Skip to main content
Log in

Role of the Arabidopsis calcineurin B-like protein-interacting protein kinase CIPK21 in plant cold stress tolerance

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The Arabidopsis calcineurin B-like protein-interacting protein kinase CIPK21 gene (AtCIPK21) plays important roles in cell metabolism, plant development, and abiotic stress responses. However, the function of the AtCIPK21 gene in cold stress tolerance in plant cells is not fully understood. In this study, we use cell cultures of three plant species including rice (Oryza sativa L.), cotton (Gossypium hirsutum L.), and white pine (Pinus strobus L.), as well as Agrobacterium tumefaciens strain GV3101 harboring pBI-AtCIPK21 to generate transgenic cell lines. After confirmation of integration of the AtCIPK21 gene into the genome by polymerase chain reaction (PCR), southern blotting, and northern blotting analyses, the rice, cotton, and pine AtCIPK21 transgenic cell lines were used to examine cold stress tolerance. The experimental results demonstrated that overexpression of the AtCIPK21 gene enhanced cold stress tolerance of transgenic cells by increasing cell viability and cell growth rate, decreasing lipid peroxidation and ion leakage, increasing the content of polyamines, as well as elevating the activity of antioxidative enzymes. In rice cells, AtCIPK21 increases expression of Ca2+-dependent protein kinase (CPK) genes and mitogen-activated protein kinase (MAPK) genes under cold stress. These results indicated that overexpression of the AtCIPK21 gene in plant cells improved cold stress tolerance by elevating polyamines content, antioxidative enzyme activity, and expression of CPK genes and MAPK genes. Overexpression of the AtCIPK21 gene may be a valuable approach for engineering plant cold stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adak S, Datta AK (2005) Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: a novel role of the transmembrane domain. Biochem J 390:465–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS (2018) Mechanism of stomatal closure in plants exposed to drought and cold stress. Adv Exp Med Biol 1081:215–232

    CAS  PubMed  Google Scholar 

  • Ahmed KZ, Sagi F (1993) Culture of and fertile plant regeneration from regenerable embryogenic suspension cell-derived protoplasts of wheat (Triticum aestivum L.). Plant Cell Rep 12:175–179

    CAS  PubMed  Google Scholar 

  • Arimura G, Sawasaki T (2010) Arabidopsis CPK3 plays extensive roles in various biological and environmental responses. Plant Signal Behav 5:1263–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Roychoudhury A, Sengupta DN (2014) Deciphering the role of various cis-acting regulatory elements in controlling SamDC gene expression in rice. Plant Signal Behav 9:e28391

    PubMed  PubMed Central  Google Scholar 

  • Beier MP, Obara M, Taniai A, Sawa Y, Ishizawa J, Yoshida H, Tomita N, Yamanaka T, Ishizuka Y, Kudo S, Yoshinari A, Takeuchi S, Kojima S, Yamaya T, Hayakawa T (2018) Lack of ACTPK1, an STY kinase, enhances ammonium uptake and use, and promotes growth of rice seedlings under sufficient external ammonium. Plant J 93:992–1006

    CAS  PubMed  Google Scholar 

  • Boisson AM, Gout E, Bligny R, Rivasseau C (2012) A simple and efficient method for the long-term preservation of plant cell suspension cultures. Plant Methods 8:4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Magwanga RO, Xu Y, Zhou Z, Wang X, Hou Y, Wang Y, Zhang Y, Liu F, Wang K (2019) Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi. AoB Plant 1:17

    Google Scholar 

  • Chan Z, Shi H (2015) Improved abiotic stress tolerance of bermudagrass by exogenous small molecules. Plant Signal Behav 10:e991577

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Huang Q, Zhang F, Wang B, Wang J, Zheng J (2014) ZmCIPK21, a maize CBL-interacting kinase, enhances salt stress tolerance in Arabidopsis thaliana. Int J Mol Sci 15:14819–14834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Correa-Aragunde N, Foresi N, Lamattina L (2015) Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J Exp Bot 66:2913–2921

    CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    PubMed  PubMed Central  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    CAS  PubMed  Google Scholar 

