Skip to main content
Log in

Controlling the oxidation of organic brightener during electroplating using an ion-exchange membrane

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of an ion-exchange membrane combined with a dimensionally stable anode on the oxidation rate of organic brightener and electroplating performance was investigated. The oxidation rate of the brightener was measured by analyzing the total organic carbon content in the plating solution. The oxidation rate increased rapidly as the current density increased when there was no ion-exchange membrane. However, when an ion-exchange membrane was present, the oxidation rate of the brightener was significantly reduced by Neosepta CMX and CMS cation-exchange membranes. The CMS monovalent selective cation-exchange membrane in particular was the most effective in reducing organic brightener oxidation, regardless of the current density. Through-hole printed circuit board electroplating was more precise with an ion-exchange membrane than with no membrane. These results confirmed that the electroplating performance was improved by the presence of an ion-exchange membrane on the anode, effectively inhibiting the oxidation of organic brightener.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Yeo, J.Y. Yoo and S.K. Hong, Printed Circuit Board (PCB), KISTI, Seoul (2004).

    Google Scholar 

  2. S. Miura and H. Honma, Surf. Coat. Technol., 169, 91 (2003).

    Article  Google Scholar 

  3. M. J. Lefebvre, G. Allardyce, M. Seita, H. Tsuchida, M. Kusaka and S. Hayashi, Circuit World, 29, 9 (2003).

    Article  CAS  Google Scholar 

  4. W. P. Dow, M.Y. Yen, S. Z. Liao, Y. D. Chiu and H. C. Huang, Electrochim. Acta, 53, 8228 (2008).

    Article  CAS  Google Scholar 

  5. J. Li, H. Lu, J. Guo, Z. Xu and Y. Zhou, Environ. Sci. Technol., 41, 1995 (2007).

    Article  CAS  Google Scholar 

  6. K. Huang, J. Guo and Z. Xu, J. Hazard. Mater., 164, 399 (2009).

    Article  CAS  Google Scholar 

  7. T. Kobayashi, J. Kawasaki, K. Mihara and H. Nonma, Electrochim. Acta, 47, 85 (2001).

    Article  CAS  Google Scholar 

  8. A. Pohjornta and R. Tenno, J. Electrochem. Soc., 154, D502 (2007).

    Article  Google Scholar 

  9. C. F. Coombs, Printed Circuits Handbook, McGraw-Hill, New York (2008).

    Google Scholar 

  10. M. Stangl, V. Dittel, J. Acker, V. Hoffmann, W. Gruner, S. Strehle and K. Wetzig, Appl. Surf. Sci., 252, 158 (2005).

    Article  CAS  Google Scholar 

  11. F. Abrams, Printed Circuit Fabrication, 23, 56 (2000).

    Google Scholar 

  12. I. Kabdasli, T. Arslan, T. Ölmez-Hanci, I. Arslan-Alaton and O. Tünay, J. Hazard. Mater., 165, 838 (2009).

    Article  CAS  Google Scholar 

  13. N. Adhoum, L. Monser, M. Bellakhal and J. E. Belgaied, J. Hazard. Mater., 112, 207 (2004).

    Article  CAS  Google Scholar 

  14. A.K. Golder, A. N. Samanta and S. Ray, J. Hazard. Mater., 141, 653 (2007).

    Article  CAS  Google Scholar 

  15. A.K. Golder, V. Dhaneesh, A.N. Samanta and S. Ray, Chem. Eng. Technol., 1, 143 (2008).

    Article  Google Scholar 

  16. A.K. Golder, A.N. Samanta and S. Ray, Sep. Purif. Technol., 53, 33 (2007).

    Article  CAS  Google Scholar 

  17. C. L. Lai and K. S. Lin, J. Hazard. Mater., 136, 183 (2006).

    Article  CAS  Google Scholar 

  18. F. R. Xiu and F. S. Zhang, J. Hazard. Mater., 165, 1002 (2009).

    Article  CAS  Google Scholar 

  19. D.C. Harris, Exploring chemical analysis (2nd Ed.), Freeman, New York (2001).

    Google Scholar 

  20. A. J. Bard and L. R. Faulkner, Electrochemical methods (2nd Ed.), Wiley, New York (2001).

    Google Scholar 

  21. H. Strathmann, Ion-exchange membrane separation processes, Elsevier, Amsterdam (2004).

    Google Scholar 

  22. G. S. Gohil, V.V. Vinsu and V.K. Shahi, J. Membr. Sci., 280, 210 (2006).

    Article  CAS  Google Scholar 

  23. L.X. Tuan, D. Mertens and C. B. Herman, Desalination, 240, 351 (2009).

    Article  CAS  Google Scholar 

  24. Y. Zhang, B. Van der Bruggen, L. Pinoy and B. Meesschaert, J. Membr. Sci., 332, 104 (2009).

    Article  CAS  Google Scholar 

  25. Z.A. Hamid and A. A. Aal, Surf. Coat. Technol., 203, 1360 (2009).

    Article  Google Scholar 

  26. B. Hong, C. Jiang and X. Wang, Surf. Coat. Technol., 201, 7449 (2007).

    Article  CAS  Google Scholar 

  27. J.H. Choi and S.H. Moon, J. Colloid Interf. Sci., 265, 93 (2003).

    Article  CAS  Google Scholar 

  28. J.H. Choi, S.H. Kim and S.H. Moon, J. Colloid Interf. Sci., 241, 120 (2001).

    Article  CAS  Google Scholar 

  29. X. T. Le, J. Colloid Interf. Sci., 325, 215 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hwan Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JS., Choi, JH. Controlling the oxidation of organic brightener during electroplating using an ion-exchange membrane. Korean J. Chem. Eng. 27, 1213–1219 (2010). https://doi.org/10.1007/s11814-010-0209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0209-4

Key words

Navigation