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Abstract We demonstrate a systematic, automated way of discovery of a large number of new geometry theorems
on regular polygons. The applied theory includes a formula by Watkins and Zeitlin on minimal polynomials of
cos 2π

n , and a method by Recio and Vélez to discover a property in a plane geometry construction. This method
exploits Wu’s idea on algebraizing the geometric setup and utilizes the theory of Gröbner bases. Also a bijective
function is given that maps the investigated cases to the first natural numbers. Finally, several examples are shown
that are all previously unknown results in planar Euclidean geometry.

Keywords Automated theorem proving · Computer algebra · Regular polygons · Elimination · Minimal
polynomials · Approximations · π · WebAssembly · GeoGebra
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1 Introduction

Obtaining interesting mathematical theorems automatically is a dream of many mathematicians. By defining a
formal language (with its logical axioms) on a research field, and a set of (non-logical) axioms, one can deduce
various statements only by the repeated application of inference rules to the axioms. In principle, proofs for all
propositions in a research field can be traced back to consecutive uses of the axioms.

Several axiomatizations are available for many research fields in mathematics, however, interesting theorems
(with proofs) are more difficult to find. One problem is that combining certain inference rules to the axioms usually
produces an unmanageable big database of propositions, including trivial or uninteresting ones. There is already
remarkable work done in this field, including [22] which is one of the first reports, and, in particular, producing
proofs in elementary planar geometry, we refer to [1,3,5] where the combinatorial explosion is also addressed. The
other problem is to identify which propositions are interesting enough to call them theorems, here we refer the
reader to [6,9].
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Fig. 1 Karst’s statement
(M is the midpoint of the
radius LN )

In this paper we limit our considerations to planar Euclidean geometry, namely to find interesting properties in
a regular polygon. The literature on listing such properties is, actually, huge, including constructible polygons (by
compass and straightedge or origami, for example). In fact, from the very start of the availability of computer algebra
systems (CAS) and dynamic geometry software (DGS), namely, the 1990s, non-constructible polygons can also be
better observed, either numerically or symbolically. One example is Karst’s statement (Fig. 1) that claims parallelism
of segments OB and JM in a regular nonagon, constructed with Mathematica in http://mathworld.wolfram.com/
RegularNonagon.html by citing [2] (see also https://www.geogebra.org/m/AXd5ByHX#material/x5u93pFr for a
freely available online resource). Such theorems are, however, difficult to find in the literature, and they seem hard
to discover in a purely mechanical way.

In this study we deal with a simple geometric system. We consider the following “axioms”:

1. A regular n-gon with vertices (0, 0) and (1, 0) is given. The vertices of the regular n-gon are called points.
2. A connection of two points is called a segment.
3. Intersection point of two segments is considered as a point. (The segments can be lengthened to form a line if

the segments are not intersecting.)

By using the last two “axioms” again and again, we can construct a large set of new points and segments. When
considering all possible segments defined in this way, we can compute the lengths of them symbolically, and,
depending on the “simplicity” of the symbolic result we classify the segment either as “interesting” or “not inter-
esting”. This is, of course, somewhat subjective, but this approach can be slightly modified later by allowing other
results interesting enough, or by defining some other points as well for the domain of interest.

In this paper the application of the last two “axioms” will be limited to a certain number. This will limit our
considerations, but the obtained results will be still interesting.

The paper consists of the following parts: In Sect. 2 the mathematical background is explained on computing a
given segment symbolically. Section 3 presents some manually obtained new results. Section 4 demonstrates how
the mathematical computations can be automated by using the symbolic tool RegularNGons and its numerical
counterpart. Finally, Sect. 5 depicts some future ideas.

The papers [17,18] can providemore information on the topic.Also, to recall some fundamental ideas,without any
further notices we will refer to [19] which has a similar structure like this paper has, however, we will communicate
several new ideas here—most importantly some new possible parameters in Sect. 4.2, a report on the availability of
a numerical study tool in Sect. 4.3, a formal description in Sect. 4.5 with proofs, and some detailed explanations in

http://mathworld.wolfram.com/RegularNonagon.html
http://mathworld.wolfram.com/RegularNonagon.html
https://www.geogebra.org/m/AXd5ByHX#material/x5u93pFr
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Examples 1, 2 and 5. Furthermore, very recent results are shown in Sect. 4.7. Also, the list of references contains
some updated items.Also aminor correction has been added on the structure of the obtained polynomials in Sect. 3.2.

In this paper we give a collection of theorems that are of geometric kind and related to a concrete setup of a
regular polygon. Also, some propositions are discussed that contain preliminary knowledge or general correlations.

We remark that the “geometry theorems” we obtain in this article are related to lengths appearing in regular
polygons. Therefore these results may also be considered as “algebraic theorems” because the lengths are always
expressed by roots of algebraic equations. On the other hand, the method we use can be easily extended to focus
on “more geometric” properties like perpendicularity or parallelism of the obtained segments. Also, combining
some “algebraic theorems” we can even conclude congruency of triangles (see the third property in Theorem 3.4 in
Sect. 2), among others. Finally, concurrency of lines can also be handled in a way that is described in Example 8.

2 Mathematical Background

In this section we discuss the mathematical background on a possible method to handle regular polygons with
means in algebraic geometry.

2.1 Constructibility

The algebraization of the setup of a planar geometry statement is a well known process since the revolutionary
book [4] of Chou’s. It demonstrates on 512 mathematical statements how an equation system can describe a
geometric construction, and by performing some manipulations on the equation system, a mechanical proof can
be obtained. Chou’s work was one of the first publicly available applications of Wu’s algebraic geometry method
[29]. It focuses mainly on constructible setups, that is, mostly on such constructions that can be created only by
using the classic approach, namely by compass and straightedge. In addition, there is a proof on Morley’s trisector
theorem presented which assumes a non-Euclidean, cubic way of being constructed, however, the explicit way of
construction is successfully avoided, therefore the theorem is manageable. Also, Wu’s method was successfully
used in theorems that cannot be constructed with compass and straightedge, see [26] for a recent example.

It is well known (Gauß, 1801, Wantzel, 1837, see [25,27]) that a regular n-gon is constructible by using compass
and straightedge if and only if n is the product of a power of 2 and any number of distinct Fermat primes (including
none). We recall that a Fermat prime is a prime number of the form 22

m + 1. By using this theorem the list of the
constructible regular n-gons are:

n = 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, . . .

A generalization of this result (Pierpont, 1895, see [23]) by allowing an angle trisector as well (for example,
origami folding steps), is that a regular n-gon is constructible if and only if

n = 2r · 3s · p1 · p2 · · · pk,
where r, s, k ≥ 0 and the pi are distinct primes of form 2t · 3u + 1 [10]. The first constructible regular n-gons of
this kind are

n = 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, . . .

From this second list the cases n = 11, n = 22 and n = 23 are missing again, and, as a natural consequence,
there are much less scientific results known on regular 11-, 22- and 23-gons than for n-gons appearing in the lists.
Later we will show some—to our best knowledge—new results on the cases n = 11 and n = 23, among other ones.

2.2 An Algebraic Formula for the Vertices

From now on we assume that n ≥ 1. The cases n = 1, 2 have no geometrical meaning, but they will be useful from
the algebraic point of view.



730 Z. Kovács

In the algebraic geometry approach the usual way to describe the points of a construction is to assign coordinates
(xi , yi ) for a given point Pi (i = 0, 1, 2, . . .). When speaking about a polygon, in many cases the first vertices are
put into coordinates P0 = (0, 0) and P1 = (1, 0), and the other coordinates are described either by using exact
rationals, or the coordinates are expressed as possible solutions of algebraic equations.

