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Abstract. In the paper, we examine tableau systems for R. Epstein’s logics
of content relationship: D (Dependence Logic), DD (Dual Dependence
Logic), Eq (Logic of Equality of Content), S (Symmetric Relatedness
Logic) and R (Nonsymmetric Relatedness Logic) (Epstein in The se-
mantic foundations of Logic, Springer Science 4+ Business Media, Dor-
drecht, (1990), cf. Epstein in Philos Stud 36:137-173, 1979, Epstein in
Rep. Math. Logic 21:19-34, 1987, Klonowski in Logic Log Philos, ac-
cepted for publication, Krajewski in J Non Class Logic 8:7-33, 1991).
The first tableau systems for those logics were defined by Carnielli (Rep
Math Logic 21:35-46, 1987). However, his approach has some limitations,
for example, it requires a proof of functional completeness and axiom-
atization. Notwithstanding the first two constraints, it does not include
all Epstein logics, e.g., logic Eq. Unlike Carnielli’s approach, here we use
set-assignment semantics to determine those logics. Since syntax and se-
mantics of a given logic usually determine a minimal syntax and structure
of a tableau system for the logic along with other properties, we propose
a uniform tableau framework for the logics determined by set-assignment
semantics. What distinguishes our tableau systems is that they combine
the features of tableaux for propositional logics and syllogistic logics when
the problem of content of propositions is analysed in tableau proofs. To
denote the content of propositions in the proofs, we use generalised labels
(explored in the syllogistic context in Jarmuzek and Goré (In: Fitting
(ed.) Landscapes in Logic, College Publications, London, accepted)).
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1. Introduction

The aim of this paper is to introduce tableau systems for some logics of con-
tent relationship that were proposed by R. Epstein ([6], cf. [4,5,16,17]); these
logics are: D (Dependence Logic), DD (Dual Dependence Logic), Eq (Logic
of Equality of Content), S (Symmetric Relatedness Logic), and R (Nonsym-
metric Relatedness Logic).

The significance of the paper lies in the fact that, while some tableau
systems for Epstein logics have been previously proposed by W. Carnielli [1],
his approach faces serious limitations.! For starters, it requires a proof of
functional completeness and axiomatization. Furthermore, Carnielli’s approach
does not include logic Eq. And, in the case of tableau rules for D, there are
some problems regarding completeness.?

In order to avoid these issues, here, we propose to examine Epstein’s
logics from the perspective of his set-assignment semantics. Since syntax and
semantics of a given logic usually determine a minimal syntax and structure
of a tableau system for the logic along with other properties, we propose a
uniform tableau framework. What would be characteristic of the tableau sys-
tems that we present in this paper is that, when the problem of content of
propositions is analysed in tableau proofs, our systems can combine the fea-
tures of tableaux for propositional logics and syllogistic logics. In proofs, we
use generalised labels (explored in the syllogistic context in [14]) to denote
content of propositions. The combination of these features makes our proposal
more robust and stronger than Carnielli’s and other alternatives.

The paper consists of three parts. In the first one, we present Epstein’s
logics of content relationship. In the second part, we propose tableau systems
for all considered logics and we provide the proof of the adequacy of each sys-
tem. In the appendix, we consider some examples of tableau proofs to illustrate
the applications of the introduced rules.

2. Epstein’s Logics of Content Relationship

The interest in the problem of how to interpret the implication connective
was already present in ancient times; but, nowadays, such an interest has
increased to the point in which the formal analysis of conditional sentences
constitutes the basis of many non-classical logics. The formal analysis of the
implication often begins with the examination of a particular instance of this
connective, the material implication and its paradoxical laws or properties; and
it moves forward onto the many (non-classical) attempts to block or remove
these paradoxes. It is worth noticing that the large majority of enterprises that

IEpstein’s logics of content are also the logic DPC (Classically-Dependent Logic) and logics
defined based on the DPC consequence relation.

2In Carnielli’s proof of derivability of his rule (8) for logic D (see [1, pp. 44-45]) a fact (a
counterpart for D of theorem 2 (Cut Rule), see [1, p. 41]) is used. But the proof of this fact
seems to require application of the rule (8).
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pursue this are motivated by phenomena other than the way in which classical
logical values might influence the logical value of the implication.

An instance of these phenomena would be the content relationship of
sentences. Take for example the case of a conditional sentence, it seems sensible
to say that for such a sentence to be true it is not enough for either the
antecedent to be false or the consequent to be true. As a matter of fact, we
would expect that the truth of the sentence depends, at least partially, on
the antecedent being related to the consequent content wise. And while this
intuition has been well-accepted among contemporary logicians, there has been
a significant discussion regarding how to formally represent and analyse this
content relationship. We will focus on Richard Epstein’s [6] formal approach
to content relationship (cf. [4,5,16,17]).

2.1. Language and Semantics

Let N be the set of natural numbers. The language of Epstein’s logic is the
following propositional language L:

<Var7 {_'7 A, *)}7 {(7 )}>a

where Var = {p’: i € N} is a set of propositional variables. (Sometimes we will
use simply the letters: p, ¢, 7,....)

The set of formulas is defined in a standard way and denoted by For. We
will use the following abbreviation for any A, B € For:

A+ B:=A— (B— B).
We will also use some standard notations:

e the set of all subsets of ¥ (the power set of 3) will be denoted by P(X)
e the set of propositional variables of formula A € For will be denoted by
var(A).
Moreover, let n be a function from P(Var) to P(N) defined as follows: i € n(X)
iff for some p’ € Var, p' € %, for all ¥ C Var, i € N.

In what follows, we define five Epstein’s content relationship logics: three
dependence logics (D, DD, Eq) and two relatedness logics (S and R) (see [6],
cf. [4,5,16,17]). These formal systems can be defined in two ways: by means
of set-assignment semantics (see [6], cf. [4,5,16,17]) and by means of relating
semantics (see [7], cf. [10-12,16,19]).2 We focus, however, on the first approach.

A set-assignment structure is an ordered pair (v, s) such that v: Var —
{1,0} is a classical valuation of propositional variables and s: For — P(X),
where ¥ is any set, is the so-called set-assignment. For the definition of logics
D, DD, Eq, the set ¥ might be empty but for the definition of relatedness
logic S, we have to assume non-emptiness of s(A), for any variable A € Var,

31n fact, Epstein [6] also presents for his logics a semantics based on binary relations over
formulas. Such semantics might be considered to be the first example of relating semantics
(see [16]).

4Let us note that by means of set-assignment structures, we can define various non-classical
logics. This, however, requires to consider models with more than one set-assignment function
(see [6,16,17]).
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so non-emptiness of ¥ as well.> For both cases, we use a union set-assignment,
i.e., a set-assignment s: For — P(X) such that for any A € For, we have:

s(A) = J{s(B) e P(2) : B € var(A)}. (uSA)

By means of set-assignments, Epstein proposes to formally represent con-
tents of sentences. In the truth-condition for implication in addition to the
classical condition, it is required that some, a priori assumed, relation holds
between the formal representations of contents.

