 (5) 0.7 (0.3, 2.5) 1.35 (0.69, 10.3) 0.16 1.34 (0.56, 12.3) 0.22

Given the skewed distribution, SAA was log transformed; data in the table shows anti-logged values; results are expressed as geometric means
(interquartile range (IQR)). Where * indicates statistical significance (p ≤ 0.05). All haplotype combinations were compared to the reference 1.1/1.1
haplotype, where p value1 reflects the unadjusted model; p value2 reflects the adjusted model (age, gender, estimated glomerular filtration rate (eGFR),
and diabetes)
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Discussion

We investigated associations between SAA SNPs and SAA
levels and CVD status. Our data identified several novel as-
sociations between genetic variants in both SAA1 exon 3 and
SAA2 exon 4 and SAA levels, as well as significant associa-
tion with SAA levels between previously characterised SAA1
haplotypes. SAA1 and SAA2 both encode for ASAA, which is
an important mediator in the inflammatory response, with
both inflammation and increased SAA levels previously im-
plicated in the pathogenesis of atherosclerosis [8].

We identified novel and previously reported variants in
SAA1 exons 1, 3, and 4 and SAA2 exon 4making these regions
genetically informative with regard to SAA levels. To our
knowledge, the association between rs1136745 and SAA
has not been reported previously. Interestingly, rs1136745
was associated with lower SAA levels (p = 0.02), suggesting
a potential protective effect of this genetic variant in limiting
the increase in SAA levels in response to inflammation and
reducing the subsequent atherosclerosis risk [35].

Two SNPS within exon 3 of SAA1 (rs149926073 and
rs1136747) and rs2468844 in exon 4 of SAA2 were signifi-
cantly associated with increased SAA levels. To our knowl-
edge, none of these SNPs have been previously reported in
association with SAA. However, rs2468844 has been reported
in association with significant reductions of serum HDL-C
and increased cIMT but not ischemic stroke [23, 36]. Xie
and colleagues (2010) suggested that the SAA gene could di-
rectly influence the risk of developing cIMT, independent of
changes in HDL levels and other determinants of CVD risk. If
these assumptions are correct, it is possible that this may be
mediated via increased SAA levels which ultimately could
lead to diminished HDL function and increased risk of athero-
sclerosis. In our study, rs149926073 and rs1136747 were not
associated with CVD status (p > 0.05), while rs2468844 just
failed to reach the significance threshold (p = 0.07), although
study power or inequitable phenotypic comparisons may have
confounded these findings.

To evaluate the independent effects of these SNPs on SAA
levels, we included all four in a single regression model to-
gether with other potential confounders such as gender, dia-
betes, eGFR, and age. All four SNPs (rs1136745, rs1136747,
rs149926073, and rs2468844) remained significantly associ-
ated with SAA levels supporting their independent contribu-
tions to genetic risk (p < 0.05, Table 3).

Our study also examined previously defined haplotypic
structure across SAA1. Individuals homozygous for SAA1.3
had significantly lower levels of SAA compared with those
homozygous for SAA1.1 (p = 0.02) in support of reported as-
sociations between SAA1.3 and its reduced affinity for HDL
[32]. Previous reports also identified a link between SAA1.5
and elevated SAA levels, suggesting SAA1.5 has a higher
affinity for HDL and while we did report higher SAA in indi-
viduals homozygous for SAA1.5 in our study, this failed to
reach statistical significance [32, 33, 37].

We have previously shown that levels of serum SAA are
highly correlated with HDL2SAA and HDL3SAA levels [15];
therefore, we sought to determine if the observations found
between SAA haplotypes and serum SAA levels were also
represented in the HDL sub-fractions. In line with the findings
for serum SAA, heterozygous individuals for the 1.3/1.5 hap-
lotype had significantly higher SAA levels than individuals
homozygous for the 1.1 haplotype for both HDL2 and HDL3

SAA (p < 0.01). This was unsurprising, given serum SAA
levels have been shown to correlate with HDL SAA levels
and may suggest that individuals with the SAA 1.5 allele have
HDL particles with a higher affinity for SAA. We and others
have previously reported that increased SAA levels within
HDL fractions may compromise the functionality of the
HDL particle reducing its cardioprotective properties [15, 16].