For example, when defining a square, P2 = (1, 1) and P3 = (0, 1) seem to make sense, but for a regular triangle
two equations for P2 = (x2, y2) are required, namely x22 + y22 = 1 and (x2 − 1)2 + y22 = 1. This equation system

has two solutions, namely x2 = 1
2 , y2 =

√
3
2 and x2 = 1

2 , y2 = −
√
3
2 . It is well known that there is no way in the

algebraic geometry approach to avoid such duplicates, unless the coordinates are rational. In other words, if both
minimal polynomials of the coordinates are linear (or constant), then the duplicates can be avoided, otherwise not.
Here, for x2 we have x2 − 1

2 (= 0), but for y2 the minimal polynomial is y22 − 3
4 (= 0).

In this paper wewill find convenient to enlarge the notion ofminimal polynomial by considering certainmultiples
of it, to have integer coefficients. That is, we will say that also 2x2 − 1 is a minimal polynomial of x2 = 1

2 , and

similarly, 4y22 − 3 is a minimal polynomial of
√
3
2 . The correspondence between them can be presented by calling

them associates and using the notation x2 − 1
2 ∼ 2x2 − 1.

To express the coordinates of the vertices, minimal polynomial of cos 2π
n will play an important role. The paper

[28] suggests an algorithm to obtain the minimal polynomial pc(x) of cos 2π
n , based on the Chebyshev polynomials

Tj (x) of the first kind (see Algorithm 1—in our computations in this paper, however, we usually skip the division
in the last step).1

Algorithm 1 Computing the minimal polynomial of cos 2π
n

1: procedure cos2piOverNMinpoly(n)
2: pc ← Tn(x) − 1
3: for all j | n ∧ j < n do
4: q ← Tj (x) − 1
5: r ← gcd(pc, q)

6: pc ← pc/r

7: pc ← SquarefreeFactorization(pc)
8: return pc/LeadingCoefficient(pc)

Assume we have an equation

pc(x) = 0. (2.1)

By considering the equation

x2 + y2 = 1 (2.2)

as well, after eliminating x we can obtain a polynomial ps(y) such that ps
(
sin 2π

n

) = 0. Table 1 shows the minimal
polynomials for n ≤ 17 in the enlarged sense of definition.

It is clear, that—not considering the cases n = 1, 2, 3, 4, 6—the number of roots of pc is more than one, therefore
the solution of the equation system (2.1) and (2.2) is not unique. The number of solutions for (2.1) depends on the
degree of pc, and—not considering the cases n = 1, 2—the number of solutions for (2.2) is two for each root of
pc(x), therefore the number of solutions for (2.1) and (2.2) is usually 2 · deg(pc). As a result, the point
P =

(
cos

2π

n
, sin

2π

n

)

cannot be exactly determined by an algebraic equation in the algebraic geometry approach. Table 2 shows the degree
of ambiguity for different values of n.

1 See also https://oeis.org/A181872/a181872.pdf that proposes an algorithm to compute the minimal polynomial of sin 2π
n . Further

information on the topic can be found in [22] and [12].

https://oeis.org/A181872/a181872.pdf
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Table 1 List of minimal polynomials of cos 2π
n , n ≤ 17

n Minimal polynomial of cos 2π
n

1 x − 1

2 x + 1

3 2x + 1

4 x

5 4x2 + 2x − 1

6 2x − 1

7 8x3 + 4x2 − 4x − 1

8 2x2 − 1

9 8x3 − 6x + 1

10 4x2 − 2x − 1

11 32x5 + 16x4 − 32x3 − 12x2 + 6x + 1

12 4x2 − 3

13 64x6 + 32x5 − 80x4 − 32x3 + 24x2 + 6x − 1

14 8x3 − 4x2 − 4x + 1

15 16x4 − 8x3 − 16x2 + 8x + 1

16 8x4 − 8x2 + 1

17 256x8 + 128x7 − 448x6 − 192x5 + 240x4 + 80x3 − 40x2 − 8x + 1

Table 2 Degree of ambiguity for
(
cos 2π

n , sin 2π
n

)
, 3 ≤ n ≤ 23, according to the equations (2.1) and (2.2)

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Degree 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22

Actually, for the case n = 4 we can find a better practical way than considering the Eqs. (2.1) and (2.2). The
point P2 can be described with the equations x2 = 1, y2 = 1. Here we can avoid using the quadratic Eq. (2.2) that
introduces an unnecessary root for y.

Later we will show that Table 2 can be computed with Euler’s totient function as well, that is, the degree equals
to ϕ(n):

Proposition 2.1 Let n > 2. Then the equation system (2.1) and (2.2) has ϕ(n) different solutions in (x, y).

Nowweare ready to set up additional formulas to describe the coordinates of the vertices of a regularn-gon, having
its first vertices P0 = (0, 0) and P1 = (1, 0), and the remaining vertices P2 = (x2, y2), . . . , Pn−1 = (xn−1, yn−1)

are to be found. By using consecutive rotations and assuming x = cos 2π
n , y = sin 2π

n , we can claim that
(
xi
yi

)
−

(
xi−1

yi−1

)
=

(
x −y
y x

)
·
((

xi−1

yi−1

)
−

(
xi−2

yi−2

))

and therefore

xi = −xyi−1 + xi−1 + xxi−1 + yyi−2 − xxi−2, (2.3)

yi = yi−1 + xyi−1 + yxi−1 − xyi−2 − yxi−2 (2.4)

for all i = 2, 3, . . . , n − 1.
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3 Manual Results on Regular 5- and 11-gons

In this section we present a well-known statement on a regular 5-gon that can be obtained by using the formulas
from the previous section. Also, we list some properties of a regular 11-gon, obtained with the same approach.

From now on we use a special notation to describe the performed steps when using the “axioms”. n will be fixed.
The vertices of the regular n-gon will be denoted by P0, P1, P2, . . . , Pn−1. To simplify Figs. 2 and 3, these points
are labelled by their indices, that is, 0, 1, 2, . . . , 4 will refer to the points P0, P1, P2, . . . , P4. In addition, points
A, B,C, D, E, F,G and H will be some fixed vertices of the n-gon. (We always use this notation in this paper,
except in Fig. 4). By using axiom 2, segments d = AB, e = CD, f = EF and g = GH will be defined. Now, by
using axiom 3, intersection of segments d and e will be denoted by R. Similarly, intersection of segments f and g
will be denoted by S. By using axiom 2 again, the segment RS can be considered. Its length will be denoted by q.

3.1 Some Properties of a Regular Pentagon

Theorem 3.1 Consider a regular pentagon (Fig. 2) with vertices P0, P1, . . . , P4. Let A = P0, B = P2, C = P1,
D = P3, E = P0, F = P2, G = P1, H = P4. Let us define diagonals d = AB, e = CD, f = EF, g = GH and

intersection points R = d ∩ e, S = f ∩ g. Now, when the length of P0P1 is 1, then the length of RS is q = 3−√
5

2 .

This result is well-known from elementary geometry, but herewe provide a proof that uses the developed formulas
from Sect. 2. We will use the variables x0, x1, x2, x3, x4 for the x-coordinates of the vertices, y0, y1, y2, y3, y4 for
the y-coordinates, and x and y for the cosine and sine of 2π/5, respectively. Points P0 and P1 will be put into (0, 0)
and (1, 0).