Having a structure (v, s), in order to determine Epstein’s logics, we as-
sume the following definitions of Ry C ForxFor, where A € {D, DD, Eq, S, R}.
For any A, B € For:
for logic D, Rp(A, B) iff s(B) C s(A)
for logic DD, Rpp (4, B) iff s(4) C s(B)
for logic Eq, Rrq(A, B) iff s(A) = s(B)
for logic S, Rs(A, B) iff s(A)Ns(B) #0
A= Born(A) € s(B), it A,B € Var
EIm’Evar(A) ElyEvar(B)}%R(:Ca y)? otherwise.

We would like to make two comments on the logic R. First, for the re-
lating approach to the logic R, Epstein defined the set of reflexive relations
constructed in the following way. He defined reflexive relations on Var x Var,
and then extended them to R C For x For by the condition: R(A,B) iff
Hzeva,(A)Hyeva,(B)R(x, y). We can call the relations relatedness relations of con-
tent (see [16]). It is quite easy to see that: (a) the relation Ry is a relatedness
relation of content; (b) for any relatedness relation of content R C For x For,
there exists such a union set-assignment s: For — P(X) that R = Rr. We
can consider s: For — P(N) defined in the following way, for any B € Var,
s(B) = {i € N: R(p’, B)}. We extend the function on the whole set of for-
mulas in the following way: s(A) = (J{s(B) € P(N) : B € var(4)}. This is a
special case of (uSA), when ¥ = N.

Second, in the considerations on the content relationship, it is assumed
by Epstein that Rs (A4, B) iff s(A)Ns(B) # (. Also for the logic R it is assumed
that two propositions should share the content but it requires introducing two
set-assignments (see [6,16,17]). In the approach we propose, for two different
variables A, B, Rgr (A, B) does not have to imply s(A)Ns(B) # 0. It is because
it is possible that, n(A) € s(B), but n(A) ¢ s(A), when A, B are different. For
the moment we might think what happens if we also assume that n(A) € s(A).
So instead of the definition that we have proposed:

A= DBorn(4) € s(B), if A, B € Var

Elvaar(A) EIg;Evar(B) RR(‘W, y), Otherwise7
we could alternatively assume the following one:

R (A, B) iff {A = Bor [n(A) € s(B) and n(A) € s(A)], if A, B € Var

zEvar(A) E|y€var(B) Ri:{((ﬂ, y), otherwise.

for logic R, Rr (A4, B) iff

Rr(A, B) iff

5Let us also note that for our definition of R the set 3 might be empty.
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Both definitions, of Rg and Rpy, are inductive. They differ only in the ini-
tial case for variables. Let us check this case. We take the structure: (v, s)
and assume that we consider two different variables A, B € Var. Clearly, if
Ri (A, B), then Rgr(A, B). The inverse side is much more interesting. Let us
assume that it is not that Rg (A, B) and simultaneously n(A) € s(B), but
n(A) ¢ s(A). Since we assumed that A and B are different, so it does not
matter if n(A) € s(A). For both relations, Rg (A, B) and Ri (A, B), if A= B.

Let us make a conclusion on the base of the last remark. From the logical
point of view, whether we assume the first definition or the second one, it
does not matter. Both provide the same logic. But it is worth noting that
R (A, B) implies s(A) N's(B) # 0, and this results in the fact that R C Rs.
Independently, we know, however, that the logic R is a sublogic of S (see
[4,6,16]).

Knowing these relationships, we want to simplify the approach to tableaux.
So, in the further tableau analysis of R, we assume the first definition, i.e., the
definition of Rg.

A set of structures becomes a set of models only if some special relation
is set between them. It is usually a binary relation of satisfiability between a
structure and any formula A € For.

Definition 2.1 (A-model). Let 9 = (v, s) be a structure. Let A € {D,DD,
Eq,S,R}. M is a model of A (in short: A—model) iff for any A, B € For:

MEAifv(4A) =1, if A€ Var
M = —A iff it is not that M = A (in symb.: M = A)
ME=AANBIT ME Aand ME B
ME=A—-BIUFMEAor ME B, and RyA(A, B).
We have the standard definition of semantic consequence and validity.

Definition 2.2 (Semantic consequence in A). Let A € {D,DD,Eq,S,R} and
Y U{A} C For:
e A is a semantic consequence of ¥ in A (in symb.: ¥ |, A) iff for any
A-model M, if for any B € X, 9 = B, then M = A
o Ais a valid formula of A (in symb.: [E5 A) iff ) =5 A.

As we noticed above the logic R is a sublogic of the logic S. Excluding
the logic S or the logic R we get logics that are independent. To show such
independence let us consider the following formulas:

(PN (@) —(pT) (1)
p—(g— (pAq) (2)
(g n(ger) = (P )N+ q) (3)
(Pt q) — (g% p) (4)
(pAg)— p. (5)

The following table specifies which formulas are valid (+) and which are
not (—) for a given logic:
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DD Eq S R
(1) + - - - -
(2) - + - + +
(3) + + + - —
(4) - - + + -
(5) + - — + +

2.2. Variable Sharing and Paradoxes of Implication

Let us notice that Epstein’s logics satisfy the variable sharing property, i.e.,
for any A € {D,DD,Eq,S,R} and any A, B € For, if =y A — B, then
var(A) Nvar(B) # (. Indeed, if var(A) Nvar(B) = 0, then var(B) < var(A),
var(A) & var(B), var(A) # var(B) and obviously var(A) Nvar(B) = §. Also for
all variables x € var(A),y € var(B), n(z) & var(y).

Clearly, var: For — P(Var) is a union set-assignment, so with that, we
can define A-model 9 such that M = A — B.

The variable sharing property enables us to see that if a formula is not
true in the model of the form (v, var), then it is not valid in any of Epstein’s
logics. However in order to determine the analysed logics, we cannot consider
only set-assignment structures of the form (v, var). As Epstein noticed in [6],
structures with var validate too much; for instance, consider the law of impor-
tation and the law of exportation.’

Let us also notice that for any of the analysed logics, none of the following
paradoxes of implication is valid:

p—(q¢—p) (6)
-p—(p—q) (7)
p— (g A ~q) (8)
(pA=p) —q. (9)

In order to prove that neither (6) nor (7) is valid, it is enough to notice that
the truth of ¢ and the truth of —p respectively do not entail that for any union
set-assignment s, any of the considered relations between s(p) and s(g) hold.
However, in order to prove that (8) and (9) are not valid, we can make use of
a variable sharing property.

