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This article addresses two topics on multiscale modeling of heterogeneous
metals and alloys. The first topic focuses on developing an adaptive hierar-
chical-concurrent multilevel modeling framework for ductile fracture. The
microstructure of aluminum alloys, for example, is characterized by a dis-
persion of heterogeneities such as silicon and intermetallics in a ductile alu-
minum matrix. The multilevel model invokes two-way coupling, viz.
hierarchical models for homogenized constitutive modeling and concurrent
models with scale transition in regions of localization and damage. Adaptivity
is necessary for evolving microstructural deformation and damage. A macro-
scopic analysis in regions homogeneity incorporates homogenization-based
continuum plasticity-damage models. A microscopic analysis using locally
enhanced-Voronoi cell finite-element method is required for regions of high
macroscopic gradients caused by underlying localized plasticity and damage.
Coupled macroscopic and microscopic analysis is conducted concurrently.
Physics-based level change criteria are developed to improve accuracy and
efficiency. The second topic discusses a nested dual-stage homogenization
method for microstructure-based homogenized continuum plasticity models
for cast aluminum alloys with large secondary dendrite arm spacing. Two
distinct statistically equivalent representative volume elements are identified
and used in the asymptotic expansion-based homogenization and self-consis-
tent homogenization processes, respectively. The two-stage homogenization
enables an evaluation of the overall homogenized model of a cast alloy from
limited experimental data, as well as material properties of constituents like
interdendritic phase and pure aluminum matrix.

INTRODUCTION

Heterogeneous metallic materials like cast alumi-
num alloys, containing silicon and intermetallic
inclusions in a dendritic structure, are widely used in
a variety of engineering applications such as in auto-
motive and aerospace structures. While microstruc-
tural heterogeneities may result in higher strength in
some cases, failure properties like ductility and strain
to failure are generally affected adversely by partic-
ulate fragmentation and matrix cracking. Ductile
failure generally initiates with particulate fragmen-
tation. Large plastic strains in their vicinity lead to
void nucleation in the matrix. The damage subse-
quently propagates with void growth and localizes in
bands of intense plastic deformation between partic-
ulates, until void coalescence in the matrix leads to

catastrophic failure. Experimental studies, e.g., in
Ref. 1, have shown strong connections between mor-
phological variations and microstructural damage
nucleation and growth. Damage initiation is con-
trolled by the shape of particulates, whereas the rate
of damage evolution at higher strains is controlled by
the level of clustering. This makes predicting ductility
and strain to failure quite challenging. Modeling the
ductile failure process using exclusively macroscopic
models will lead to large predictive inaccuracies due to
the strong dependence of deformation and failure on
the microstructure. Pure micromechanical analysis of
the entire structure, on the other hand, is computa-
tionally intractable due to the large number of heter-
ogeneities in the underlying microstructure. The need
for multiscale modeling is clearly realized for these
problems.

JOM, Vol. 67, No. 1, 2015

DOI: 10.1007/s11837-014-1193-7
� 2014 The Minerals, Metals & Materials Society

(Published online November 25, 2014) 129



Different classes of multiscale models have been
developed in the literature. These multiscale models
have been classified as hierarchical, concurrent, or a
combination of both. The hierarchical multiscale
methods involve bottom-up homogenization (one-
way scale coupling) to develop response models for
the higher scales. Hierarchical methods using
homogenization techniques have been developed,
e.g., in Refs. 2–11, based on the asymptotic expan-
sion theory of homogenization. Higher-order
homogenization methods have been developed, e.g.,
in Refs. 12–15, for incorporating higher-order
kinematics. Concurrent multiscale methods that
involve top-down analysis and introduce coupled
analysis of the substructured computational domain
consisting of regions of macroscopic analysis with
homogenized material properties and embedded lo-
cal regions of detailed micromechanical modeling
have been developed, e.g., in Ref. 16.

By combining the two methods in an integrated
framework, Ghosh and co-workers have developed
adaptive, hierarchical-concurrent image-based
multiscale models for linear elastic composites in
Refs. 17 and 18, elastic–plastic composite materials
undergoing microstructural damage by inclusion
cracking in Ref. 19, composites with microme-
chanical debonding in Ref. 20, and rate-dependent
ductile fracture in heterogeneous metals and alloys
with non-uniform microstructures in Refs. 21–23.
Detailed developments of the multiscale analysis
framework using the Voronoi cell finite-element
method (VCFEM) for micromechanical analyses
have been presented in Ref 11. Three major
ingredients constitute the image-based multiscale
analysis framework. They are (I) multiscale image
analysis and characterization, (II) micromechanical
analysis of extended microstructural regions, and
(III) adaptive concurrent multiscale analysis
incorporating both bottom-up and top-down mod-
eling. Powerful methods of image-reconstruction,
multiscale image characterization and domain
partitioning have been developed in Refs. 24 and 25
as preprocessors to image-based multiscale model-
ing. These modules are necessary for determining
microstructural representative volume elements
(RVEs), as well as for identifying regions where
homogenization breaks down. The two-way coupled
multiscale framework invokes a macroscopic ana-
lysis with hierarchically constructed homogenized
constitutive models in less critical regions of low
deformation or stress gradients to enhance effi-
ciency of the computational analysis. In critical
regions of localization, damage, and failure, the
model cascades down to the scale of the embedded
microstructure with explicit representation of
morphology and deformation mechanisms. The top-
down coupling is achieved in a concurrent frame-
work. Adaptivity, which implies computational
model-determined selection of regions that require
different resolutions, is a necessary feature in the
computational model. Regions of microstructure

embedding cannot be determined a priori for
problems with evolving microstructures and dam-
age mechanisms. The adaptive substructuring should
be guided by physical considerations to minimize
modeling errors.