By using Table 1 and Eqs. (2.3) and (2.4), we have the following hypotheses:

h1 = 4x2 + 2x − 1 = 0,

h2 = x2 + y2 − 1 = 0,

h3 = x0 = 0,

h4 = y0 = 0,

h5 = x1 − 1 = 0,

h6 = y1 = 0,

Fig. 2 A well-known
theorem on a regular
pentagon
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Fig. 3 A variant of the
theorem in a regular
star-pentagon

h7 = −x2 + −xy1 + x1 + xx1 + yy0 − xx0 = 0,

h8 = −y2 + y1 + xy1 + yx1 − xy0 − yx0 = 0,

h9 = −x3 + −xy2 + x2 + xx2 + yy1 − xx1 = 0,

h10 = −y3 + y2 + xy2 + yx2 − xy1 − yx1 = 0,

h11 = −x4 + −xy3 + x3 + xx3 + yy2 − xx2 = 0,

h12 = −y4 + y3 + xy3 + yx3 − xy2 − yx2 = 0.

Since R ∈ d and R ∈ e, we can claim that

h13 =
∣∣∣∣
∣∣

x0 y0 1
x2 y2 1
xr yr 1

∣∣∣∣
∣∣
= 0, h14 =

∣∣∣∣
∣∣

x1 y1 1
x3 y3 1
xr yr 1

∣∣∣∣
∣∣
= 0, (3.1)

where R = (xr , yr ). Similarly,

h15 =
∣
∣∣∣∣∣

x0 y0 1
x2 y2 1
xs ys 1

∣
∣∣∣∣∣
= 0, h16 =

∣
∣∣∣∣∣

x1 y1 1
x4 y4 1
xs ys 1

∣
∣∣∣∣∣
= 0, (3.2)

where S = (xs, ys). Finally we can define the length |RS| by stating

h17 = q2 −
(
(xr − xs)

2 + (yr − ys)
2
)

= 0.

From here we can go ahead with two methods:



734 Z. Kovács

1. We directly prove that q = 3−√
5

2 . As we will see, this actually does not follow from the hypotheses, because
they describe a different case as well, shown in Fig. 3. That is, we need to prove a weaker thesis, namely that

q = 3−√
5

2 or q = 3+√
5

2 , which is equivalent to
(

q − 3 − √
5

2

)

·
(

q − 3 + √
5

2

)

= 0.

Unfortunately, this form is still not complete, because q is defined implicitly by using q2, that is, if q is a root,
also −q will appear. The correct form for t is therefore

t =
(

q − 3 − √
5

2

)

·
(

q − 3 + √
5

2

)

·

·
(

−q − 3 − √
5

2

)

·
(

−q − 3 + √
5

2

)

= 0,

that is, after expansion,

t = (q2 − 3q + 1) · (q2 + 3q + 1) = q4 − 7q2 + 1 = 0.

Proving the thesis t = 0 can be done by contradiction: we insert t · z − 1 = 0 into the equation system
{h1, h2, . . . , h17} and get a contradictory equation system. This approach is based on the Rabinowitsch trick,
introduced by Kapur in 1986 (see [14]).

2. We can also discover the exact value of q by eliminating all variables from the ideal 〈h1, h2, . . . , h17〉, except
q. We will follow this second method in the rest of the paper. This approach was suggested by Recio and Vélez
in 1999 (see [24]). By obtaining a polynomial of q we actually get a product of minimal polynomials of the
candidates for q. Elimination delivers an ideal, and since it contains the only variable q, it has to be generated
by a single polynomial. We will use such polynomial for this generator that has integer coefficients and they are
coprimes.

The first method may be more natural from the classical point of view, but for automation the second one fits
better. Let us emphasize that the first method can be used only after one has a conjecture already. By contrast, the
second method can be used before having a conjecture, namely, to find a conjecture and its proof at the same time.

For the first method we must admit that in Wu’s approach there is no way to express that the length of a segment

is 3−√
5

2 , after making our conjecture. Instead, we need to use the minimal polynomial of the conjectured number.

Actually, q2 −3q+1 is the minimal polynomial of both 3−√
5

2 and 3+√
5

2 , and q2+3q+1 is of− 3−√
5

2 and− 3+√
5

2 .
In fact, given a length q in general, we need to prove that the equation t = t1 · t2 = 0 is implied where t1 and t2 are
the minimal polynomials of the expected q and −q, respectively. Even if geometrically t1 = 0 is implied, from the
algebraic point of view t1 · t2 = 0 is to be proven.

Since q appears only in h17, and only as a square, it is obvious that

Proposition 3.2 q always appears to an even power in t.

Finally, when using the second method, by elimination (here we utilize computer algebra), we will indeed obtain
that

〈h1, h2, . . . , h17〉 ∩ Q[q] = 〈q4 − 7q2 + 1〉.
This confirms that both methods yield the same result.

3.2 Regular Star-Polygons

Before going further, we need to explain the situation with the regular star-pentagon in Fig. 3. Here we need to
mention that the equation h1 = 4x2+2x−1 = 0 describes not only cos(2π/5) but also cos(2 ·2π/5), cos(3 ·2π/5)
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and cos(4 · 2π/5), however, because of symmetry, the first and last, and the second and third values are the same.
We can think of these values as the projections of z1, z2, z3, z4 on the real axis, where

z j = (cos(2π/5) + i sin(2π/5)) j = cos( j · 2π/5) + i sin( j · 2π/5),

j = 1, 2, 3, 4. In other words, z j are the primitive 5th roots of unity.
That is, in this special case (for n = 5) h1 is a minimal polynomial of Re z1(= Re z4) and Re z2(= Re z3). By

considering the formulas (2.3) and (2.4) we can learn that the rotation is controlled by the vector (x, y), where 2π
n

is the external angle of the regular n-gon. When changing the angle to a double, triple, . . ., value, we obtain regular
star-n-gons, unless the external angle describes a regular (star-) m-gon (m < n).

This fact is well-known in the theory of regular polytopes [7], but let us illustrate this property by another
example. When choosing n = 6, we have h′

1 = 2x − 1 = 0 that describes cos(2π/6) = cos(5 · 2π/6). Now by
considering z′1, z′2, z′3, z′4, z′5 where

z′j = cos( j · 2π/6) + i sin( j · 2π/6),

j = 1, 2, 3, 4, 5, we can see that z′2 can also be considered as a generator for cos(1 · 2π/3) (when projecting it

on the x-axis) since 2 · 2π/6 = 1 · 2π/3. That is, z′2(= z′4) is not used when generating the minimal polynomial
of cos(2π/6) (it occurs at the creation of the minimal polynomial of cos(2π/3)), and this is the case also for z′3
(because it is used for the minimal polynomial of cos(2π/2)). In other words, all z′j are 6th roots of unity, but z′2
and z′4 are also the primitive 3rd roots of unity and z′3 is the primitive square root of unity.

An immediate consequence is that z′j is used as a generator in the minimal polynomial of cos(2π/6) if and only
if j and 6 are coprimes, but since cos(2π/6) = cos(5 · 2π/6), only the first half of the indices j play a technical
role. In general, when n is arbitrary, the number of technically used generators are ϕ(n)/2 (the other ϕ(n)/2 ones
produce the same projections).

Finally, when considering the equation x2 + y2 = 1 as well, if n ≥ 3, there are two solutions in y, hence the
hypotheses describe all cases when j and n are coprimes (not just for the half of the cases, that is, for 1 ≤ j ≤ n/2).
Practically, the hypotheses depict not just the regular n-gon case, but also all regular star-n-gons. It is clear, after
this chain of thoughts, that the number of cases is ϕ(n) (which is the number of positive coprimes to n, less than n).
From this immediately follows that the degree of ambiguity for

(
cos 2π

n , sin 2π
n

)
is exactly ϕ(n), thus Proposition 2.1

is proven.
Also, it is clear that there exists essentially only one regular 5-gon and one star regular 5-gon (namely, {5/2},

when using the Schläfli symbol, see [7]). But these are just two different cases. The other two ones, according to
ϕ(5), are symmetrically equivalent cases. The axis of symmetry is the x-axis in our case.