2.3. Proof Theory

In the previous section, we used the abbreviation of the form A & B. For all
Epstein’s logics, it enables one to express in the language that a proper relation
between outputs of set-assignments holds. More specifically, for any A, B € For
and any set-assignment structure 9t = (v, s) and any A € {D,DD,Eq,S,R},
if M is A-model, then M = A & B iff Ry (A, B).

6The situation is different for FDE-fragments of Epstein’s logics (cf. [20,22]). In this case,
we restrict models to structures with function var.
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This is the basis of Epstein’s axiomatic systems of D, DD, Eq, S, and
R (see [6], cf. [4]). Indeed, formulas (1), (2), (3), (4) and (5) are examples of
the axioms of the analysed logics: (1) of logic D, (2) of logics DD, S and R,
(3) of logic Eq, but it is also a thesis of D and DD, (4) of logics S and Eq,
(5) of logics D, S and R.”

In the 1980s and 1990s, other proof methods were specified for Epstein’s
logics and some of their modifications. Luis Farinas del Cerro and Valérie Lu-
gardon [3] defined sequent systems for certain modification of Epstein’s depen-
dence logics, specifically for modifications of D, DD and Eq, determined by
set-assignment structures defined over a selected union set-assignment. In [2],
logics of this kind were extended onto a first order language and sequent sys-
tems for these extensions were defined. Other interesting results were presented
by Francesco Paoli, who focused on FDE-fragments of Epstein’s logics.® In [20],
Paoli presented the FDE-fragment of S from the algebraic, matrices, and ax-
iomatic points of view. This analysis was extended onto other FDE-fragments
of Epstein’s logics in [22]. In that paper Paoli, also discussed tableaux for these
FDE-fragments. In contrast to these approaches, in what follows, we focus on
tableau systems that can account for the whole logics D, DD, Eq, S and R.

3. Tableaux

The first tableau systems for selected Epstein logics — being examples of relat-
ing logics — were introduced by W. Carnielli [1]. Carnielli in his paper focused
on the relatedness logic S and suggested how one can modify the presented
approach to get tableau systems for the relatedness logic R, the dependence
logic D, and its dual version the logic DD. However, this approach, as we
wrote in the introduction, has a number of limitations.’

But Carnielli’s was not the only attempt to provide tableau systems for
the logics of the considered type. Other tableau systems for a few relating
logics, weaker than Epstein’s logics, were given by Jarmuzek and Klonowski in
[11] (a tableau system for even weaker logic was presented in [9]). Furthermore,
tableau systems for certain connexive logics defined on the basis of relating
logics were defined by Jarmuzek and Malinowski [12] (cf. [13]).

In what follows, we present a tableau approach that allows to define
adequate tableau systems for various logics determined by set-assignment se-
mantics. We focus on logics: D, DD, Eq, S and R.

"Let us emphasize that axioms introduced by Epstein are founded on relational properties
presented within the second approach based on relating semantics.

81t is important to notice that Paoli also presented results concerning not only the fragments
of Epstein’s logics. In [21], he presented the constructive completeness of S (for an alternative
proof see [15]) and determined the limited principle of substitution of equivalent formulas for
S. In cooperation with Antonio Ledda and Michele Pra Baldi, he examined in [18] various
algebraic interpretations of a demodalized analytic implication understood as an implication
of the logic D (cf. [5]).

9Tt is worth noting that the tableaux for a generally defined relating logic are given in [9],
while in [10], the tableau systems for deontic logics determined by the relating semantics are
defined.
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3.1. Tableau Language

The language of tableau system is the language of £ extended by auxiliary ex-
pressions. We assume an additional symbol: ~ (negation for new expressions).
The set of auxiliary expressions Ae is the union of the following sets:

e N x For

o {(~i,A): (i,A) € N x For}.

Expressions of the form (i, A) and (~i, A) are supposed to represent that
object ¢ belongs to the content of A or i does not belong to the content of
A, respectively. If it is not misleading, we will omit the brackets: { ). So for
example, instead of (~i, A) or (i, A), we will just write i, A, and ~i, A, etc.

You can see, we are using labels here to denote the content of the sen-
tences. This is part of the tableaux strategy for syllogistic logic, where gener-
alized labels can denote many different things [14].

The set of tableau expressions is the set Ex = For U Ae. This is a language
we conduct tableau proofs in it. Finally, we define a branch inconsistent set of
expressions.

Definition 3.1 (Branch inconsistent set of expressions). Let ¥ C Ex.

e Y is branch inconsistent iff it contains at least two expressions that form
a complementary pair of any of the following forms:
- A A
- <i7 A>7 <Ni7 A>7
for any A € For, i € N.
e Y is branch consistent iff ¥ is not branch inconsistent.

3.2. Tableau Rules

We assume some general set of tableau rules for all logics we examine here.
For the elimination of connectives, we have:

ANB A= B ~(AAB) A
®y,  ® T R (R
s ~AB ~A[-B A

The above rules do not need any comments. They reflect the classical truth
conditions for A, — and partially —. For particular logics, we will complete the
rule for implication. For the reduction of auxiliary expressions, we assume the
general rules:
~i, A
i, A _
(R:) (R~
i, A .|i, An ;
~i, An
where var(4) = {Ay,..., A} where var(4) = {A1,..., An}

Both rules correspond to the uniform set assignment condition (uSA). (R;)
says that if object i belongs to the content of formula A, then object i belongs
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to the content of at least one variable of A. In turn, (R.;) postulates that if
object ¢ does not belong to the content of A, then object ¢ does not belong to
the content of any atomic proposition of A.19

Now we introduce specific rules for the particular logics. For logic D, we
assume:

A— B -(A — B)
i,C
(Rp-) ——— (Rp-—) 4 i B
i, A ~B|~i, A
where var(C') C var(B) where 7 is new on the branch

Both presented tableau rules reflect the truth-condition for implication in logic
D. In case of (Rp—), the content of consequence is included in the content
of antecedent. In case of (Rp-_,), A is true, but B false, or the content of
consequence is not included in the content of antecedent.!!

The specific tableau rules for logic DD are:

A— B -(A — B)
i,C
(Rpp—) ——— (Rpp-—) 4 i A
i,B ~B|~i, B
where var(C') C var(A) where 7 is new on the branch

The ideas behind (Rpp_.) and (Rpp-—.) are similar to the latter tableau rules.
However, now inversely, the content of antecedent is included in the content
of consequence.

For logic Eq we assume the tableau rules (Rp_,) and (Rpp-.), since the
content of antecedent is equal to the content of consequence. But for negation
of implication, we combine the rules (Rp-_.) and (Rpp-_.) into one rule!'?:

—~(A— B)

(REa-=) 4 1 A |in
“B|~i.B| iB

where ¢ is new on the branch

For logic S, we assume specific tableau rules:

A— B -(A — B)
(Rs—) i, A (Rs-—) A i, A
i, B -Bl|j, B
where ¢ is new on the branch where 7, j are new on the branch and i # j

0Examples of applications of (R;) and (R~;) are presented in Appendix, see Figs. 4, 5, 6,
7, 8 and 9.