This article will address two topics on multiscale
modeling of heterogeneous aluminum alloys. The
first topic focuses on developing the adaptive hier-
archical-concurrent multilevel modeling framework
for ductile fracture. It incorporates mechanisms of
damage nucleation by particle cracking, with sub-
sequent void growth and void coalescence. Hierar-
chical modeling is invoked for developing a
homogenization-based continuum rate-dependent
plasticity-damage (HCPD) model for regions exhib-
iting macroscopic homogeneity. The model zooms
down and introduces micromechanical modeling to
explicitly depict particle cracking and void growth
in regions of high macroscopic gradients. Compu-
tational adaptivity is necessary to account for con-
tinuous changes in the model as a consequence of
evolving microstructural deformation and damage.
Physics-based level change criteria control tran-
scending scales in the model.

The second topic discusses a nested dual-stage
homogenization method for microstructure-based
homogenized continuum plasticity (HCP) models of
cast aluminum alloys with large secondary dendrite
arm spacing (SDAS). Microstructures of these alloys
are characterized by inhomogeneous distribution of
inclusions along the dendrite cell boundaries (see
Fig. 10). Traditional single-step homogenization
methods are not suitable for these microstructures
due to the size requirements on RVEs. To circum-
vent this limitation, two distinct statistically
equivalent RVEs are identified, corresponding to
the inherent scales of inhomogeneity in the micro-
structure. Homogenization is performed in multiple
stages for each RVE identified. The nested two-
stage homogenization enables evaluation of the
overall homogenized model of the cast alloy from
limited experimental data, as well as material
properties of constituents like interdendritic phase
and pure aluminum matrix.

THE HIERARCHICAL-CONCURRENT
MULTISCALE MODELING FRAMEWORK

The multilevel framework for multiscale analysis
adaptively decomposes the heterogeneous compu-
tational domain Xhet into a set of nonintersecting
subdomains, denoted by level 0, level 1, level 2, and
level tr, i.e., Xhet = Xl0 [ Xl1 [ Xl2 [ Xtr. The sche-
matic of this hierarchy and domain decomposition is
shown in Fig. 1. The characteristics of the levels
may be delineated as follows:

� Level 0 corresponds to subdomain Xl0 of pure
macroscopic analysis.

� Level 1 corresponds to a swing subdomain Xl1

that assesses the appropriateness of macroscopic
analysis over pure micromechanical analysis.
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� Level 2 corresponds to subdomain Xl2 of pure
micromechanical analysis of extended microstruc-
tural images with no periodicity constraints.

� Level tr corresponds to transition subdomain Xtr

for interconnecting regions of homogeneous mac-
roscopic analysis with those of heterogeneous
microscopic analyses.Concurrent multiscale ana-
lysis requires that all subdomains Xl0, Xl1, Xl2,
and Xtr be coupled and solved simultaneously as
discussed in Refs. 11 and 22. The levels are
defined next.

Computational Subdomain Level 0 (Xl0)

The level 0 computational subdomain (Xl0) assumes
homogeneous macroscopic deformation and uses
constitutive models that are obtained from hierar-
chical multiscaling analysis. Hierarchical methods
such as FE2 methods7 solve the micromechanical
RVE or unit cell problem at every integration point of
the finite-element mesh in each time-increment to
obtain properties for macroscopic analysis. To over-
come the limitations of prohibitive computational
costs, Ghosh et al.20,26 have developed homogenized
elastic–plastic-damage constitutive laws by homog-
enizing the microscopic RVE response. The consti-
tutive models account for the effect of morphological
features and evolving microstructural mechanisms
through evolving, anisotropic homogenized parame-
ters. These reduced-order constitutive models are
computationally very efficient as they do not have to
account for the details of microstructural morphology
or solve the micromechanical RVE problem in every
step of an incremental process.

For macroscopic analysis of ductile failure in
porous viscoplastic materials with brittle inclusions,
Ghosh et al. have developed rate dependent/inde-
pendent HCPD models in Refs. 26–28. A sequence of
micromechanical analyses of the RVE (e.g., in
Fig. 2b) under different load histories are conducted
for this development. Parameters in the HCPD
models are calibrated to represent the effect of

morphology, as well as evolving microstructural
mechanisms. The anisotropic HCPD models have
the framework of the Gurson-Tvergaard-Needle-
man (GTN) models developed in Refs. 29–31. An
anisotropic plastic flow potential is introduced in an
evolving material principal coordinate system, for
which the parameters evolve as functions of plastic
work. Important steps in the development of the
HCPD model are discussed next.

Identification of the Statistically Equivalent Repre-
sentative Volume Element (SERVE)

A SERVE is the smallest, location-independent,
microstructural domain necessary for micromechan-
ical analysis leading to homogenization. The effective
material properties for the SERVE should equal those
for the entire microstructure. Methods of SERVE
identification from real micrographs have been
developed in Refs. 26–28. In this work, the multi-
variate marked correlation function M(r), which
relates any geometric or response field variable with
the microstructural morphology, is used to establish
the SERVE. In Ref. 26, M(r) has been calculated with
the micromechanical plastic work Wp as the mark. As
shown in Fig. 2a, M(r) stabilizes to near-unity values
at a characteristic radius of convergence r0, signifying
a correlation length. For r > r0, M(r) � 1 and the
local morphology ceases to have any significant
influence on the field variables beyond this charac-
teristic radial distance. The SERVE size is estimated
as LRVE � 2 9 r0, where r0 corresponds to the local
correlation length. For the cast aluminum alloy W319
microstructure in Fig. 2c the SERVE size has been
established in Ref. 28 as LRVE = 48 lm.