On the other hand, by using our method, it is not always possible to distinguish between these ϕ(n) cases only
by considering the factorization over Q. Let us sketch up some difficulties here. The polynomial t that is obtained
via elimination, usually has only real roots—half of them are positive and the others are negative. There are two
main cases:

1. t is irreducible over Q:

(a) If deg t = 2, t = q2−c, where c is a rational. In this case clearly q = √
c follows and the solution is unique.

(b) deg t > 2. In this case t is at least quartic (see Proposition 3.2) and therefore it contains at least 4 different
real roots, at least 2 of them are positive and have geometric meaning. But, because t is irreducible over Q,
by using only polynomial equations it is not possible to distinguish between its positive roots. We will see
further details in Example 1 in Sect. 4.5.

2. Otherwise, the resulting polynomial t is a product of two polynomials t1, t2 ∈ Q[q], and the half of the union
of their roots are positive, while the others are negative. On the other hand, the positive roots can be placed in
several combinations in t1 and t2 in general:

(a) In our example in this section there are two positive roots in t1 and two negative ones in t2.When considering
similar cases, the positive roots can always occur in, say t1, and the negative roots then in t2. Albeit the
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elimination delivers the product t = t1 · t2, clearly t2 cannot play a geometrical role (since negative length
has no meaning), therefore t1 can be concluded.
However, if t1 contains more than one (positive) root, those roots cannot be distinguished without continuing
the factorization over R. This is the case in our concrete example as well.

(b) In general, t1 may contain a few positive solutions, but t2 may also contain some other ones. In such cases
the positive solutions in t1 and t2, respectively, cannot be distinguished from each other.
Such an example is the polynomial t = t1 · t2 where t1 = q2 − q − 1 and t2 = q2 + q − 1. It describes the

length of the diagonal of a regular (star-) pentagon, namely both lengths
√
5±1
2 . Here t1 contains one of the

positive roots, namely
√
5+1
2 , while t2 the other one,

√
5−1
2 . At the end of the day, only t can be concluded

(that is, neither t1 or t2 can be concluded exclusively), none of its factors can be dropped because both
contain geometrically useful data.

As a conclusion we learn that factorization over R is a requirement to identify all roots of t precisely that may
play a geometric role. Usually this step requires additional techniques and it is beyond the scope of this paper.

We will summarize the above considerations more formally later in Sect. 4.5, but here we emphasize a very
important correlation that was proven above, namely:

Proposition 3.3 The number of different regular star-polygons with n sides is ϕ(n)/2 − 1.

To simplify things, we will denote the set of regular polygons and star-polygons with n sides by Rn . With this
notation |Rn| = ϕ(n)/2. The notation {n} will denote a regular n-gon and {n/k} a regular star-polygon (here
gcd(n, k) = 1, k ∈ N, k < n/2). The special case k = 1 can be written both as {n/1} and {n}.

3.3 Lengths in a Regular 11-gon

In Sect. 2 we mentioned that scientific results on a regular 11-gon are not very well-known because it is not
constructible by typical means. Here we show some—for us, previously unknown—results that have been obtained
by our method, implemented in the free dynamic geometry tool GeoGebra.

Theorem 3.4 A regular 11-gon is defined by points A, B, C, . . ., J , K . Diagonals CE, CF, CG, CH, DF, DK and
HK are drawn. Then intersection points L, M, N and O are defined as shown in Fig. 4. The following properties
hold:

• b = c,
• d = e,
• Triangles CLM and CON are congruent,
• a = l (that is, AB = DL).

Proof By using themethod described above, all of these statements can bemechanically proved in a straightforward
way. 
�

4 Automated Discovery of Theorems

Obtaining new results randomly is one of the possible aims when observing regular polygons. To make discovery
systematic it can also be important tomake sure that all caseswere observedwhen finding conclusions by exhaustion.
Nowwe consider all different setups as a set S, and we try to number them consecutively. In other words, a bijective
map

S : {0, 1, 2, . . . , s − 1} → S
is to be found. If such a map exists, we obtain some programmatic benefits for the processing of the cases:
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Fig. 4 Some properties of a regular 11-gon

1. A database D : {0, 1, 2, . . . , s − 1} → {true, false} can be maintained. Here for each k ∈ N0, k < s there is an
explicitly defined construction setup S(k) ∈ S, and it can be saved as a database entry D(k) if the check about
a possible theorem on the kth construction was already performed or not. If the computation loop needs to be
suspended or stopped due to the high amount of computations for a given k, it can be restarted at the same value
k in a next loop, independently from the first run. Here we note that the number of different setups can be quite
large (depending on n), and the full check of all cases may take several hours or days.

2. This also supports parallel or distributed computing. The number of cases k can be then split and the setups can
be divided among several processors or computers.

3. The distributed computation can also be controlled via a centralized Internet application that communicates
with the clients, assigns the task to them, collects the results, and updates the central database. Of course,
not only the success of the performed computations should be stored, but also their results, by using a map
D′ : {0, 1, 2, . . . , s−1} → . . . that has a sophisticated output data structure that can include the interestingness
of the obtained theorem as well, for example.

This idea is well-known from various public projects, including the Great Internet Mersenne Prime Search
at http://mersenne.org, that uses CPU time to find new Mersenne primes, available since 1996. Today, also,
harnessing the idle time of the user’s processor is very popular in mining, for example, bitcoins, directly
(on the user’s own decision) or indirectly (by programs that abuse the available resources, as hidden applica-
tions on malicious websites and other malware, see https://bitcoin.org/bitcoin.pdf and https://news.bitcoin.com/
hackers-target-400000-computers-with-mining-malware/). This kind of technology is reported to be well-tested
and very successful. Two success stories are Jonathan Pace’s and Patrick Laroche’s, two GIMPS volunteers who
contributed for more than 14 years, and 4 months, respectively. They discovered the 50th and 51th knownMersenne
primes in December 2017 and December 2018, 277,232,917 − 1, and 282,589,933 − 1, and both won an amount of
$3000 reward.

http://mersenne.org
https://bitcoin.org/bitcoin.pdf
https://news.bitcoin.com/hackers-target-400000-computers-with-mining-malware/
https://news.bitcoin.com/hackers-target-400000-computers-with-mining-malware/
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The concept of enumeration has been partially implemented in a software tool that is freely available at https://
github.com/kovzol/RegularNGons. Item 1 is already working properly, while items 2 and 3 may be addressed as
future work.

4.1 A Bijective Mapping?

In our approach we assume that a regular n-gon is to be studied. It has
(n
2

)
diagonals (including the sides). From

these we select two different ones, d and e (the order of selection does not matter) to designate their intersection

point R. That is, the number of possible selections are
((n2)
2

)
. On the other hand, to designate another intersection

point S from another combination of the diagonals, we finally have
(((n2)

2

)

2

)
(4.1)

different selections for the segment RS. When expanding the formula (4.1) we learn that the number of cases is

n8 − 4n7 + 2n6 + 8n5 − 15n4 + 12n3 + 12n2 − 16n

128
∼ n8

128
,

that is, s is equal to n8/128 asymptotically.
It would be useful to find a formula for S(k) to compute RS quickly. For the first step we will construct another

map

c :
{
0, 1, 2, . . . ,

(
m

2

)
− 1

}
→

({0, 1, 2, . . . ,m − 1}
2

)

where
({0,1,2,...,m−1}

2

)
stands for the set of 2-combinations of the set {0, 1, 2, . . . ,m − 1}. Here we will assume that

c(0) = {0, 1}, c(1) = {0, 2}, c(2) = {0, 3}, . . . , c(m − 2) = {0,m − 1},
c(m − 1) = {1, 2}, c(m) = {1, 3}, c(m + 1) = {1, 4}, . . . , c(2m − 4) = {1,m − 1},
c(2m − 3) = {2, 3}, . . . ,

. . ., and finally c
((m

2

) − 1
) = {m − 2,m − 1}. To compute c quickly, we consider the inverse map c−1. It is clear

that c−1(k, k + 1) = (m − 1) + (m − 2) + · · · + (m − k), that is, (m−1)+(m−k)
2 · k = − 1

2k
2 + k · 2m−1

2 = p.
Let us now assume that p is given, and k is to be computed. Clearly − 1

2k
2 + k · 2m−1

2 − p = 0, and using the
quadratic equation solver formula,

k =
1−2m

2 ±
√( 2m−1

2

)2 − 2p

−1
= m − 1

2
∓

√(
m − 1

2

)2

− 2p.