HExamples of applications of (Rp_,) and (Rp-_.) are presented in Appendix, see Figs. 4
and 5.

12Examples of applications of (REq-—) are presented in Appendix, see Figs. 1, 6 and 7.
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Both rules (without and with negation) introduce new labels since content of
propositions is possibly supposed to be non-empty for S. However, while in
the case of (Rg—) both propositions have the same content, in (Rg-_,), the
content is different and so the labels must be different. Additionally, we assume
the tableau rule (Rg):
i, A
J, B
(RS) k,A
~k,B
where 4, j are introduced by the rule(Rg—_,)

The rule (Rg) guarantees that two propositions do not share any label if they
have labels introduced by application of (Rg—— ). All the rules correspond to
the truth condition for implication in S: the intersection of the content of
antecedent and the content of consequence is non-empty.'3

Finally, for logic R, we assume specific tableau rules:

A—B
Rr-

(Re—) k1, Bi|. . [km, B1|.. k1, By . Jkm. B

if var(A) Nvar(B) =0,

where n(var(A4)) = {k1,...,kn} and var(B) = {B1,..., By}

The rule (Rr_.) is applicable when var(A4) N var(B) = ). This rule ex-
presses this part of the truth-condition for relating implication which requires
that for some A; € var(A), n(4;) € s(B;), for some B; € var(B). When
var(A) Nvar(B) # 0, it is only needed to use the rule (R—), since A and B

share at least one variable.

A Nk17B1
-B :

Nkw;,B1
(Rr-—(1)) .

Nkh Bn

~km, Bn
if var(A) Nvar(B) = 0,
where n(var(A)) = {ki1,...,kn} and var(B) = {By,...,B,}

The rule (Rr——(1)) is applicable when var(A) Nvar(B) = (). This rule
splits a proof. The left side corresponds to the traditional negative condition
for implication: so the antecedent is true, while the consequence is false. The
right side negatively expresses this part of the truth-condition for relating

13Examples of applications of (Rs_), (Rs—_,) and (Rg) are presented in Appendix, see
Figs. 2, 8 and 9.
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implication, which requires that for some A; € var(A), n(4;) € s(B;), for
some B; € var(B). So we have a string: ~ky, B1,...,~kp, B1,...,~k1,By, ...,
~kpm, By, where n(var(A4)) = {ki,...,kn} and var(B) = {By,..., B, }. In the
tableau language, it just states that for all A; € var(A4), n(4;) & s(B;), for all
B; € var(B).

When var(A4) Nvar(B) # 0, the rule (Rr—— (1)) is not applicable, since
A and B share at least one variable. In this case, we have only the left side of
(Rr-—(1)), so we must use the rule (R-_(2))':

-(A — B)
(Rr-—(2)) A
-B

if var(A) Nvar(B) # 0.

It is worth underlining that in our formulation of tableau rules for the
logic R, we do not need to use the rules (R;) and (R.;). All rules we have
defined for the relating implication in R just reduce the indexes to the level
of variables.

By tr(A) we will denote the set of tableau rules for logic A, where A €
{D,DD,Eq,S,R}.

For any tableau rules expressions, in the numerator will be called input,
while expressions from the denominator will be called output. As an example,
let us take the rule: (R ). One of its inputs is {pAg} and then the corresponding
output is set {p, q}. Notice that this rule is a non-branching one, i.e., for any
input, it has got only one output (one set of formulas). On the other hand,
(Rp-—) is a branching rule and in this case we have two outputs, for example:
{p, —q}, and {(i,~p), (i,q))} for some new ¢, if the input is {—-(p — ¢)}.

Once we have the notion of input, we can define the notion of applicability
of a rule. Let (R) be a tableau rule and ¥ € Ex. (R) is applicable to ¥ iff an
input of the (R) is a subset of ¥ and ¥ is a branch consistent set.

It is worth noting that our rules for set-assignment semantics combine
two aspects. On the one hand, these are rules that contain the classic truth
aspect: it takes place in case of pure formulas in the tableau rules. However,
on the other hand, we have a syllogistic aspect. In case of expressions with
labels, we treat formulas as names and labels as denotation. Thus, formula A
is treated as a name of the content in expressions like (~i, A) or (i, A) (cf.

[14]).
3.3. Tableau Consequence Relation

We define the relation of tableau consequence by referring to the concept of
closure under tableau rules.'® This is the equivalent of =4 for the individual
logics A we are considering. Of course, any particular tableau consequence
relation depends on the rules for a given logic used in the proof.

MExamples of applications of (Rr_.), (RR-_ (1)) and (Rr—_.(2)) are presented in Appen-
dix, see Figs. 3, 10 and 11.

15The concept of closure under tableau rules was introduced in [11]. The story of the notion
of tableau consequence relation was told in the book [8].
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Definition 3.2 (Closure under tableau rules). Let A € {D, DD, Eq,S,R} and
5, T C Ex. I is a closure of ¥ under tableau rules of tr(A) (for short: tr(A)-
closure of ) iff there exists such a subset of natural numbers K that:

e K =Nor K ={1,...,n} for some n € N
e there exists such an injective sequence f: K — P(Ex) that:
- X1 =%
— for all 4,741 € K, there exists such a tableau rule (R) of tr(A) that
its input is included in X, while one of its corresponding outputs
is equal to X;11 \ X;
— for all 4,7 4+ 1 € K, for any tableau rule (R) of tr(A), if (R)’s input
is included in X; and one of (R)’s corresponding outputs is equal to
Xit1 \ X;, then there are no such j,j+1 € K that j > ¢ and one of
the remaining outputs of (R) is equal to X1 \ X
— for any tableau rule (R) of tr(A), if (R)’s input is included in ( J; 5 X,
then one of the (R)’s corresponding outputs is in [ J;.x Xi
o I'={J;cx Xi-

In practice, we can treat the notion of closure given in the definition of
the closure as the notion of a complete branch (closed or open). In fact, it is
the union of all elements that are on a complete branch.

Definition 3.3 (Tableau consequence relation). Let A € {D,DD,Eq,S,R}
and X U {A} C For.

e A is a tableau consequence of ¥ in A (in symb.: X > A) iff there is
a finite set I' C 3 such that any tr(A)-closure of I' U {=A} is branch
inconsistent.

o Ais a thesis of A (in symb.: >p A) iff >4 A.

Here we have proposed a quite formal definition of tableau proof, reduced
to the notion of closure under the set of tableau rules. However, in Appendix
we present the examples of tableau proofs written in the standard, less formal
way.