  • de Marcia OBM, Iyer PR, Buanafina MF, Shearer EA (2017) Reducing cell wall feruloylation by expression of a fungal ferulic acid esterase in Festuca arundinacea modifies plant growth, leaf morphology and the turnover of cell wall arabinoxylans. PLoS ONE 12:e0185312

    Google Scholar 

  • Dekanski D, Janicijevic-Hudomal S, Ristic S, Radonjic NV, Petronijevic ND, Piperski V, Mitrovic DM (2009) Attenuation of cold restraint stress-induced gastric lesions by an olive leaf extract. Gen Physiol Biophysics 28 Spec No:135–142

  • Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G (2013a) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS ONE 8:e69881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng X, Zhou S, Hu W, Feng J, Zhang F, Chen L, Huang C, Luo Q, He Y, Yang G, He G (2013b) Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol Plant 149:367–377

    CAS  PubMed  Google Scholar 

  • Dirks-Hofmeister ME, Kolkenbrock S, Moerschbacher BM (2013) Parameters that enhance the bacterial expression of active plant polyphenol oxidases. PLoS ONE 8:e77291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faltin Z, Holland D, Velcheva M, Tsapovetsky M, Roeckel-Drevet P, Handa AK, Abu-Abied M, Friedman-Einat M, Eshdat Y, Perl A (2010) Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation. Plant Cell Physiol 51:1151–1162

    CAS  PubMed  Google Scholar 

  • Geng S, Li A, Tang L, Yin L, Wu L, Lei C, Guo X, Zhang X, Jiang G, Zhai W, Wei Y, Zheng Y, Lan X, Mao L (2013) TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice. J Exp Bot 64:3125–3136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez Bosc LV, Plomaritas DR, Herbert LM, Giermakowska W, Browning C, Jernigan NL (2016) ASIC1-mediated calcium entry stimulates NFATc3 nuclear translocation via PICK1 coupling in pulmonary arterial smooth muscle cells. Amer J Physiol Lung Cell Mol Physiol 311:L48–58

    Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    CAS  PubMed  Google Scholar 

  • Guan X, Nikolau BJ (2016) AAE13 encodes a dual-localized malonyl-CoA synthetase that is crucial for mitochondrial fatty acid biosynthesis. Plant J 85:581–593

    CAS  PubMed  Google Scholar 

  • Gundinger T, Spadiut O (2017) A comparative approach to recombinantly produce the plant enzyme horseradish peroxidase in Escherichia coli. J Biotech 248:15–24

    CAS  Google Scholar 

  • Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44:828–836

    CAS  PubMed  Google Scholar 

  • Herranz R, Medina FJ (2014) Cell proliferation and plant development under novel altered gravity environments. Plant Biol 16(Suppl 1):23–30

    PubMed  Google Scholar 

  • Hu W, Xia Z, Yan Y, Ding Z, Tie W, Wang L, Zou M, Wei Y, Lu C, Hou X, Wang W, Peng M (2015) Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Front Plant Sci 6:914

    PubMed  PubMed Central  Google Scholar 

  • Huang XS, Zhang Q, Zhu D, Fu X, Wang M, Zhang Q, Moriguchi T, Liu JH (2015) ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. J Exp Bot 66:3259–3274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kampatsikas I, Bijelic A, Pretzler M, Rompel A (2017) Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases. Sci Rep 7:8860

    PubMed  PubMed Central  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    CAS  PubMed  Google Scholar 

  • Kazemi Shahandashti SS, Maali Amiri R, Zeinali H, Ramezanpour SS (2013) Change in membrane fatty acid compositions and cold-induced responses in chickpea. Mol Biol Rep 40:893–903

    CAS  PubMed  Google Scholar 

  • Kazemi-Shahandashti SS, Maali-Amiri R, Zeinali H, Khazaei M, Talei A, Ramezanpour SS (2014) Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. J Plant Physiol 171:1106–1116

    CAS  PubMed  Google Scholar 

  • Kimura S, Kawarazaki T, Nibori H, Michikawa M, Imai A, Kaya H, Kuchitsu K (2013) The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system. J Biochem 153:191–195