Here obviously the subtraction should be chosen. By some further simple calculations finally we obtain the formula
c(p) = {k, l} where

k =
⎢⎢⎢
⎣m − 1

2
−

√(
m − 1

2

)2

− 2p

⎥⎥⎥
⎦ , (4.2)

l = 2p + k2 − (2m − 3) · k
2

+ 1. (4.3)

This formula2 can be used then multiple times for m = ((n2)
2

)
, m = (n

2

)
and m = n.

2 An anonymous reviewer pointed out that this process can be simplified by considering the ordering in the following way: Let

c(0) = {1, 0}, c(1) = {2, 0}, c(3) = {2, 1}, . . . This way (k
2

) ≤ p <
(k+1

2

)
leads to k =

⌊
1+√

1+8p
2

⌋
, l = p − (k

2

)
. Both formulas are

simpler than above and independent from m.

https://github.com/kovzol/RegularNGons
https://github.com/kovzol/RegularNGons
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Fig. 5 n = 5, cases 678 and 677. This figure and Figs. 8, 9, 10, 11, 12, 13, 16, 17, 20 and 21 were made using the numerical case
visualizer at https://www.geogebra.org/m/zvxf6hbq

4.1.1 Example

Let n = 5, then s = (((
5
2)
2 )
2

) = 990. We are interested in, say, the 678th case when observing all possible segments
RS.

1. First we compute
((52)
2

) = 45 = m1. That is, we search for c(678). By using formulas (4.2) and (4.3), we get
k = 19 and l = 33.

2. Now we search for the 19th and 33th combinations of a set with
(5
2

) = 10 = m2 elements. Using the same
formulas, we get k = 2, l = 5 and k = 4, l = 8 values for p = 19 and p = 33, respectively.

3. Finally we search for the 2nd, 5th, 4th and 8th combinations of a set with 5 = m3 elements. Using the same
formulas again, we get k = 0, l = 3, k = 1, l = 3, k = 1, l = 2 and k = 2, l = 4 values for p = 2, 5, 4 and 8,
respectively.

Lastly we conclude that the 678th case describes when A = P0, B = P3, C = P1, D = P3, E = P1, F = P2,
G = P2, H = P4. Now R is defined as the intersection of P0P3 and P1P3, that is R = P3. And S is defined as the
intersection of P1P2 and P2P6, that is S = P2, so RS describes the side P2P3 which is an uninteresting case.

In fact, unfortunately, different cases can describe geometrically the same situation. For example, any point can
be re-designated as the intersection point of two lines that already include it. Figure 5 shows such an example: the
case 677 results in the same geometric output as case 678. On the other hand, in a regular hexagon the center can
be constructed by intersecting any two of the three longest diagonals. These issues leads to the problem that some
situations are covered by more than one setup and therefore computed multiple times needlessly.

4.2 A Symbolic Implementation

This automated “mining” algorithm has been recently implemented in the software tool RegularNGons.
The following input parameters can be used to fine tune its output:

• n = . . . defines the number of vertices in the regular polygon.
• s and e define the starting and ending cases (both are non-negative integers, less than the formula (4.1)).
• By adding m = . . . or M = . . . the minimal and maximal degrees of outputs can be controlled, respectively.
By default m = 1 and M = 2, that is, either linear results or quadratic surds are mined.

• The parameter u will force searching for results given as parameters. For example, u = 2 considers only the
outputs that are of q = 2.

https://www.geogebra.org/m/zvxf6hbq
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• The option S = 0 tries to avoid checking cases that were already checked in a symmetrically equivalent position.
When this is set, only the A = 0, B ≤ n/2 cases will be checked. (The software tool uses the indices of the
points, that is, 0 stands for P0, 1 for P1, and so on.)

• When using f = 1, once a length is found, no more results will be printed that have the same length.
• The user may request to find lengths that are close to a given decimal number, but they are just approximately
the same. The parameter a = . . . is to be set to the sought decimal. (See Sect. 4.6 for some examples.) By using
the parameter E an error limit can be defined.

• The option z = . . . allows saving and retreiving results later by using an external server.

The software tool runs in a modern web browser, for example, Google Chrome 64. It uses the Giac computer
algebra system to compute eliminations (itsWebAssembly [12] version is used in an embedded way), and GeoGebra
to visualize the obtained results on-the-fly—finally (or during the run) the results can be saved as a GeoGebra file
(or stored on an external server as well).

The timing for a complete run for a given n-gon depends on themagnitude of n. For smaller n values the complete
run can be performed in seconds or minutes. For bigger n values, a complete run may take several hours, or days,
or even more. Some, yet unresolved memory issues in Giac may require multiple runs for bigger n values—this
problem may be worked around with the option z.

A typical partial output of RegularNGons is the following, when using inputs n = 7, S = 0 and f = 1:

Welcome to RegularNGons (https :// github.com/kovzol/RegularNGons )...
Starting with n=7, s=0
s can be incremented until 21945
n=7, s=4: A=0, B=1, C=0, D=2, E=0, F=1, G=1, H=2: {RS^2-1}, {{RS=1}}

n=7, s=124: A=0, B=1, C=0, D=2, E=1, F=3, G=2, H=6: {RS^2-2}, {{RS=(
√
2)}}

n=7, s=2113: A=0, B=1, C=2, D=3, E=0, F=5, G=1, H=6: {RS^2-4}, {{RS=2}}
Elapsed time: 0h 28m 40s
11627 cases were not checked to ignore symmetry

This result will be recalled later in Theorem 4.15.

4.3 A Numerical Implementation in GeoGebra

There is also a numerical implementation provided as a GeoGebra web applet at https://www.geogebra.org/m/
zvxf6hbq. It can visualize different cases for different n ≤ 24 and perform a numerical search in Rn (see Figs. 16
and 17 in Sect. 4.7 later). In this tool the polytope must be set with a concrete value for {n/k}, therefore all the
algebraically non-distinguishable cases can be separately investigated.

A numerical check is usually much faster than its symbolic counterpart. However, the symbolic check computes
all algebraically non-distinguishable cases at the same time, whilst the numerical check requires multiple runs for
each geometrically different polytope.

Practically, both tools are useful and can be utilized to study two sides of the same coin.

4.4 Some Results

We will find the following definition useful when presenting the statements that can be mined by using
RegularNGons.

Definition 4.1 • Points of the first kind of a regular n-gon are its vertices. We denote this set by P1.
• Segments of the first kind of a regular n-gon are its sides and diagonals. We denote this set by S1.
• Points of the k-th kind of a regular n-gon are the intersection points of its segments of the (k − 1)-th kind. We
denote this set by Pk .