3.4. Soundness, Completeness and Decidability

Now, we would like to be able to select labels from sets of expressions. We
define a function:

Definition 3.4 (Function choosing labels). The function choosing labels is the
function o: Ex U P(Ex) — P(N) defined by conditions:

. o(4)=0

* o((i, A)) = o((~i, A)) = {i}

e oY) =J{o(x): z € X}
for all A € For, 3 C For, and 7 € N.

We can now generalize the notion of interpretation of a set of expressions
in a model.
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Definition 3.5 (Model suitable for a set of expressions). Let A € {D,DD,
Eq,S,R}, 9 = (v, s) be A-model with the domain T' for the set assignment
function s, ¥ C Ex, and let I' C IV. 9 is suitable for ¥ iff there exists a
function f: o (¥) — I" such that:

eif Ac X then ME A

o if (i, A) € 3 then f(i) € s(A)

o if (~i, A) € ¥ then f(i) & s(A)
for all A, B € For and i € N.

One comment to the definition is needed. We assume the extended domain I
for the case of logic R where we use the superscripts of variables as the part of
content (see the part of the proof of the Lemma 3.6 for the logic R, the case
for the rule (Rr-—(1))).

It is clear that for a branch inconsistent set of expressions no model is
suitable.

The following lemma enables us to prove soundness theorems for consid-
ered logics.

Lemma 3.6. (Soundness lemma.) Let A € {D,DD,Eq,S,R}, ¥ C Ex and
M = (v,s) be a model A-model suitable for ¥. For any tableau rule (R) of
tr(A), if (R) has been applied to 33, then M is suitable for the union of ¥ and
at least one output obtained by the application of rule (R).

Proof. Assume all the hypotheses. For the cases in which the general elimina-
tion rules for connectives ((Rx), (R—), (R-a), (R-=)) are applied, the proof
is obvious because they behave classically. We consider only two general cases
for connectives.

e Suppose (Rn) has been applied to ¥ . Then, AA B € ¥ and we get
output {A, B}. Because the model 9 is suitable for X, by Definition
3.5 of suitable model, M = A A B. Thus, by Definition 2.1 of A-model,
M = A and MM = B. Hence, by Definition 3.5 of suitable model, the
model I is suitable for the set ¥ U {4, B}.

e Suppose (R_,) has been applied to ¥. Then, A — B € ¥ and we get
two outputs {—A} and {B} . Because the model 9 is suitable for 3, by
Definition 3.5 of suitable model, M = A — B. Thus, by Definition 2.1 of
A-model, M = —A or M | B. Hence, by Definition 3.5 of suitable model,
the model 9 is suitable for the set ¥ U {—A} or for the set ¥ U {B}.

Now we examine general cases of the tableau rules for reduction of auxiliary
expressions. We have two cases (R;) and (R;):

e Suppose (R;) has been applied to . Then, (i, A) € ¥ and we get n-
outputs {(i, A1)}, ..., {(i, An)}, where var(A) = {A4;,..., A, }. Because
the model 9 is suitable for X, by Definition 3.5 of suitable model, there
exists a function f: o (X) — T such that f(i) € s(A4). But by the
uniform set assignment condition (uSA), it means that f(i) € s(Ay), for
some 1 < k < n. So, by Definition 3.5 of suitable model, the model 9 is
suitable for the set 3 U {(i, Ax)}.
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e Suppose (R.;) has been applied to X. Then, (~i, A) € ¥ and we get the

output {(~i, Ay),...,{~i, A,)}, where var(A) = {A;,..., A, }. Because
the model 9 is suitable for X, by Definition 3.5 of suitable model, there
exists a function f: o (X) — T" such that f(i) ¢ s(A). But by the
uniform set assignment condition (uSA), it means that f(i) ¢ s(Ay), for
all 1 < k < n. So, by Definition 3.5 of suitable model, the model 9 is
suitable for the set ¥ U {(~i, A1), ..., (~i, A}

Let us assume that A = D. We must consider two cases: (Rp_,) and (Rp-—,).

e Suppose (Rp—.) has been applied to ¥. Then, A — B and (C,i) € &,

where var(C') C var(B), and we get output {(i, A)}. Because the model
M is suitable for X, by Definition 3.5 of suitable model, M = A — B
and s(B) C s(A) (9 is D-model). Moreover, there exists a function
f: o(X) — I" such that f(i) € s(C'). But by the uniform set assignment
condition (uSA), it means that f(i) € |Js(var(C)) and, since var(C') C
var(B), f(i) € s(A). Hence, by Definition 3.5 of suitable model, the model
M is suitable for the set ¥ U {(i, A)}.

Suppose (Rp-—,) has been applied to . Then, =(A — B) € ¥, and we
get two outputs {A, =B} and {(~i, A), (i, B)}, where i is a new label on
the branch. Because the model 9 is suitable for 3, by Definition 3.5 of
suitable model, (1) M = A and M = B, or (2) s(B) € s(A) (M is D-
model). If (1) happens, by Definition of 2.1 and Definition 3.5 of suitable
model, the model 91 is suitable for the set ¥ U {A,—B}. If (2) happens,
there exists such a € I that a € s(B) and a ¢ s(A4). Additionally, by
Definition 3.5 of suitable model, there exists a function f: o (¥) — I'".
However, i is a new label on the branch. So we define the extension of f,
the function f’: o (X)U{i} — I with f’(¢) = a. Thus, by Definition 3.5
of suitable model, the model 91 is suitable for the set ZU{(~1, A), (i, B)}.

Let us assume that A = DD. The cases are similar to the former ones. In
models for DD, we have just the inverse inclusion and in tr(DD), inverse
tableau rules (Rpp-,) and (Rpp-—).

Let us assume that A = Eq. The cases are also similar to the former ones. In
models for Eq, we have just both inclusions and in tr(Eq), the tableau rules
(Rp—) and (Rpp— ). The tableau rule (Rgq-—) is a combination of the rules:
(Rp-—) and (Rpp-—.), which were checked for the proper inclusions.

Let us assume that A = S. We must consider three cases: (Rs_,), (Rs-—), and
(Rs).

e Suppose (Rg_,) has been applied to 3. Then, A — B € X, var(4) N

var(B) = 0, and we get output {(i, A), (i, B)}, where i is new on the
branch. Because the model 9t is suitable for X, by Definition 3.5 of suit-
able model, M = A — B and s(B)Ns(A) # 0§ (M is S-model). So, there is
some a € s(B) N s(A). Moreover, there exists a function f: o (X) — I.
Since ¢ is a new label on the branch, we define the extension of f, the
function f': o (X) U {i} — I" with f'(i) = a. Thus, by Definition 3.5 of
suitable model, the model 9 is suitable for the set ¥ U {(i, A), (¢, B) }.
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e Suppose (Rg-—) has been applied to X. Then, -(A — B) € ¥ and we
get two outputs {A,—~B} and {(i, A), (j, B)}, where i,j are new labels
on the branch and are different. Because the model 91 is suitable for
%, by Definition 3.5 of suitable model, (1) 9 = A and M = B, or (2)
s(B)Ns(A) = 0 (MM is S-model). If (1) happens, by definition of 2.1
and Definition 3.5 of suitable model, the model 901 is suitable for the set
Y U{A,-B}. If (2) happens, there exist such a,b € I" that a € s(4),
a & s(B), and b & s(A), b € s(B), s(B)Ns(A) = 0 and in S-models
the content of propositions is assumed to be non-empty. Additionally, by
Definition 3.5 of suitable model, there exists a function f: o (¥) — I".
However, i, j are new labels on the branch. So we define the extension of
f, the function f': o (X) U {i,j} — I with f'(¢) = a, f'(j) = b. Thus,
by Definition 3.5 of suitable model, the model 9t is suitable for the set
S U{(i, ), (7, B)}.