    CAS  PubMed  Google Scholar 

  • Kovacs Z, Simon-Sarkadi L, Szucs A, Kocsy G (2010) Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38:623–631

    CAS  PubMed  Google Scholar 

  • Kuijpers TF, van Herk T, Vincken JP, Janssen RH, Narh DL, van Berkel WJ, Gruppen H (2014) Potato and mushroom polyphenol oxidase activities are differently modulated by natural plant extracts. J Agri Food Chem 62:214–221

    CAS  Google Scholar 

  • Kurusu T, Hamada J, Nokajima H, Kitagawa Y, Kiyoduka M, Takahashi A, Hanamata S, Ohno R, Hayashi T, Okada K, Koga J, Hirochika H, Yamane H, Kuchitsu K (2010) Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol 153:678–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DJ, Choi HJ, Moon ME, Chi YT, Ji KY, Choi D (2017) Superoxide serves as a putative signal molecule for plant cell division: overexpression of CaRLK1 promotes the plant cell cycle via accumulation of O2() and decrease in H2O2. Physiol Plant 159:228–243

    CAS  PubMed  Google Scholar 

  • Li C, Chang PP, Ghebremariam KM, Qin L, Liang Y (2014) Overexpression of tomato SpMPK3 gene in Arabidopsis enhances the osmotic tolerance. Biochem Biophys Res Commun 443:357–362

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhou J (2018) MAPping kinase regulation of ICE1 in freezing tolerance. Trends Plant Sci 23:91–93

    CAS  PubMed  Google Scholar 

  • Liu LL, Ren HM, Chen LQ, Wang Y, Wu WH (2013) A protein kinase, calcineurin B-like protein-interacting protein Kinase9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiol 161:266–277

    CAS  PubMed  Google Scholar 

  • Liu H, Wang YX, Li H, Teng RM, Wang Y, Zhuang J (2019) Genome-wide identification and expression analysis of calcineurin B-Like protein and calcineurin B-Like protein-interacting protein kinase family genes in tea plant. DNA Cell Biol 38:824–839

    CAS  PubMed  Google Scholar 

  • Majda M, Grones P, Sintorn IM, Vain T, Milani P, Krupinski P, Zagorska-Marek B, Viotti C, Jonsson H, Mellerowicz EJ, Hamant O, Robert S (2017) Mechanochemical polarization of contiguous cell walls shapes plant pavement cells. Dev Cell 43(290–304):e294

    Google Scholar 

  • Matia I, Gonzalez-Camacho F, Herranz R, Kiss JZ, Gasset G, van Loon JJ, Marco R, Javier Medina F (2010) Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J Plant Physiol 167:184–193

    CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molitor C, Mauracher SG, Rompel A (2016) Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases. Proceed Natl Acad Sci USA 113:E1806–1815

    CAS  Google Scholar 

  • Moustafa K, AbuQamar S, Jarrar M, Al-Rajab AJ, Tremouillaux-Guiller J (2014) MAPK cascades and major abiotic stresses. Plant Cell Rep 33:1217–1225

    CAS  PubMed  Google Scholar 

  • Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting Rhizobacteria NRRL B-30488. J Agri Food Chem 56:4474–4481

    CAS  Google Scholar 

  • Nejadsadeghi L, Maali-Amiri R, Zeinali H, Ramezanpour S, Sadeghzade B (2014) Comparative analysis of physio-biochemical responses to cold stress in tetraploid and hexaploid wheat. Cell Biochem Biophys 70:399–408

    CAS  PubMed  Google Scholar 

  • Pandey GK, Cheong YH, Kim BG, Grant JJ, Li L, Luan S (2007) CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res 17:411–421

    CAS  PubMed  Google Scholar 

  • Pandey GK, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav AK, Tokas I, Sanyal SK, Kim BG, Lee SC, Cheong YH, Kudla J, Luan S (2015) Calcineurin B-Like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol 169:780–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piao HL, Xuan YH, Park SH, Je BI, Park SJ, Park SH, Kim CM, Huang J, Wang GK, Kim MJ, Kang SM, Lee IJ, Kwon TR, Kim YH, Yeo US, Yi G, Son D, Han CD (2010) OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cells 30:19–27