• Segments of the k-th kind of a regular n-gon are the segments defined by its points of the (k)-th kind. We denote
this set by Sk .

https://www.geogebra.org/m/zvxf6hbq
https://www.geogebra.org/m/zvxf6hbq


Automated Detection of Interesting Properties in Regular Polygons 741

By using this notion, in this paper we consider segments of the second kind of a regular n-gon. We remark that it
makes sense to study segments of higher kinds in a regular n-gon. It is easy to see that a recursive formula can be
given to determine the number of possible cases for the various kinds of points and segments of a regular n-gon:

Proposition 4.2

• |P1| = n.
• |S1| = (|P1|

2

)
.

• |Pk | ≤ (|Sk−1|
2

)
.

• |Sk | = (|Pk |
2

)
.

Proof By construction, these formulas are obvious. In the third property an inequality can occur because sometimes
the same point can be reached viamultiple ways of intersecting segments (recall, for example, the situation in Fig. 5).


�
Let us focus now on a technical statement, that is, all newly constructed sets contain the previous ones:

Proposition 4.3 • P1 ⊆ P2 ⊆ P3 ⊆ · · ·
• S1 ⊆ S2 ⊆ S3 ⊆ · · ·

Proof Let P ∈ Pk and consider two additional elements Q1, Q2 ∈ Pk . Now PQ1, PQ2 ∈ Sk and therefore
P = PQ1 ∩ PQ2 ∈ Pk+1.

Analogously, let s ∈ Sk and consider two additional elements u1, u2 ∈ Sk . Now Q1 := s ∩ u1, Q2 := s ∩ u2 ∈
Pk+1 and therefore s = Q1Q2 ∈ Sk+1. 
�
Proposition 4.4 Let α ∈ R be the length of a segment of the k-th kind. Then the degree of the minimal polynomial
of α over Q[x] divides ϕ(n).

Proof 3 Let ε be the following n-th root of 1:

ε = cos

(
2π

n

)
+ i sin

(
2π

n

)
.

Consider the field T = Q(ε). It is well known that the degree of the field extension T/Q is ϕ(n) (see [13,
Proposition 8.3] for a proof).

Let K = T ∩ R. It is clear that

2 cos

(
2π

n

)
= ε + ε̄ ∈ K

and

ε · ε̄ = 1.

By using Vieta’s formulas we obtain that ε is a root of the quadratic polynomial

p = x2 − 2 cos

(
2π

n

)
x + 1

that has degree 2 over K . Since ε /∈ K , it is clear that p is a minimal polynomial of ε over K , that is, [T : K ] = 2.
By using the multiplicativity formula for fields T , K and Q we obtain that

[T : Q] = [T : K ] · [K : Q],
3 This proof is based on a personal communication with Ágnes Szendrei and Gábor Czédli, authors of [8].
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Fig. 6 Some properties of a regular heptagon. See also http://matek.hu/kovzol/publications/regular-fig6.pdf

that is,

[K : Q] = ϕ(n)/2.

On the other hand, it is clear that all points in P1 are elements of T . By having points z1, z2, z3 and z4 of P1 it
is clear that the intersection of z1z2 and z3z4 is also an element of T , because the intersection formula

z = ((z2 − z1)z1 − (z2 − z1)z1)(z4 − z3) − ((z4 − z3)z3 − (z4 − z3)z3)(z2 − z1)

(z4 − z3)(z2 − z1) − (z2 − z1)(z4 − z3)

contains only the basic operations and conjugations (see https://math.stackexchange.com/q/1352567 for a derivation
of the formula), and according to εn−1 = ε, T is closed under conjugations as well.

By using this idea multiple times, by induction, we finally get that all points in Pk are elements of T . Therefore,
the distance α between points z′, z′′ ∈ Pk can be computed by the formula

α2 = (z′ − z′′) · z′ − z′′ ∈ T,

but α2 is also a real number, so it is an element of T ∩ R = K .
Now we learn that α2 has a minimal polynomial of degree ϕ(n)/2 with rational coefficients. This means that α

has a minimal polynomial of degree ϕ(n) with rational coefficients. 
�
Proposition 4.5 All lengths appearing as segments of the k-th kind in a regular pentagon having unit side length,
are either rational numbers or quadratic or quartic surds.

Proof Since ϕ(5) = 4, this is a clear consequence of Proposition 4.4. 
�
Now we can present some geometric results:

Theorem 4.6 Given a regular 7-gon, there are 42 segments of its second kind that are of length 2, shown in Fig. 6.

http://matek.hu/kovzol/publications/regular-fig6.pdf
https://math.stackexchange.com/q/1352567
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Fig. 7 Unit lengths appearing in a regular heptagon. See also http://matek.hu/kovzol/publications/regular-fig7.pdf

Proof By exhausting all |S2| = 21945 cases, there exist exactly the cases as presented. (The running time on a
modern PC was about 1 h and 15 min). 
�

The 42 different cases can be classified into 3 substantially different groups, shown in green, red and magenta in
Fig. 6. Because of symmetry, each substantially different segment have 6 rotated copies and a mirrored copy with
6 other rotated copies. In total there are 7+ 7 = 14 elements of the groups. In the figure only 2 representatives are
colored in each group (they are mirror images), the others are all blue.

Theorem 4.7 Given a regular 7-gon, and consider the segment q = 1 of its second kind. Then:

1. There is a side AE of the 7-gon such that AE and RS are parallel such that E ARS is a parallelogram;
2. for this AE, the lines AS and ER are parallel diagonals of the 7-gon,

unless RS is chosen from the red segments in Fig. 7.

Proof Again, by exhaustion. 
�

It is easy to see that a kind of converse of this theorem holds in all regular polygons, independently of n. That is,
the following very simple theorem can be stated:

Theorem 4.8 Given a regular n-gon. Let us consider any side AE, and parallel diagonals d = AB and f = EF;
and, in addition, the diagonal e = CD = g = GH which is parallel to AB. Now by choosing R = d∩e, S = f ∩g,
q = 1.

Proof Due to parallelism, E ARS is clearly a parallelogram, and therefore q = |AE | = 1. 
�

By using elementary combinatorics, the number of possible cases can easily be counted. Also, taking an arbitrary
diagonal instead of side AE in Theorem 4.8 we obtain similar theorems on lengths that are not unit long, but the
same as the length of some diagonal.

http://matek.hu/kovzol/publications/regular-fig7.pdf
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4.5 Correspondence Between Elimination and the Minimal Polynomial of the Expected Length of RS

In this subsection we give a formal presentation of the concepts of this paper. All statements use the following
setup:

Let RSk be a segment of the second kind in {n/k}. Let qk ∈ R+ the length of RSk , and let tk(a) be the minimal
polynomial of the length qk over Q[a]. Also, let t ′k(a) be the minimal polynomial of −qk over Q[a]. Furthermore,
consider an algebraic translation of the algebraic setup with the points P0(x0, y0), . . . , Pn−1(xn−1, yn−1) and
R(xr , yr ) and S(xs, ys) and hypotheses h1, h2, . . . , h2n+7 where

h1 = pc(x), h2 = x2 + y2 − 1, h3 = x0, h4 = y0, h5 = x1 − 1, h6 = y1,

and h7, . . . , h2n+2 describe the vertices of the regular n-gon as given in (2.3) and (2.4), moreover h2n+3, . . . , h2n+6

describe the collinearities as given in (3.1) and (3.2), finally

h2n+7 = a2 −
(
(xr − xs)

2 + (yr − ys)
2
)

.

Also, let H = 〈h1, h2, . . . , h2n+7〉 and I = H ∩ Q[a]. We refer to this geometric construction as C(RSk).

Definition 4.9 We say that C(RSk) is non-degenerate, if for all 1 ≤ k < n/2 all geometric steps according to the
hypotheses h1, h2, . . . , h2n+7 have a unique geometrical meaning. (That is, no intersection of parallel or identical
lines has to be performed.)