e Suppose (Rg) has been applied to ¥. Then, =(A — B), (i, A), (j, B), (k,
A) € 3, where 4, j are introduced by the rule (Rg——), we get the output
{(~k, B)} and thus, i and j are different. Because the model 97 is suitable
for 3, by Definition 3.5 of suitable model, s(B)Ns(A) = 0 (91 is S-model)
and there exists a function f: o (X) — T with f(i) € s(A), f(i) & s(B),
f(j) € s(A4), f(j) € s(B), f(k) € s(A), f(k) &€ s(B). Thus, by Definition
3.5 of suitable model, the model 9 is suitable for the set ¥ U {(~k, B)}.

Let us finally assume that A = R. We must consider three cases: (Rr—),
(Rr— (1)), and (Re_.(2).

e Suppose (Rr—.) has been applied to X. Then, A — B € ¥, and we get
the number of outputs equal to: m multiplied by n, where n(var(A)) =
{k1,...,km} and var(B) = {Bjy,..., B, }. Because the model 9 is suit-
able for 3, by Definition 3.5 of suitable model, M E A — B and
for some A; € var(A), n(4;) € s(Bj), for some B; € var(B), since
var(A) Nvar(B) = 0 (M is R-model). Let us assume than k; € s(B;).
If k; is a new label on the branch, we define the extension of f, the func-
tion f': o (X) U {k;} — I” with f'(k;) = k; and then f'(k;) € s(B;). If
for some reasons k; is not a new label on the branch, the function f is
sufficient to state that f(k;) € s(B;). In both cases, by Definition 3.5 of
suitable model, the model 91 is suitable for the set ¥ U {(k;, B;)}.

e Suppose (Rr-—(1)) has been applied to ¥. Then, (4 — B) € 3,
var(A) Nvar(B) = ), and we get two outputs: (a) {4,—-B} and (b)
{~k1,B1, ..., ~km,B1, ..., ~k1,Bn, ..., ~km, By}, where n(var(4)) =
{k1,...,km} and var(B) = {By,..., B, }. Because the model I is suit-
able for ¥, by Definition 3.5 of suitable model, either (a)’ 9t = A and
M = -B or (b) for all A; € var(A), n(A;) & s(B;), for all B; € var(B),
since var(A) Nvar(B) = @ (9 is R-model). If (a)’ happens, by Definition
3.5 of suitable model, the model 9 is suitable for the set ¥ U {A, ~B}.
If (b)’” happens, by Definition 3.5 of suitable model, the model 91 is suit-
able for the set YU {~k1, B1, ..., ~km, B1, ..., ~k1,Bn, ..., ~km, B,},
since either we use the existing function f: o (X) — T’ and then

f(k1) & s(B1), ..., f(km) € $(B1), ..., f(k1) € $(Bn), ..., f(kn) & s(Bn),
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or we extend it to the function f': o (¥) U {k1,...,kn} — TY, un-
der which (k1) = k1,...,f'(km) = km, and then (k1) & s(By), ...,
t'(km) € s(B1), ..., f'(k1) € s(Bp), ..., f'(kn) € s(By).

e Suppose (Rr-—(2)) has been applied to X. Then, =(A — B) € X,
var(A)Nvar(B) = (), and we get one output {A, —B}. Since the model M
is suitable to {=(A — B)} and var(A) Nvar(B) # 0 ("M is R-model), by
Definition 3.5 of suitable model, 91 is also suitable to the set XU{A, ~B}.

O

When we have a closure under tr(A) tableau rules, we can try to generate
A-model. Here we introduce the definition of generated structure.

Definition 3.7. (Structure generated) Let 3 C Ex. A structure generated by
(for short: X -structure) is (vs, sx) such that:

o vp(A)=1iff A€ 3, for any A € Var
o sy: For — P({i: (i, A) € })
o j € sxu(A) iff for some B € var(A): (i, B) € ¥, for any A € For.

In the case of A € {D,DD,Eq} a structure can be a model, if ¥ is a
branch consistent tr(A)-closure, but the case of S needs a little modification.

Corollary 3.8. Let X C Ex be a branch consistent tr(A)-closure, where A €
{D,DD,Eq,S,R}. Then there exists a structure (vs,ss) that is a A-model.

Proof. f ¥ C Ex is a tr(A)-closure of some set, where A € {D,DD,Eq,R},
and X is branch consistent, then the structure (vy,ss) is a A-model. It is
because truth conditions for D, DD, Eq, R require only set-theoretical rela-
tions/operations (Definition 2.1). Also the condition (uSA) is satisfied, which
is a result of application of the tableau rules (R;) and (R.;) in cases of
D, DD, Eq. One exception is logic S, because the S-models require non-empti-
ness of assigned sets. So in this case, we add to the set {i: (i, A) € £} a new ob-
ject a and redefine function sy, to function s§;: For — P({i: (i, A) € X}U{a})
in the following way:

{a} otherwise.

() = {sE(A) if s5(A) £ 0

Then, the structure (vy, s§) is an S-model. O

The following lemma enables us to prove completeness theorems for con-
sidered logics.

Lemma 3.9. (Completeness lemma.) Let A € {D,DD,Eq,S,R} and X be a
branch consistent closure under tr(A). Then there is a A-model such that for
any A € For, if A€ X, then M |= A.

Proof. Assume all the hypotheses. For A € {D,DD,Eq,S,R} there exists
a structure = (vy, sy) that is a A-model 9 (Corollary 3.8). We make an
inductive proof of the thesis.
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Base case. Let A € Var. Suppose A € X. Then, by Definition 3.7 9t = A.
Suppose that =A € X. Then, by Definition 3.7 9 ~ A, since ¥ is branch
consistent. So M = —A.

Inductive hypothesis. Let n € N. Let ¢ be a function of the complexity of
formulas. Suppose that for any A € For such that c(4) < n, if A € X, then
m = A.

Inductive step. Let A € For and and c(A) =n + 1.