Homogenization-Based Continuum Plasticity-
Damage Constitutive Relations

The macroscopic HCPD model is established from
a micromechanical analysis of the SERVE using the
Hill-Mandel condition of homogeneity.32 This con-
dition states that for large differences in microscopic
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Fig. 1. An adaptive, two-way coupled multiscale analysis model: (a) RVE for constructing homogenized continuum models for level 0 analysis,
(b) a level 0 model with adaptive zoom-in, and (c) zoomed-in level 1, level 2, and transition subdomains.
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and macroscopic length scales, the volume-averaged
strain energy is obtained as the product of the vol-
ume-averaged stresses and strains in the RVE, i.e.,Z

XRVE

r�ij�
�
ijdX ¼ hr�ij��iji ¼ hr�ijih��iji (1)

where r�ij and ��ij are the equilibrated stress and
kinematically admissible strain fields in the micro-
structure, respectively; XRVE is the microstructural
SERVE volume; and hÆi is the Macaulay bracket.
Micromechanical analysis in the present work is
conducted by the locally enhanced Voronoi cell fi-
nite-element method or LE-VCFEM11 that is sum-
marized in the section ‘‘Computational Subdomain
Level 2 (Xl2) of Micromechanical Analyses.’’

The rate-dependent HCPD model for porous vi-
scoplastic materials containing brittle inclusions in
Refs. 27 and 28 is based on an anisotropic GTN
model framework. The homogenized Cauchy stress
rate is related to the elastic strain-rate tensor as:

R
:

¼ �C
e

: _ee ¼ �C
e
:ð _e� _epÞ (2)

where �C
e

is a homogenized fourth-order anisotropic
elasticity tensor. Elastic anisotropy is due to the
distribution of heterogeneities in the microstruc-
ture. The total homogenized strain rate is additively
decomposed into homogenized elastic and visco-
plastic parts as _e ¼ _ee þ _ep. �/ is an effective flow
potential, representing the stress-space loading
surface for the homogenized material with under-
lying matrix containing particulates and evolving
voids. Following the structure of GTN models in
Refs. 29 and 31, �/ is expressed in terms of the
hydrostatic Rhyd

� �
and deviatoric (Req) parts of the

homogenized Cauchy stress tensor as:

�/ ¼ Req

�rc

� �2

þ2Q1
�f cosh

3Q2

2

Rhyd

�rc

� �
� 1� ðQ1

�f Þ2 ¼ 0

(3)

where �f is the homogenized void volume fraction.
The parameters Q1 and Q2 are introduced in Ref. 26
to capture the effect of void interaction. The flow
potential in Eq. 3 exhibits anisotropy emanating
from two sources, viz. (I) dispersion of brittle
inclusions in the matrix and (II) evolution of dam-
age (voids) in the microstructure. Anisotropy is
accounted for through a homogenized equivalent
stress Req following the anisotropic yield function in
Ref. 33. Under plane strain condition, this is
expressed as:

R2
eq ¼ F Ryy � Rzz

� �2þG Rzz � Rxxð Þ2þH Rxx � Ryy

� �2þCR2
xy

(4)

All variables in Eqs. 3 and 4 are expressed in an
evolving, material-damage principal (MDP) coordi-
nate system. The anisotropy parameters F, G, H
and C have been found to be functions of the
evolving plastic work Wp in the SERVE in Ref. 26.
In Eq. 3, �rc corresponds to the averaged stress in
the material consisting of matrix and inclusions, but
without voids. The corresponding over-stress F in
the viscoplasticity flow rule34 is expressed as a
measure of the excess stress over the rate-inde-
pendent local yield strength, as:

�F ¼ �rc � Yf ðWpÞ (5)

where Yf is the rate-independent homogenized yield
strength of the underlying heterogeneous material
without voids, which depends on the plastic work
Wp. The homogenized viscoplastic strain-rate ten-
sor, normal to the loading surface �/ð �FÞ in the stress
space, is derived as:

_ep ¼ _K
@�/
@R
¼ ð1�

�f Þrc

R: @
�/

@R

C0Uð �FÞ @
�/

@R
(6)
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Fig. 2. (a) Marked correlation function for a cast aluminum alloy micrograph showing convergence to the SERVE size, (b) micrograph of a cast
aluminum alloy W319 (192 lm 9 192 lm) showing dendritic regions, and (c) typical SERVE of the microstructure in (b) obtained for a char-
acteristic size of 48 lm (Micrograph: Courtesy Ford Research Laboratory).
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The homogenized viscoplastic multiplier _ is ob-
tained by enforcing the Hill-Mandel condition.32 To
is a temperature-dependent viscosity coefficient and
the function is assumed to be ð �FÞ ¼ h �FiP. Finally,
the evolution equations for the homogenized plastic
work Wp, yield stress Yf, and void volume fraction �f
are expressed as:

Wp

:

¼ R: _ep;Yf

:

¼ @Yf

@Wp
Wp

:

; _�f ¼ _�f growth þ _�f nucleation

(7)

where _�f growth ¼ ð1� �f Þ _ep
kk. The homogenized void

nucleation rate _�f nucleation follows directly from the
inclusion cracking statistics in the underlying
microstructural SERVE.

A strain-based homogenized void nucleation
model is developed in Ref. 28, accounting for the
effects of the underlying microstructural morphol-
ogy and rate dependency. It invokes the Weibull
statistics-based probability function that is used to
initiate inclusion cracking in Eq. 12. The macro-
scopic nucleation probability function �Pfrag is writ-
ten in terms of the homogenized strain tensor and
its rate, as well as the particulate size v as:

�Pfragðv; ê; _̂eÞ ¼ 1� exp � v

v0

ê

e0ð _̂eÞ

 !mð _̂eÞ
2
4

3
5 (8)

where e0 and m are the Weibull parameters and v0 is a
reference volume. The Weibull parameters are deter-
mined to be functions of an effective strain rate _̂e,
where ê ¼ hAðhpÞe1 þ BðhpÞe2 þ CðhpÞe3i is an effec-
tive strain measure in terms of the macroscopic prin-
cipal strains ei. The coefficients A, B, and C are
functions of direction of the maximum principal
strain. The area fraction of cracked inclusions for a
given strain rate is expressed in terms of the proba-
bility density function of the inclusion size p(v) and the
probability of inclusion fragmentation �Pfragðv; ê; _̂eÞ.
For a discrete size distribution in a finite-sized
SERVE, the area fraction is expressed as:

qcðê; _̂eÞ ¼
XN
i¼1

vi

v0
pðviÞ 1� exp � vi

v0

ê

e0ð _̂eÞ

 !mð _̂eÞ
2
4

3
5

0
@

1
A

(9)