Proposition 4.10 Let C(RSk) be non-degenerate. Then:

1. I is an ideal generated by a polynomial t that has only real roots. (I = 〈t〉.)
2. For each root α there is another root −α.
3. For each positive root α there is a k such that qk = α.
4. For each k there is a positive root α such that qk = α.
5. deg t ≤ ϕ(n).

Proof 1. Let us consider the degrees of the different hypotheses. According to Proposition 2 there are ϕ(n)

possibilities for (x, y) when using h1 and h2, and all of them correspond to a valid situation geometrically, that
is, x and y are real numbers, independently of which possibility is considered. The hypotheses h3, . . . , h2n+2

are all linear and introduce just one more variable for each. The hypotheses h2n+3 and h2n+4 are also linear and
introduce two more variables, the same is true for h2n+5 and h2n+6. Finally, h2n+7 is quadratic and introduces
only one variable, but clearly there is a freedom of choice for the sign of a. This means that a can stand for
only a real number: no complex root can be introduced during setting the hypotheses. After elimination, a still
remains real.

2. h2n+7 ensures this property.
3. The algebraic hypotheses describe a concrete geometric case.
4. For each concrete geometric case there is an algebraic description.
5. Because of axial symmetry of {n/k} and {n/(n − k)}, C(RSk) and C(RSn−k) produce the same lengths qk and

qn−k for a certain k. This means that the ϕ(n) possibilities for x and y correspond to at most ϕ(n)/2 different
values q. But also −q has to be represented in t . That is, t can have at most ϕ(n) different roots. 
�
In fact, we can generalize the result in the following way: RSk can also be a segment of a different kind, because

axioms 2 and 3 introduce only linear equations, and only the metric equation is quadratic in the final step.
Now, when n and RS are fixed, consider all possible constructions C(RSk) and the lengths qk that belong to

them. All are described with the polynomial t : they are roots of it. Also, −qk are the remaining roots of t . This
means that t has no other roots than qk and −qk . Now, because different ±qk values are indistinguishable in the
algebraic sense, they need to share the same minimal polynomial.

This leads to the following
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Proposition 4.11 Let C(RSk) be non-degenerate. Then: If tk ∼ t ′k , then t ∼ tk ∼ t ′k and t is irreducible over Q[a].
Otherwise t ∼ tk · t ′k . (In other words, t is a minimal polynomial of qk , or it is the product of the minimal polynomials
of qk and −qk).

A reformulation of this result is the next

Proposition 4.12 Let C(RSk) be non-degenerate. Then: If tk and t ′k differs, then there is a primary decomposition
of H such that

H = 〈tk, h1, h2, . . . , h2n+7〉 ∩ 〈t ′k, h1, h2, . . . , h2n+7〉.
(That is, if the elimination produces a reducible polynomial t , then the theorem H ⇒ t can also be written in the
form H ⇒ tk ∨ t ′k).

This result helps in finding theorems that are true on parts. See [20] for more details.
Now let us assume that C(RSk) is non-degenerate and let I = 〈t〉. Now, for each root α > 0 of t let Kα be the

set of numbers k such that k ∈ N, gcd(n, k) = 1, k < n/2, and qk = α.
It is clear that∑

t (α)=0
α>0

|Kα| = |Rn| = ϕ(n)/2,

that is, the number of appearances of the roots of t cover the number of possible polytopes inRn .
We conjecture the following:

Proposition 4.13 Let C(RSk) be non-degenerate. Then: For each root α1 > 0 and α2 > 0 of t

|Kα1 | = |Kα2 |
holds. That is, the distribution of the appearing lengths is uniform among the various polytopes in Rn.

From this conjecture and Proposition 4.4 it immediately follows that

Proposition 4.14 For each root α > 0 of t

|Kα| = ϕ(n)/ deg t

holds. If deg t = 2, then the positive root of t appears uniquely in all polytope counterparts inRn. In other words,
the degree of t explicitly determines the number of appearances of all roots among the polytopes inRn.

Some of the above statements are illustrated in the following examples. Similarly to Sect. 3, from now on we
will use the factors t1 and t2 if the obtained t is reducible to t1 · t2.
Example 1 Let n = 5 and consider case 33: A = 0, B = 1, C = 0, D = 2, E = 1, F = 2, G = 3, H = 4.
Then the obtained polynomial after elimination is t = q4 − 10q2 + 5 which is irreducible over Q but has the roots

±
√

±2
√
5 + 5. Both positive roots (3.0776 and 0.7265 approximately) are present once, the first one in {5} and the

other one in {5/2}. See Fig. 8. Here we learn that
K√

2
√
5+5

= {1} and K√
−2

√
5+5

= {2}.

Example 2 By considering n = 24, case 48, the following output is mined by RegularNGons (note that ϕ(24) =
8): A = 0, B = 1, C = 0, D = 2, E = 0, F = 1, G = 2, H = 8,

t = 4q8 − 72q6 + 288q4 − 324q2 + 81,

and the possible positive q values are

−√
3 + √

6 + 3

2
,

√
3 − √

6 + 3

2
,

√
3 + √

6 + 3

2
,

√
3 + √

6 − 3

2
that belong to {24}, {24/7}, {24/5}, {24/11}, respectively (see Figs. 9, 10, 11 and 12). That is,

K −√
3+√

6+3
2

= {1}, K √
3−√

6+3
2

= {7}, K √
3+√

6+3
2

= {5}, K √
3+√

6−3
2

= {11}.
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Fig. 8 n = 5, case 33 in {5} and {5/2}

Fig. 9 Case 48 in {24}

Fig. 10 Case 48 in {24/7}
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Fig. 11 Case 48 in {24/5}

Fig. 12 Case 48 in {24/11}

Example 3 When checking n = 23, case 70, the outputs are (note that ϕ(23) = 22): A = 0, B = 1, C = 0, D = 2,
E = 0, F = 1, G = 3, H = 13,

t = q22 − 228q20 + 5618q18 − 52167q16 + 221675q14 − 490131q12

+590069q10 − 378575q8 + 117198q6 − 13963q4 + 503q2 − 1.

Here are some approximation of possible values of α: 0.0459, 0.2424, 0.3734, 0.7426, 1.0002, 1.1919, 1.3209,
1.4892, 3.0158, 3.2263, 14.1901. Notably, the 5th value is very close to 1. This result (among many others) supports
creating new, tricky problem assignments on disproving facts that are visually not decidable. On the other hand, by
searching for good approximations some remarkable numerical results can also be achieved, say, by finding close
values to non-algebraic numbers (see Sect. 4.7 for some examples on approximating π ).

t1 = q11 − 24q10 + 174q9 − 543q8 + 703q7 − 5q6 − 861q5 + 679q4 − 34q3 − 107q2 + 17q + 1,

t2 = q11 + 24q10 + 174q9 + 543q8 + 703q7 + 5q6 − 861q5 − 679q4 − 34q3 + 107q2 + 17q − 1,

we learn that the 11 positive roots take place in such a way that the 1st, 3rd and 5th one (3 roots) are present in t2,
and the other ones (8 roots) are in t1. We conclude that from the hypotheses either t1 or t2 follows in the algebraic
approach. In other words, t1 (as well t2) may be true just on parts (see [20] for more details).
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Fig. 13 n = 7, case 124 in {7} and {7/2} and {7/3}

Example 4 Let us consider the regular heptagon again, case 124: A = 0, B = 1, C = 0, D = 2, E = 1, F = 3,
G = 2, H = 6. Here all variants in the regular star-heptagons result in the same α = √

2. We note that the degree
of t is here just 2 (t = q2 − 2), as described in Proposition 4.14. See also Fig. 13.

Example 5 When n = 13 we usually obtain polynomials of degree 12. (Since ϕ(13) = 12, there are 12/2 = 6
different elements inR13.)