The cases for formulas built by means of classical connectives and their
negations, i.e., BAC, =(B A C), == B, follow from the inductive hypothesis
and applications of the tableau rules (Rx), (R-r), (R-=), since X is a closure
under tableau rules tr(A). The cases for implication and negation depends on

the logic A.
Let us assume A = DD.
Let A := B — C. Since ¥ is a closure under tableau rules, (R_,) was

applied and (1) =B or (2) C' € X. If (1) happens, by the inductive hypothesis
M |= —B. If (2) happens, then by the inductive hypothesis 9 |= C'. Regardless
of whether (1) or (2) happens, we have: 9 = B implies MM = C. However,
the rule (Rpp—) still could be applied to B — C, if some (i, D) € X, where
var(D) C var(B). If there is no such expression, then sx(B) = 0 and sx(B) C
su(C). If there is such expression, then i € sx(B), and by the rule (Rpp-,),
i € su(0), so sx(B) C sx(C). Both by the definition of generated model 3.7.
Putting these together with: 9t = B implies M = C, we get M |= B — C.

Let A := =(B — (). Since ¥ is a closure under rules, so the rule
(Rpp-—) was applied. So (1) B,~C € ¥ or (2) (i,B),(~i,C) € ¥ where
i is a new label on the branch. If (1) happens, then by the inductive hypoth-
esis M = B and M = —C. So, M = ~(B — C). If (2) happens, then by the
inductive hypothesis i € sx(C) and i € su(B), so sx(B) € su(C). Thus in
both cases MM = —(B — C), by the definition of model 2.1.

Let us assume A = D. The proofs of the cases for implication and negated
implication are similar to the proofs for A = DD. We examine the tableau rules
(R-), Rpp—), and (Rpp-—,), under assumption that in the D-models we
have the condition of the inverse inclusion of contents for the implication.

Let us assume A = Eq. The case for implication in Eq includes cases
for D and DD. In Eqg-models, in the truth condition for implication we have
the identity of contents, so two inclusions. So, we would have to check rules:
(Rp-) and (Rpp-,). For the case of negated implication, we have the tableau
rule (Rgq-—). The checking of the tree possibilities reduces to what we have
already done for the negated implication case in DD plus the inverse rule (and
the inverse inclusion) in the case of D.

Let us assume A = S.

Let A := B — C. Since X is a closure under tableau rules, (Rg_,) was
applied and (i, B), (i,C) € ¥, where 7 is new on the branch. By the definition
of generated model 3.7, i € sx(B) and i € sx(C), so i € sx(B) N su(C)
which fulfills one part of the truth condition for the implication in S-models:
su(B)Nss(C) # 0. Since X is a closure under tableau rules, so also (R_,) was
also applied and (1) =B or (2) C € . If (1) happens, then by the inductive
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hypothesis M = —B. If (2) happens, then by the inductive hypothesis 9 = C.
Regardless of whether (1) or (2) happens, putting all facts together, we have
ME=B—C.

Let A := (B — (). Since ¥ is a closure under tableau rules, (Rg-_,)
was applied and (1) B,~C € ¥ or (2) (i, B), (j,~C) € 3, where i,j are new
on the branch and i # j. The case (1) was examined for DD. For case (2)
let us notice that ¢ and j are different and if (k, B) € ¥ (or (k,C) € X) then
(~k,C) € X (or (k,~B) € %), by the tableau rule (Rg). So, by the definition of
generated model 3.7, s5(B)Nsx(C) = 0. Whether (1) or (2), M E (B — C).

Let us assume A = R.

Let A:= B — C and var(A) Nvar(B) = () (if var(4) Nvar(B) = § then
the case is similar to the former logics, since then (R_,) was applied). Since 2
is a closure under tableau rules, (Rr—) was applied and (k;, C;) € X, where
k; € n(var(A)) and B; € var(C). By the definition of generated model 3.7,
ki € sx(C), which fulfills one part of the truth condition for the implication
in R-models. Since ¥ is a closure under tableau rules, so also (R_,) was also
applied and (1) =B or (2) C € X. If (1) happens, then by the inductive
hypothesis 9 = —B. If (2) happens, then by the inductive hypothesis M = C.
Regardless of whether (1) or (2) happens, putting all facts together, we have
MpE=B—C.

Let A := =(B — C). We have two possibilities: (a) var(4) Nvar(B) = ()
and the rule (Rr-—(1)) was applied, (b) var(A4) Nvar(B) # 0 and the rule
(Rr-—(2)) was applied, since ¥ is a closure under rules. In case of (a) we
have two outputs: (al) B, =C and (a2) ~kq,C1, ...~ky,C1, ...~ki,Cp,

.. ~kpm, Cp, where n(var(B)) = {k1,...,kn} and var(C) = {C1,...,Cp}.
In case of (al), by the inductive hypothesis, 9 | B and 9 = —-C. So,
M = (B — C). In case of (a2), by the definition of generated model
3.7, ki & sx(C), for all k; € n(var(B)), so it is not that Rg(B,C). Thus,
M = ~(B — (). In case of (b) by the inductive hypothesis M = B and
M = —C. So, M | —~(B — (). Hence, in all cases M | —~(B — (), by the
definition of model 2.1. O

Finally, we can prove the main theorem.

Theorem 3.10 (Adequacy theorem). Let XU{A} C For and A € {D,DD, Eq, S,
R} Then, Y >p A foz ':A A.

Proof. Assume all the hypotheses.

(=) Suppose ¥ > A. Hence, by Definition 3.3, there is a finite I' C 3
such that any tr(A)-closure of I'U {—A} is branch inconsistent. Suppose there
is a A-model M = (v, s) such that MM = ¥ and M = —A. By Definition 3.5, M
is suitable for I' U {=A}. By Lemma 3.6 there is tr(A)-closure A of I' U {—A}
for which 9t is suitable. However, such a closure must be branch inconsistent.
Thus in the closure either there is B € For such that 9t = B and 9 = B or
there are (i, B), (~i, B) € Ae and under some function f — since 9 is suitable
to A (Definition 3.5) — f(i) € s(B) and f(i) ¢ s(B). Hence, for any A-model
M: M = X implies M = A.
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(<) Suppose X ¥p A. So, for any finite I' C ¥ there is a branch consistent
tr(A)-closure A of TU{—A}, such that TU{—-A} C A. Hence, there is a branch
consistent tr(A)-closure A’ such that ¥ U {—-A} C A’. Otherwise, any of such
a closure would consist some branch inconsistency. But by Definition 3.3 this
would mean that for some finite I' C 3 no tr(A)-closure of I' U {—A} is branch
consistent. As a consequence, by Lemma 3.9, there is a I'-model for A such
that 9 |= ¥ U {—A}. Therefore, by Definition 2.1, ¥ =5 A. O

Applying the previous theorem, we can obtain the decidability of the
logics under study. Since a logic A € {D,DD,Eq,S,R} is adequate to the
tableau system defined by tr(A) (Theorem 3.11), it is sufficient to prove that
> is decidable. Assuming that the A-logic tableau rules can be applied a finite
number of times, we get only finite closures under these rules that need to be
examined. So, we have the theorem.