N is the number of discrete inclusion sizes vi in the

probability density function pðvÞ ¼
PN
i¼1

dðv� viÞpðviÞ,

where dðv� viÞ is the Dirac delta function. To ac-
count for variations in strain rates, the rate of evo-
lution of the area fraction of cracked inclusions q is
assumed to be governed by the relation:

_q ¼ ~k?
dqcðê; _̂eÞ

dê
_̂e; for ~k? ¼

~k if ~k � 1
0 if ~k < 1

�
(10)

with ~k ¼ 1�q
1�qcðê; _̂eÞ

. The factor ~k? accounts for the
instantaneous change in strain rate. The

homogenized void nucleation law in Eq. 7 is then
expressed as:

_�f nucleation ¼ Vp _q (11)

Vp is a material parameter that relates the homog-
enized nucleated void volume fraction to the area
fraction of cracked inclusions. The HCPD constitu-
tive model developed here is used for simulating the
material in level-0 computational subdomain Xl0.

Level-1 Computational Subdomain Xl1: A
Swing Region

The level-1 computational subdomain Xl1 is an
intermediate, ‘‘swing’’ level that is used to assess whe-
ther a switchover is necessary from macroscopic ana-
lysis in level-0 subdomains to micromechanical
analysis in level-2 subdomains. This subdomain is
adaptively seeded in regions where macroscopic vari-
ables in level-0 simulations have locally high gradients
of key variables. Level-1 subdomains utilize asymptotic
expansion and SERVE periodicity3,4,11 to decouple the
macroscopic and micro-SERVE problems for analyzing
macroscopic and microscopic variables. Macroscopic
finite-element analysis is done using the HCPD con-
stitutive model, whereas micromechanical analysis of
the SERVE, e.g., in Fig. 2c, is conducted with periodic
boundary conditions and applied strain �e from macro-
scopic analysis. Subsequently, adaptivity criteria (e.g.,
violation of boundary periodicity) are developed to
decipher a transition from level-1 to level-2 elements.

Computational Subdomain Level 2 (Xl2) of
Micromechanical Analyses

Level-2 computational subdomains X12 of pure
micromechanical analysis are regions with an im-
age-based representation of microstructural heter-
ogeneities as shown in Fig. 9. This subdomain
adaptively replaces X11 in the multilevel computa-
tional domain. For an accurate and efficient micro-
mechanical analysis, Ghosh developed the powerful
VCFEM.11 Morphological nonuniformities in dis-
persions, shapes and sizes of micrographs are
readily modeled by this method. The method has
been extended to the locally enhanced VCFEM (LE-
VCFEM) in Ref. 35, to model stages of ductile frac-
ture from particle fragmentation to matrix cracking
due to void nucleation, growth and coalescence. In
LE-VCFEM, the stress-based hybrid VCFEM for-
mulation is adaptively altered in regions of localized
plastic flow with finite deformation, displacement-
based element formulation to accommodate strain
softening. LE-VCFEM has been demonstrated to be
very effective for simulating both rate-indepen-
dent35 and rate-dependent plasticity.22,36,37

The particulate phase in each Voronoi cell ele-
ment is assumed to be isotropic, linear elastic.
Instantaneous cracking and fragmentation com-
mences when a size-dependent Weibull probability
function Pfrag exceeds a critical value.
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Pfragðv; rc
IÞ ¼ 1� exp � v

v0

rc
I

rw

� �m� �
(12)

where m and rw are the Weibull modulus and charac-
teristic strength, respectively; v0 is a reference volume;
v is the inclusion size; and rc

I is the maximum principal
stress in the inclusion. The matrix phase in Ref. 36 is
modeled as a rate-dependent elastic-viscoplastic por-
ous material with void evolution, following the GTN
model. The viscoplastic behavior of the porous ductile
matrix is governed by the GTN yield function as:

/vp ¼ q

�rM

� �2

þ2f �q1 cosh � 3q2p

2�rM

� �
� 1þ q3f �2
� �

¼ 0

(13)

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 r0 : r0

q
and p ¼ � 1

3 r : I are the Von-Mises
equivalent stress and the hydrostatic pressure,
respectively; r0 is the deviatoric stress; and q1, q2,
and q3 are void growth-related parameters. f* is a
function of the void volume fraction f that is ex-
pressed in Eq. 20. The subscript M is used to des-
ignate association with the pure matrix material
without voids and �rM is the equivalent matrix
stress. For the viscoplastic behavior, the overstress
function FM in Ref. 34 is expressed as:

FM ¼ �rM � r0ðWpÞ (14)

The plastic strain rate for the porous matrix is
governed by the associated flow rule and is function
of the overstress MðFMÞ, expressed in Ref. 36 as:

_�p ¼ _k
@/vp

@r
¼ ð1� f Þ

ffiffiffi
2

3

r
�rM

r: @
vp

@r

cMðFMÞ
@vp

@r
(15)

_k is a viscoplastic multiplier that is derived in terms
of the matrix plastic strain rate _�pM and c is a tem-
perature-dependent viscosity coefficient. A power
law expression is chosen for MðFÞ ¼ hFMip. A linear
hardening law governs the evolution of the yield
strength r0, expressed as:

_r0 ¼ hðWpÞ_��pM; where _��pM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_�pM:_�pM

r
¼

ffiffiffi
2

3

r
c MðFMÞ

(16)

where h(Wp) is the instantaneous plastic modulus.
The rate of evolution of the local void volume fraction
f is divided into growth and nucleation parts30,31 as:

_f ¼ _fgrowth þ _fnucleation where

_fgrowth ¼ ð1� f Þ_�pkk and

_fnucleation ¼ A ��pM
� �

_��pM; A ��pM
� �

¼ fN

sN

ffiffiffiffiffiffi
2p
p

exp � 1

2

��pM � �N
sN

� �2
" #

(17)

where �N is the mean nucleation strain, sN is its
standard deviation, and fN is the intensity of void
nucleation. To avoid mesh sensitivity in LE-
VCFEM, a material length scale has been incorpo-
rated in Refs. 35 and 36 through a nonlocal model.
The nonlocal growth rate of void volume fraction at
a material point �x is given as:

_f nonlocal ¼ 1

WðxÞ

Z
Xm

_f ðxÞw jx� xjð ÞdX (18)

where

WðxÞ ¼
Z

Xm

wðjx�xjÞdX and wðjxjÞ ¼ 1

1þðjxj=LÞp
� �q

(19)

where p = 8, q = 2, and L > 0 is a material char-
acteristic length. The weighting function w(|
x|) = 1 at | x| = 0, w(| x|) = 0.25 at |x| = L and
wðjxjÞ ! 08jxj> L. Finally, an acceleration function
f* is introduced in Eq. 13 to model the complete loss
of material stress carrying capacity due to void
coalescence31 as:

f � ¼
f f � fc

fc þ f �u�fc

ff�fc
ðf � fcÞ f > fc

�
(20)

fc is the critical void volume fraction at which void
coalescence first occurs and ff is the value at final
failure. As the void volume fraction f fi ff, the
acceleration function f � ! f �u ¼ 1=q1. To avoid
numerical difficulties, f fi 0.95ff is used in Eq. 20,
at which f is frozen, which implies local ductile
material failure.

Computational Subdomain Level tr (Xtr) for
Interfacing Macroregions and Microregions

The transition level-tr of sub-domain Xtr is sand-
wiched between elements in level-0/level-1 and le-
vel-2 subdomains and facilitates a smooth transition
of scales across the disparate element boundaries.
Elements in Xtr are essentially level-2 elements that
have compatibility and traction continuity con-
straints imposed on their interface with level-0/
level-1 elements. A relaxed, displacement-constraint
method is incorporated in Refs. 11 and 20, where a
weak form of the interface displacement continuity
is enforced by using Lagrange multipliers.

ADAPTIVITY AND COMPUTATIONAL LEVEL
CHANGE CRITERIA

The adaptive multilevel model needs robust cri-
teria for level-0 mesh refinement, as well as for level
transitions from macroscopic to microscopic scales
with evolving deformation. Physics-based criteria
are selected to drive the adaptation process as
shown in Fig. 3.
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Mesh Refinement for Level-0 Elements

Adaptive mesh refinement by h-adaptation or ele-
ment subdivision38 in Fig. 3a, is conducted to reduce
the discretization error associated with critical vari-
ables in level-0 elements. It also identifies regions of
modeling error by zooming in on regions with evolv-
ing gradients. The adaptation criterion is formulated
as: Refine element e in Xl0 if the traction jump error
across the element boundary satisfies the condition:

Etj
e � C1 max

e
Etj

e

� �
where Etj

e

� �2¼
R
@Xe
ð½½Tx��2 þ ½½Ty��2Þd@XR

@Xe
d@X

(21)

The factor C1 < 1 is chosen from numerical experi-
ments. Tx and Ty are the boundary traction compo-
nents in x and y directions, and [[Æ]] is the jump
operator across the element boundary @Xe.

Criteria for Switching from Level-0 to Level-1
Elements

The transition from level-0 to level-1 elements is
aimed at identifying regions of departure from ho-
mogenizability due to the intense local deformation
and high gradients. For problems involving ductile
deformation and damage, localization of macro-
scopic void volume fraction is an indicator of this
departure. The transition of an element e 2 Xl0 to
e 2 Xl1 is conditioned on the criterion:

Egdf
e f ?e � C2Egdf

max f ?max (22)

where f ? ¼ �f��f0
�f0

is the normalized void volume frac-
tion with respect to the initial void volume fraction
�f0. In Eq. 22, Egdf

e is the norm of the local gradient of

f ? expressed as Egdf
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@f ?e
@x

2 þ @f ?e
@y

2
q

. The quantities

f ?max and Egdf
max are the maximum values of all f ?e and

Egdf
e . C2 < 1 is a prescribed factor determined from

numerical experiments. The gradient of f ? is com-
puted by first interpolating over a patch of elements
by the super-convergent patch recovery (SPR)
method in Ref. 38.

Criteria for Switching from Level 1 to Level 2
Elements

Transition from level 1 to level 2 is activated for
elements that fail the macroscopic uniformity and
RVE periodicity tests. Level 1 elements already
correspond to those for which macroscopic nonuni-
formity has been established. Subsequently, depar-
ture from RVE periodicity is used as an indicator for
a switch from level 1 to level 2 elements. The
switching criterion is quantified as:

TRapt
e ¼

PNSGPR
i¼1

R
Ci
jtiþ

x þ ti�
x jiþ jtiþ

y þ ti�
y jj


 �
dC

���
���

maxe

PNSEG
i¼1

R
Ci
jti

xjiþ jti
yjj


 �
dC

���
���

(23)

NSGPR is the number of boundary segment-pairs
for each SERVE (shown in Fig. 2c) over which the
stresses should be antiperiodic and NSEG is the
total number of boundary segments on the SERVE.
Tractions t with superscripts + and � in the
numerator correspond to those on the segment pairs
with antiperiodicity conditions. The numerator is a
measure of the residual traction violating the an-
tiperiodicity condition. The denominator corre-
sponds to the maximum value of the absolute sum of
all traction measures in all the SERVEs of level 1
elements. TRapt

e provides a measure of the lack of
antiperiodicity of boundary tractions, since
TRapt

e ¼ 0 if and only if the boundary tractions are
anti-periodic. A level 1 element e in Xl1 is switched
to a level 2 microscopic element if:

TRapt
e � C3 (24)

where C3 < 1 is a constant determined from
numerical experiments. In addition, the level 0/
level 1 to level 2 switching criterion is also activated
for elements undergoing significant damage
according to the criterion:

qe � qcrit 8e 2 Xl1 (25)

where qe is the area fraction of cracked inclusions in
the SERVE of level 1 element e. A value of qcrit ¼ 0:1

Fig. 3. Mesh and model adaptivity in multiscale analysis of a notched specimen loaded in tension (a) local mesh refinement by criterion (Eq. 21),
Ref. 41 (b) evolution of levels [level 0 (turquoise), level 1 (blue), level 2/tr (red), and sealed elements (black)] using criteria (Eqs. 22, 24, and 25),
and (c) contour plot of the microscopic stress component in the tension direction.
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significantly reduces the sensitivity of the solution
to the parameter C3 in Eq. 24. Figure 3b and c
shows the evolution of the model and stress evolu-
tion by the adaptive criteria.

NUMERICAL STUDIES

Numerical studies are undertaken to (I) calibrate
the level-change criteria and validate the multiscale
model, and (II) examine its capability for a realistic
problem of multiscale ductile fracture.

Validation of Multilevel Model and Level-
Change Criteria

The problem considered is a square plate with a
square hole in its center with dimensions shown in
Fig. 4a. Only one quarter of the plate is modeled,
and appropriate symmetry boundary conditions are
prescribed. In addition to the symmetry boundary
conditions, a prescribed displacement DUA is ap-
plied in the x direction on the left edge (x = 0) of the
plate. The bottom of the plate (y = 0) is free of any
prescribed displacement, and no traction boundary
conditions are applied. Constitutive parameters
used for silicon particles and aluminum matrix in
the micromechanical LE-VCFEM analysis are listed
in Table I. The plastic hardening behavior of pure
aluminum matrix (without voids or inclusions) is
plotted in Fig. 4d.

Three types of solutions are considered in this
example. First, the reference solution is obtained by
solving a complete micromechanical analysis for the
entire plate. In this simulation, all elements are level
2 containing the SERVE microstructure of Fig. 4c. In
the next simulation, all elements are level 1 with an
FE2 structure. Contour plots of TRapt

e are shown in
Fig. 5a for an applied displacement of UA = –2.6 lm.
A comparison of Fig. 5a with the evolution of micro-
structural deformation and damage in level 2 ele-
ments of the reference solution in Fig. 5b
demonstrates that TRapt

e successfully identifies re-
gions of macroscopic nonuniformity. Subsequent

tests are conducted with the concurrent multilevel
(level 0 fi level 1 fi level 2) model to determine
the values of C3 and qcrit in Eqs. 24 and 25, respec-
tively. Figure 5c shows the contour plots of rxx for
multilevel analysis with C3 = 0.10 and qcrit = 0.10.
Good agreement is found between the multilevel and
micromechanical analysis results in Fig. 5b that
validate the accuracy of the multiscale algorithm.

The multilevel model is solved for the boundary
value problem of a cast aluminum alloy in Fig. 4. The
microstructure of the plate is shown in the micro-
graph of Fig. 4b. Figure 5d and e shows the contour
plots of the microscopic stress rxx for an applied
displacement UA = �4.32 lm simulated by the
adaptive concurrent multilevel model with C3 = 0.10
and q > 0.10 (Fig. 5d), and a micromechanical LE-
VCFEM model (Fig. 5e). The results agree very well,
which confirms the effectiveness of the multilevel
model in predicting ductile fracturing.

The results of another ductile fracture example
with the same macroscopic L-shaped domain are
shown in Fig. 6. However the microscopic SERVE
is a unit cell comprising a single silicon inclusion of
volume fraction Vf = 10%, aspect ratio a = 2.0,
embedded in a square aluminum matrix region.
Material parameters are the same as for the pre-
vious example with the following exceptions:
rw = 300 MPa, v0 = 230.4 lm2, Pcr

frag ¼ 95%, and
�N = 0.10. The domain is subjected to prescribed
boundary conditions: Ux = — DU at y = 576 lm,
Ux = 0 at x = 576 lm, and Uy = 0 at (x,
y) = (576 lm, 0), where DU is incremented until
fracture occurs. Figure 6b shows the evolved
multilevel mesh at the end of the loading se-
quence. At failure, the level 2 element is replaced
by a failed macroscopic element (black elements in
Fig. 6b). Figure 6a shows a comparison of the total
reaction force per unit length at the edge
x = 576 lm as a function of the applied displace-
ment Ux by the multilevel and micromechanical
simulations. A very good match is obtained be-
tween the two models. Each drop in the multilevel

(a) (b) (c)

0 0.5 1 1.5 2 2.5 3 3.5 4
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0.2
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0.4
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(d)

εM
p

σ 0 (
G

P
a)

Hardening curve for
pure aluminum matrix

Fig. 4. (a) Geometry of the square plate with a center square hole, with symmetry boundary conditions; (b) underlying microstructure taken from
a micrograph of W319 cast aluminum alloy; (c) SERVE (48 lm 9 48 lm); and (d) stress–strain behavior of the aluminum matrix used in LE-
VCFEM simulations.
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model results from failure of the underlying level
2 microstructure. Contour plots of equivalent
plastic strain ��pM by the two methods at final
fracture in the Fig. 6c and d show concurrence in
predicting the ductile crack path. This example
further demonstrates the accuracy of the multi-
level model for solving the multiscale ductile
fracture problems.