    CAS  PubMed  Google Scholar 

  • Poiatti VA, Dalmas FR, Astarita LV (2009) Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria. Biol Res 42:205–215

    CAS  PubMed  Google Scholar 

  • Rodriguez-Medina C, Boissinot S, Chapuis S, Gereige D, Rastegar M, Erdinger M, Revers F, Ziegler-Graff V, Brault V (2015) A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation. Virology 486:44–53

    CAS  PubMed  Google Scholar 

  • Romero FM, Maiale SJ, Rossi FR, Marina M, Ruiz OA, Garriz A (2018) Polyamine metabolism responses to biotic and abiotic stress. Methods Mol Biol 1694:37–49

    CAS  PubMed  Google Scholar 

  • Ruan L, Torres CM, Buffett RJ, Kennard S, Fulton D, Venema RC (2013) Calcineurin-mediated dephosphorylation of eNOS at serine 116 affects eNOS enzymatic activity indirectly by facilitating c-Src binding and tyrosine 83 phosphorylation. Vasc Pharmacol 59:27–35

    CAS  Google Scholar 

  • Shakiba E, Edwards JD, Jodari F, Duke SE, Baldo AM, Korniliev P et al (2017) Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PLoS ONE 12:e0172133

    PubMed  PubMed Central  Google Scholar 

  • Smith JM (2014) Heese A (2014) Rapid bioassay to measure early reactive oxygen species production in Arabidopsis leave tissue in response to living Pseudomonas syringae. Plant Methods 10:6

    PubMed  PubMed Central  Google Scholar 

  • Stajic M, Persky L, Cohen E, Hadar Y, Brceski I, Wasser SP, Nevo E (2004) Screening of laccase, manganese peroxidase, and versatile peroxidase activities of the genus Pleurotus in media with some raw plant materials as carbon sources. Appl Biochem Biotech 117:155–164

    CAS  Google Scholar 

  • Steward N, Martin R, Engasser JM, Goergen JL (1999) Determination of growth and lysis kinetics in plant cell suspension cultures from the measurement of esterase release. Biotechnol Bioeng 66:114–121

    CAS  PubMed  Google Scholar 

  • Strimbeck GR, Schaberg PG, Fossdal CG, Schröder WP, Kjellsen TD (2015) Extreme low temperature tolerance in woody plants. Front Plant Sci 6:884

    PubMed  PubMed Central  Google Scholar 

  • Sun P, Zhu X, Huang X, Liu JH (2014) Overexpression of a stress-responsive MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance and increases polyamine biosynthesis. Plant Physiol Biochem 78:71–79

    CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ (2005) Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Rep 24:581–589

    CAS  PubMed  Google Scholar 

  • Tang W, Page M (2013) Transcription factor AtbZIP60 regulates expression of Ca2+ -dependent protein kinase genes in transgenic cells. Molecular Biol Rep 40:2723–2732

    CAS  Google Scholar 

  • Tang W, Peng X, Newton RJ (2005) Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43:139–146

    CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545–554

    CAS  PubMed  Google Scholar 

  • Trexler MM, McDonald KA, Jackman AP (2005) A cyclical semicontinuous process for production of human alpha 1-antitrypsin using metabolically induced plant cell suspension cultures. Biotechnol Prog 21:321–328

    CAS  PubMed  Google Scholar 

  • Wan B, Lin Y, Mou T (2007) Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581:1179–1189

    CAS  PubMed  Google Scholar 

  • Wang J, Pan C, Wang Y, Ye L, Wu J, Chen L, Zou T, Lu G (2015) Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genomics 16:386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JJ, Lu XK, Yin ZJ, Mu M, Zhao XJ, Wang DL, Wang S, Fan WL, Guo LX, Ye WW, Yu SX (2016) Genome-wide identification and expression analysis of CIPK genes in diploid cottons. Genet Mol Res 15:4