Theorem 3.11. (Decidability theorem). Let A € {D,DD,Eq,S,R}. Then A
is decidable.

4. Conclusion

We proposed tableau systems for five logical systems defined by set-assignment
semantics. Our approach combines two aspects: the classic truth aspect and a
syllogistic aspect. In case of expressions with labels we treat formulas as names
and labels as denotations. Additionally, our tableaux are finite. But different
non-classical logics, like modal logics K, T, KTB, S4, S5 and S4Grz; in-
tuitionistic logics IPL and Johansson’s MIL; paraconsistent logic J3; and
many-valued logics Lg, L,,, Ly,, K3, G3 and Gy, have set-assignment seman-
tics as well (see [6,16,17]). Thus, the question of future research is to extend
the proposed framework to these systems and to face the problem of infinite
tableaux, which, for example, occurs in the case of transitivity of accessibility
relation.
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1. =(A— A)

2. A LA  (Reeos) 1

3. —A vaA (REq—'—>)a 1
® ®

FIGURE 1. For any A € For, bgqA — A

1. =(A— A)

N

2. A 1,4 (Rs—), 1
3. —A 2,4 (Rs=ss), 1
4. ® ~1,A  (Rsg), 23,2

®

F1GURE 2. For any A € For, >gA — A

1. —\(A — A)

2. A (RRﬁ%(Q))’ 1

3. —|A (RR—\—>(2))a 1
&

FI1GURE 3. For any A € For, brA — A

Log. Univers.

In Appendix we would like to present examples of tableau proofs for the consid-
ered logics. Let us focus on the formulas (1) and (4) introduced in the section
devoted to semantic presentation of Epstein’s logics. For starters, let us note
that any formula of the form A — A is a valid formula for any of Epstein’s
logic. We can easily check that any time we get —(A — A) on the branch we
can close it. We consider this situation only for Eq, S and R (see Figs. 1, 2

and 3).

In what follows we present tableaux:
e for (1): Figs. 4, 6, 8 and 10 (we can read off the tableau proof in the

system of DD from the tableau proof in the system of Eq)

o for (4): Figs. 5, 7, 9 and 11 (the tableau proof in the system of DD is
similar to the tableau proof in the system of D).
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L “((pr A (@) — (P T))
/\
2. p—(@—=a)AN(@—(r—r)) Lp—(r—r) (Rp-—), 1
3 p—(r—r) ~Lp—(@—=a)A(G@—(r—r1)) (Rp-—), 1
4. p—(¢g—q) Lp 1r (RA), 2; (Ry), 2
5. q—(r—r) ~l,p ~1,p (RA), 2; (Rei), 3
6. p 1,7‘4’7‘ Nlaq N17q (RD—\HL 37 (Rwl)y 3
7. —(r—r) ~Lp ~lLr ~1,r (Rp-—), 3; (Rwi), 3
8. ® 1,r ® ® (Rq), 6
9. 17q (RD—>)7 5
10. 1,p (Rp—), 4
®
FIGURE 4. bp((p+ @) A (¢ 7)) — (p+ 1)
1 ~((p% q) = (¢ p))
2 p—(¢—q) Lg— (p—p) (Rp--), 1
3. —g=(—p) ~Lp—(—q) (Rp-—), 1
4. g Lp—p l,g 1p (Rp-—), 3; (Ri), 2
5 =p—p ~lg ~Lp ~Lp (Rp-—), 3; (Ri), 3
6 & 1ap N]-aq Nlaq (Ri), 4; (RNi)? 3
/\ & &
7 P q4—q (R-), 2
8 -q q (R-), 7
FIGURE 5. Pp(p+ q) — (¢ p)
L. “((pr ) A(@gr 1) = ()
2. p=l@—=)A(g—=(r—r) Lp=(—r) Lp—=(@—=9)Alg=(—=r)  (Ree-) 1
3. Sp—(r—r) ~Lp—@—=))Ala—(F—r) ~Lp—(r—r) Req-—), 1
N T
4. p—(¢—q) Lp Lr Lp Lg Lr (Rn), 2; (Ry), 2
5. qg—(r—r) ~Lp ~Lp ~Lp ~Lp ~Lp (Ra), 25 (Res), 3
6. ~1,qg ~1,q ~l,r ~1,r ~1,r (Rei), 3
7. ~1,r ~1,r ® ® (Rei), 3
®
8. P 1,r—r 1,p (Reg-—), 3
9. ~(r—r) ~l,p ~lr—r (Req-—), 3
10. ® 1,r ~1,r (R;), 8; (Rwi), 9
11. 1q 1,q (Rp-), 5; (Rpp—), 4
12. 1,p 1,7 (Rp—), 4; (Rpp—), D
® ®
FIGURE 6. Ppq((p @) A(g 7)) — (p 1)



216

b

X NS o

No ok WD

9.
10.
11.

12.
13.
14.
16.
17.
18.

20.

21.

22.

23.

24.

~((p3+q) = (¢%p)
N
1,q— (p—p)
~Lp—(q—q)

p—(¢—q)
(g — (p—p))

q Lp—p 1lyg

=(p—p) ~l,g ~L,p—p

® 1,p ~1,p
l,g—q 1L1p
1,q ®
®

FIGURE 7. Dgq(p % q) — (¢ % p)

“(((pra)n(geT)) = (p+T))

(p—=(@—a)N(g— (r—r))

-(p— (r—mr))
p— (qa— q)
q— (r—r)

1,p
1,9 —q

T. Jarmuzek, M. Klonowski

Lp—(¢g—q)
~1,q— (p—p)
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~2,(p—= (@ —q) A(g— (r—r))
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(RECI“*’)7 1
(REq—*—>)7 1
(REq-—), 3; (Ry), 2
(Reg-—) 3; (Ri), 3
(Ri), 45 (Rwi)s 55 (Ri), 3
(Rpp—), 2, 6; (Rp—), 2, 4
(Ri), 7

(Rg——), 1

(R’Sﬁﬂ)y 1

(Rn), 25 (Rs), 3, 2,3
(RA)s 25 (Raq), 4
(Rs—), 45 (Rg), 4
(Rs— ), 45 (Ri), 4

(Ri), 75 (Rui)s 3
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(Rg——), 3
(Rq), 13

(Rg), 12, 13, 12
(R~i), 15
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(Rg), 14, 12, 11
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L “((p+ q) — (g% p))
/\
2. p—(@—qg Lp—I(g—q (Rs-—), 1; (Rs-—)
3. —@g—=®—p) 29— (@—0p (Rs-—), 1; (Rs-—)
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®

FIGURE 11. pr(p® q) — (¢ % p)
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