Multiscale Simulation of Ductile Failure in a
Cast Aluminum Bar

The multilevel model is now applied for multi-
scale ductile fracture analysis of an Al-Si-Mg cast
aluminum alloy W319 rectangular bar, for which the
micrograph is shown in Fig. 2b. It comprises an age-
hardened ductile aluminum matrix, strengthened

Table I. (a) Inclusion elastic and cracking properties and (b) aluminum matrix elastic, plastic, and void
evolution properties used in LE-VCFEM simulations

(a)

E (GPa) t rw (MPa) m v0 (lm2) Pcr
frag (%)

165 0.27 680 2.4 8.29 55

(b)

E (GPa) t c0 (GPa21 s21) p fo fc ff �N sN fN

70 0.35 8.086 1 0.01 0.15 0.25 0.2 0.075 0.08

(a) (b) (c) (d) (e)

0.300

0.225

0.150

0.075

0.000

Fig. 5. Contour plots of: (a) TRapt
e in a macroscopic level 1 simulation indicating departure from traction antiperiodicity, (b) rxx (GPa) for a fully

microscopic level 2 simulation, and (c) rxx (GPa) at multilevels of the concurrent multiscale model with C3 = 0.10 and q > 0.10, all for
UA = �2.6 lm. Micromechanical stress rxx (GPa) contours for the complex microstructure by (d) adaptive multilevel simulation and (e) fully
micromechanical simulation.
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Fig. 6. (a) Comparison of the total reaction force per unit length F/L at x = 576 lm as a function of applied displacement Ux by multilevel and
micromechanical analyses. (b) Evolved adaptive multilevel mesh at the end of simulation [level 0 (turquoise), level 1 (blue), level 2 and level tr
(red), and failed elements (black)]. Contour plot showing the equivalent plastic strain and final crack path by (c) multilevel model and (d)
micromechanical model.
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by Mg/Si and a dispersion of brittle Si particulates.
Dimensions of the rectangular computational do-
main are: 384 lm 9 1,536 lm. A high-resolution
microstructure of the alloy is mapped on the rect-
angular specimen following the procedures in Ref. 25.

The multilevel model is initiated with a level-0
computational domain Xl0 for the entire bar and
then discretized into 256 elements as shown in
Fig. 8. The HCPD model developed uses a SERVE of
size 48 lm shown in Fig. 2c. The parameters for
the rate-dependent HCPD model were calibrated in
Ref. 28.

The evolution of yield strength Yf (Wp) in Eq. 5)
and parameters e0 and m in Eq. 8 are shown in
Fig. 7. The homogenized viscoplastic parameters
C0 = 6.13 GPa�1s�1 and P = 1, and the parameters
in Eq. 3 are Q1 = 1.89 and Q2 = 1.01.

The tension specimen is simulated for uniaxial
tension using the boundary conditions: Uy = DU at
y = 1536 lm, Uy = 0 at y = 0, (Ux = 0 at (x,
y) = (0,0). In Refs. 36 and 37, it was established that
regions of high local inclusion volume fraction and
clustering have low ductility. A function ~f of the
inclusion volume fraction Vf and cluster contour
index i is given as:

~f ¼ i
0:929� 1:83Vf

(26)

is a very good indicator of local ductility. Prior to the
multiscale analysis, ~f is computed for the local
microstructure of each of the 256 level- 0 elements,
and six critical elements (regions) are identified as
hot spots for premature nucleation of ductile cracks.
Correspondingly, in a concurrent setting, these are
modeled as level 2 elements from the start. The
remainder of all elements in the initial multilevel
mesh are level 0 as shown in Fig. 8a. With increasing
deformation, nonuniformities arise in the micro-
scopic subdomains Xl2 due to cracking of silicon
inclusions and plastic deformation of the aluminum
matrix, thus altering the initial homogeneity of the
macroscale stress and strain fields. This leads to high
gradients in the void volume fraction �f that switch
the surrounding level 0 elements to level 1 elements,
and subsequently precipitates level 2 elements in
these regions. This adaptive transition of macro-
scopic to microscopic elements, shown in Fig. 8,
continues with the evolution of damage primarily in a
direction perpendicular to the applied load. These
microscopic elements in Xl2 coalesce with the evolv-
ing ductile deformation and damage. The contour
plot of microscopic ryy at the onset of local failure is
given in Fig. 8h, and an image of the underlying
microstructure is shown in Fig. 8g. The contour plots
of microscopic void volume fraction and equivalent
plastic strain for the newly failed elements are shown
in Fig. 9. These plots clearly demonstrate that a
dominant ductile crack has propagated through the
level 2 microstructure.

DUAL-STAGE NESTED HOMOGENIZATION
FOR RATE-DEPENDENT HCP MODEL OF
DENDRITIC CAST ALUMINUM ALLOYS

This section discusses the development of a spe-
cial homogenization process that is very effective for

(a)

(b)

(c)
Fig. 7. Evolution of (a) yield stress in shear Yf with plastic work, and
(b) e0 and (c) m with local strain rate _̂e.
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microstructures characterized by disparate distri-
bution of heterogeneities, as shown for a cast alu-
minum alloy with large SDAS in Fig. 10. The
distribution of silicon inclusions along the dendrite
cell boundaries delineates two distinct material

phases viz. (I) a heterogeneity-free pure aluminum
matrix and (II) an interdendritic phase (IDP) in
which silicon inclusions are dispersed in the alu-
minum matrix. The spatial distribution of inclu-
sions is characterized by the secondary dendrite
arm spacing, which for this microstructure is
	30 lm. Traditional single-step homogenization
methods are not suitable for this type of micro-
structure due to the discrepancy of scales. A single
RVE for the microstructure containing dendrites
and IDPs may lead to dimensions exceeding the
available micrograph and contain a large number of
heterogeneities. This makes their simulation com-
putationally prohibitive.

To circumvent this limitation, a dual-stage nested
homogenization method was developed in Ref. 27 for
developing microstructure-based HCP models. It
takes advantage of the inherent scales of heteroge-
neity in the microstructure and eliminates the need
for micromechanical analyses of a large, single RVE
for the entire microstructure. Instead, it identifies
multiple SERVEs, corresponding to the scales of
microstructural heterogeneity. Two scales of heter-
ogeneity are associated with the microstructure in
Fig. 10. They are: (I) the length scale (ms-1) of intra-
IDP Si inclusions in the aluminum matrix in
Fig. 10b and (II) the length scale (ms-2) of dendrite
cells in Fig. 10a associated with the larger scale of
pure aluminum dendrites and the IDPs. The nested
homogenization process to determine the macro-
scopic rate-dependent, anisotropic HCP model is
performed in multiple stages for SERVEs at each
scale. The process enables the evaluation not only of
the overall homogenized constitutive model param-
eters from limited experimental data but also of the
constituent material parameters e.g., for interden-
dritic phase and pure aluminum.