    Google Scholar 

  • Wu L, Sadhukhan A, Kobayashi Y, Ogo N, Tokizawa M, Agrahari RK, Ito H, Iuchi S, Kobayashi M, Asai A, Koyama H (2019) Involvement of phosphatidylinositol metabolism in aluminum-induced malate secretion in Arabidopsis. J Exp Bot 70:3329–3342

    CAS  PubMed  Google Scholar 

  • Wucherpfennig T, Schulz A, Pimentel JA, Corkidi G, Sieblitz D, Pump M, Gorr G, Schutte K, Wittmann C, Krull R (2014) Viability characterization of Taxus chinensis plant cell suspension cultures by rapid colorimetric- and image analysis-based techniques. Bioprocess Biosyst Eng 37:1799–1808

    CAS  PubMed  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925

    CAS  PubMed  Google Scholar 

  • Yang XD, Dong CJ, Liu JY (2006) A plant mitochondrial phospholipid hydroperoxide glutathione peroxidase: its precise localization and higher enzymatic activity. Plant Mol Biol 62:951–962

    CAS  PubMed  Google Scholar 

  • Yin X, Wang Q, Chen Q, Xiang N, Yang Y, Yang Y (2017) Genome-wide identification and functional analysis of the calcineurin b-like protein and calcineurin b-like protein-interacting protein kinase gene families in turnip (Brassica rapa var. rapa). Front Plant Sci 8:1191

    PubMed  PubMed Central  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    PubMed  PubMed Central  Google Scholar 

  • Yu DF, Wu PF, Fu H, Cheng J, Yang YJ, Chen T, Long LH, Chen JG, Wang F (2011) Aging-related alterations in the expression and distribution of GluR2 and PICK1 in the rat hippocampus. Neurosci Lett 497:42–45

    CAS  PubMed  Google Scholar 

  • Yuan P, Yang T, Poovaiah BW (2018) Calcium signaling-mediated plant response to cold stress. Int J Mol Sci 19:3896

    PubMed Central  Google Scholar 

  • Zhang X, Shen L, Li F, Zhang Y, Meng D, Sheng J (2010) Up-regulating arginase contributes to amelioration of chilling stress and the antioxidant system in cherry tomato fruits. J Sci Food Agri 90:2195–2202

    CAS  Google Scholar 

  • Zhang H, Liu WZ, Zhang Y, Deng M, Niu F, Yang B, Wang X, Wang B, Liang W, Deyholos MK, Jiang YQ (2014) Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.). BMC Genomics 15:211

    PubMed  PubMed Central  Google Scholar 

  • Zhao H, Zhang K, Zhou X, Xi L, Wang Y, Xu H, Pan T, Zou Z (2017) Melatonin alleviates chilling stress in cucumber seedlings by up-regulation of CsZat12 and modulation of polyamine and abscisic acid metabolism. Sci Rep 7:4998

    PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Jia J, Huang X, Yan X, Cheng L, Chen S, Li X, Peng X, Liu G (2014) The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genomics 15:399

    PubMed  PubMed Central  Google Scholar 

  • Zhou L, Lan W, Chen B, Fang W, Luan S (2015) A calcium sensor-regulated protein kinase, CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19, is required for pollen tube growth and polarity. Plant Physiol 167:1351–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zur I, Dubas E, Golemiec E, Szechynska-Hebda M, Golebiowska G, Wedzony M (2009) Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (× Triticosecale Wittm.). Plant Cell Rep 28:1279–1287

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the instrumentation facility of the University for providing necessary experiment setup. We appreciate the University Council of Scientific Research for support. We thank Dr. Prasad, Dr. Lischewski, and Dr. Page for their critical reading and suggestions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

WT, MZ, and WAT conceived and designed the experiments. WT wrote the paper. WT, MZ, and WAT performed the experiment and analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Thompson, W.A. Role of the Arabidopsis calcineurin B-like protein-interacting protein kinase CIPK21 in plant cold stress tolerance. Plant Biotechnol Rep 14, 275–291 (2020). https://doi.org/10.1007/s11816-020-00597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-020-00597-7

Keywords

Navigation