Although several studies have previously reported associ-
ations between the SAA1.5 haplotype with amyloidosis and
rheumatoid arthritis, to our knowledge, none have reported
associations with CVD and we also failed to find any evidence
in our study [25, 26]. Nevertheless, elevated SAA levels as-
sociated with CVDmay suggest that individuals homozygous

Table 7 Serum amyloid A 1 haplotype associations by CVD status, in CVD (n = 146) and controls (n = 100)

Genotype Controls, n (%) Cases, n (%) Odds ratio (95% CI)1 p value1 Odds ratio (95% CI)2 p value2

1.1/1.1 64 (45) 45 (48) Reference Reference

1.1/1.3 12 (9) 7 (8) 0.83 (0.30–2.27) 0.72 0.87 (0.28–2.73) 0.82

1.1/1.5 50 (35) 30 (32) 0.53 (0.47–1.54) 0.60 0.90 (0.46–1.75) 0.76

1.3/1.3 4 (3) 5 (5) 1.78 (0.45–6.99) 0.41 1.72 (0.34–8.67) 0.51

1.3/1.5 6 (4) 1 (1) 0.24 (0.03–2.04) 0.19 0.23 (0.02–2.26) 0.21

1.5/1.5 6 (4) 5 (5) 1.19 (0.34–4.12) 0.80 0.96 (0.23–3.91) 0.96

1.1 allele 190 (63) 127 (68) Reference Reference

1.3 allele 26 (18) 18 (10) 0.97 (0.51–1.83) 0.97 0.82 0.93

1.5 allele 68 (48) 41 (22) 1.11 (0.71–1.74) 0.65 0.89 0.48

Beta1 and p value1 indicate an unadjusted analysis; beta2 and p value2 indicate an adjusted (lipid levels, blood pressure, age, and diabetes) analysis
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for SAA1.3may have a reduced risk of developing CVD com-
pared with those with the SAA1.1 haplotype.

SAA levels were not associated with any SAA4 genetic
variants in support of previous reports, which is perhaps un-
surprising given SAA4 is a constitutively expressed protein
possibly modulated through mechanisms independent of
SAA1 and SAA2 [38]. SAA4 shares only 50% homology
with ASAA, and the SAA4 gene does not contain the promotor
motif CTGGGA, or the NF-IL6 binding site, commonly found
in acute phase proteins and the gene possesses only a truncat-
ed NF-κB recognition sequence (GACTTT), which may ex-
plain why SAA4 expression is not increased during an inflam-
matory response [39].

Conclusion

We have identified several novel as well as previously report-
ed SNPs in SAA genes and correlated SAA genotypes with
serum SAA levels before and after adjustment for potential
confounding variables. The correlation between SAA levels
and SAA genotypes is of interest given individual genetic
background is likely to modulate release of SAA into the
circulation in response to increased inflammation associated
with many chronic diseases. The utility of which SAA as a
potential biomarker is modified by the genetic variability in
SAA response to inflammation.

Limitations

Although the study was well powered, there was insufficient
sample size to detect low-frequency genetic variants < 5%,
which may have exerted moderate effect sizes. This study
focused on the genetic variants within a European population
and as such, geographic variat ion may limit the
generalisability of these findings to other populations. There
are some limitations to using myocardial perfusion imaging
for patient phenotyping. It should be recognised that a myo-
cardial perfusion test allocates patients into CVD groups
based on the presence of flow-limiting coronary artery disease
(i.e. ischaemia) or myocardial infarction. Some patients des-
ignated as having no CVD may have coronary atheroma at an
early stage but without functional consequences.
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