Two methods are invoked sequentially in the
nested homogenization model of Fig. 12.

(a) (b) (c) (d) (e) (f) (g) (h)

0.400

0.300

0.200

0.100

0.000

Fig. 8. Evolution of the adaptive multilevel mesh for the multiscale analysis of a rectangular specimen loaded in tension, at: (a) U = 0, (b)
U = 7.8 lm, (c) U = 10.3 lm, (d) U = 13.2 lm, (e) U = 13.5 lm, (f) U = 13.7 lm [Legend: level 0 (turquoise), level 1 (blue), level 2 and level tr
(red), and sealed elements (black)]. (g) Underlying microstructure of the level 2 elements in the multilevel mesh and (h) contour plot of
microscopic stress ryy (GPa) for the computational domain of the tensile specimen at an applied displacement Uy = 13.0 lm.
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Fig. 9. Contour plots showing the final crack path at complete failure
of the first level 2 element during the multiscale simulation: (a) void
volume fraction f and (b) equivalent plastic strain ��pM.
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Fig. 10. (a) Micrograph of a cast aluminum alloy AS7GU
(120 lm 9 96 lm) and (b) blow-up of the designated region in (a)
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Asymptotic Expansion-Based Homogenization
(AEH) of ms-1 Intra-IDP SERVEs

This stage develops an effective HCP constitutive
model for the IDP region shown in Fig. 10b by
using AEH.4,26,28 The microscale problem involves

identification of a SERVE and subsequent micro-
mechanical analyses with LE-VCFEM).35,36

Parameters of the HCP model are calibrated from
homogenization of evolving variables in the
SERVE of Fig. 11.

(a) (b) (c)

W

w

Hh

a

b

(d)
Fig. 11. (a) Micrograph of the microstructural interdendritic IDP domain (scale 2.5 lm), (b) a VCFEM model of the SERVE in the IDP domain for
asymptotic homogenization, (c) simulated micrograph of Fig. 10a (scale 50 lm) showing the distribution of pure aluminum matrix (black) and
interdendritic (white) phases, (d) FEM model for the self-consistent homogenization: pure matrix (black), interdendritic phase (white), and
homogenized overall material (gray).
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Fig. 12. (a) Schematic flow chart of the nested two-stage homogenization method for large SDAS cast aluminum alloys. (b) Comparison of the
self-consistent responses of the pure matrix, interdendritic phase, and the overall cast aluminum alloy in compression.
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Self-Consistent Homogenization (SCH) of ms-2
Microstructure Containing Dendrites and
IDPs

This stage generates an effective HCP constitu-
tive model for the overall alloy microstructure,
containing dendritic cells of aluminum matrix and
inclusion-rich IDP regions shown in Fig. 11c, by a
self-consistent scheme that equilibrates a repre-
sentative dendrite cell and its neighboring IDP in
the overall microstructure. Self-consistent models
assume no spatial correlation at the microstructural
scale and admit complete scale separation. Each
heterogeneity views the rest of the medium as a
homogeneous material in Fig. 11d, having yet
undetermined macroscopic properties.39

A schematic of the nested dual-stage homogeni-
zation scheme, implementing AEH and SCH is
shown in Fig. 12a. The homogenization scheme is
applied to calibrate material parameters and model
the mechanical response of the cast aluminum alloy
of Fig. 10 having a SDAS of 30 lm. The experi-
mental data for compression tests are generated40

and the stress–strain plot is shown in Fig. 12b. The
figure also compares the respective responses of the
pure matrix and interdendritic phases with the
overall response of the cast alloy in compression. An
excellent match is observed between the experi-
mental data and the simulated results. A number of
other satisfactory validation tests were conducted in
Ref. 27.

CONCLUSION

This article assimilates a variety of complemen-
tary ingredients to create an adaptive hierarchical-
concurrent multiscale modeling framework neces-
sary for modeling ductile fracture in heterogeneous
metals and alloys. Two relevant topics are reviewed
in this article. The first topic discusses major
ingredients of the adaptive hierarchical-concurrent
multiscale framework. The adaptive capability en-
ables this top-down coupling for the evolutionary
problems in an automatic fashion. Numerical sim-
ulations show that damage initiation and growth
can be effectively captured by the model without the
introduction of any artificial discontinuity or defect.
The multilevel adaptive model imparts the neces-
sary efficiency that is essential to conduct such
large-scale computations. Few models in the litera-
ture represent the concurrent setting to manifest
localization of deformation and damage within the
microstructure. An unique feature is the incorpo-
ration of detailed microstructural information ac-
quired from micrographs. While the framework in
this article is developed for alloys containing a dis-
tributions of precipitates, the methods are easily
adapted to the analysis and design of a larger class
of metal-matrix composites with micron-size parti-
cles/fibers and interparticle spacing.

The second topic introduces a novel two-stage
homogenization scheme to develop homogenized

constitutive models for microstructures exhibiting
large-scale discrepancies, e.g., in cast aluminum
alloys with SDAS. The method is based on the
inherent scales of inhomogeneity in the micro-
structure, thus overcoming limitations associated
with one-step homogenization techniques. It en-
ables evaluation not only of the overall homogenized
model parameters of the cast alloy from experi-
mental data but also of constituents, such as inter-
dendritic phase, aluminum matrix, and Si
inclusions. The multiscale evaluation of multima-
terial properties is a unique feature that can provide
a significant advantage with limited experimental
data at fewer scales.
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