1. But, for example, in case 117 we get A = 0, B = 1, C = 0, D = 2, E = 0, F = 2, G = 4, H = 6 and the
polynomial t = q6 − 14q4 + q2 − 1. The approximate values for α1 ≈ 0.3772, α2 ≈ 0.7261 and α3 ≈ 3.6510
are delivered by

• {13/4} and {13/6},
• {13/2} and {13/3},
• {13} and {13/5},
respectively. Thus

Kα1 = {4, 6}, Kα2 = {2, 3}, Kα3 = {1, 5}.
2. On the other hand, in case 70,357 we obtain A = 0, B = 1, C = 2, D = 4, E = 2, F = 4, G = 3, H = 12

and the polynomial t = q4 − 7q2 + 9. The exact values for the positive roots are α1 =
√
13−1
2 ≈ 1.3207 and

α2 =
√
13+1
2 ≈ 2.3207, and they are delivered by

• {13}, {13/3} and {13/4},
• {13/2}, {13/5} and {13/6},
respectively. Thus

Kα1 = {1, 3, 4}, Kα2 = {2, 5, 6}.
3. Finally, in case 75,070 we get A = 0, B = 1, C = 2, D = 6, E = 0, F = 5, G = 4, H = 12 and the

polynomial t = q2 − 3. The only positive root is α = √
3, and this will be delivered inR13 uniformly:

Kα = {1, 2, 3, 4, 5, 6}.
This example supports Propositions 4.4, 4.13 and 4.14.

Finally we present a result which can be proven by exhaustion:

Theorem 4.15 • In a regular heptagon the only rational lengths in S2 are 1 and 2, and the only quadratic surd
is

√
2.

• In a regular nonagon the only rational lengths in S2 are 1, 2 and 3, and the only quadratic surds are
√
3 and√

7.
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Fig. 14 A challenge in {11}

• In a regular 11-gon the only rational lengths in S2 are 1, 2, and the only quadratic surd is
√
3.

As a consequence of Proposition 4.14 it is clear that these lengths will be delivered uniformly in all cases inRn

as well.

4.6 Approximate Results in Regular 11-gons

By using the a = . . . option in RegularNGons, onemay obtain some “almost”-results that can be interestingwhen
creating tricky problem assignments. Here some results are listed—most of them involve regular star-polygons.

Example 6 Let us consider the case n = 11. By observing case 30,781, we get A = 0, B = 1, C = 2, D = 5,
E = 4, F = 6, G = 8, H = 10 that produces q10 − 53q8 + 732q6 − 2807q4 + 3073q2 − 947. It has a root
0.9990910 which is near 1. By using the numerical software tool again (see Sect. 4.3), we learn that this case belongs
to {11/3}.

Let us consider case 31,507 now: A = 0, B = 1, C = 2, D = 6, E = 1, F = 3, G = 6, H = 10. Here the
polynomial q10 − 81q8 + 1465q6 − 4142q4 + 2825q2 − 67 can be obtained that has a root 1.0003614 which is
closer to 1. This case belongs to {11/2}.

In addition, in case 50,867: A = 0, B = 1, C = 4, D = 6, E = 2, F = 7, G = 5, H = 8 yields
q10 − 64q8 + 1029q6 − 6085q4 + 13831q2 − 8713 which has a root 1.0001111, even closer to 1. The case belongs
to {11/4}.

Example 7 Again, assuming n = 11, case 40,220, we get A = 0, B = 1, C = 3, D = 5, E = 1, F = 2, G = 6,
H = 9: q10 − 130q8 + 886q6 − 2147q4 + 2116q2 − 727. One of the roots is 1.66665066 which is very close to
5/3. This case belongs to {11/3}.

Example 8 By searching for “almost”-zero results it is possible to create challenging questions like the following
one: “Are the diagonals of a regular 11-gon concurrent as seen in Fig. 14?”

Actually, it can be rather difficult to verify such questions in a precise way. One possibility is to perform some
deeper level of zooming in a DGS (here in GeoGebra) and conclude visually that the given diagonals are not
concurrent (see Fig. 15). A better and more general way is to explicitly compute the distance of the intersection
points of each two of the diagonals. This can be mechanically performed by the means shown in this paper: first a
numerical search can be done (Figs. 16 and 17) and it will be obtained that the cases 166,853 and 167,359 describe
the geometric situation, and then, using the symbolic counterpart we learn that the minimal polynomials of the
searched lengths are q10 − 36q8 + 360q6 − 645q4 + 254q2 − 1 and q10 − 31q8 + 259q6 − 728q4 + 433q2 − 1,
respectively.
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Fig. 15 A solution of the challenge

Fig. 16 Case 166,853 in {11}

4.7 Approximating π

By using the same idea, several approximations on the transcendent number π can be found among the segments
of the second kind in regular polygons. Table 3 shows the best possible results for n < 12 using the “minimal
polynomial” t obtained via elimination. Note that for n = 5 we obtain Example 1.

For n ≥ 12 there are some more accurate results.
For n = 12 two substantially different cases can be found, both are the same approximations as Kochański’s

seventeenth century result in [15],
√
120 − 18

√
3/3 ≈ 3.141533338, which is a 4-digits approximation of π , see

[17] for more details. Case 43,261 results in a regular star-12-gon, {12/5} (see Fig. 19 and https://www.geogebra.
org/m/jnZSeBnq), and case 52,958 in a regular 12-gon (see Fig. 18 and https://www.geogebra.org/m/qFvtny2G).

https://www.geogebra.org/m/jnZSeBnq
https://www.geogebra.org/m/jnZSeBnq
https://www.geogebra.org/m/qFvtny2G
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Fig. 17 Case 167,359 in {11}

Table 3 Best approximations of π in the set S2 for n < 12

n Numerically Symbolically “Minimal polynomial” Example case

3 1 1 q − 1 0

4 1.41…
√
2 q2 − 2 5

5 3.07…
√
2
√
5 + 5 q4 − 10q2 + 5 33

6 3.12…
√
39
2 q2 − 39

4 936

7 3.16… q6 − 24q4 + 143q2 − 29 2496

8 3.13…
√
2
√
2 + 7 q4 − 14q2 + 41 200

9 3.13… q6 − 30q4 + 237q2 − 379 67,311

10 3.1413…
√

2
√
5+35
4 q4 − 35

2 q
2 + 1205

16 19,113

11 3.1411… q10 − 34q8 + 381q6 − 1669q4 + 2687q2 − 1277 29,802

For n = 13 there is no better approximation than 3.1415877 . . . that is produced in several setups, for example, in
case 83,459 in {13/3}. It is the root of the polynomial x12−115x10+3048x8−25161x6+55723x4−32118x2+2809
(Fig. 19).

For n = 14 the best approximation is 3.141768 . . . for case 1,438,411 in {14/3} (among other cases).
For n = 15 the best approximation is 3.14159829 . . . for case 381,653 in {15/2} (Fig. 20). The approximation

is a root of the polynomial x8 − 441x6 + 5141x4 − 9081x2 + 3331 (it is irreducible over Q), namely
√

441 − 187
√
5 + 3

√
6 · (6805 − 3041 · √

5)

2
.

This formula has been generated by WolframAlpha. There is no appearance of this length in a regular 15-gon (only
in a regular star polygon).

For n = 16 the best known approximation is 3.1415511 . . . for case 220,100 in {16/3}. This length appears
also in {16} in case 266,067 (Fig. 21). Since this approximation is somewhat better than Kochański’s constant, and
constructing a regular 16-gon is not muchmore difficult than drawing a regular 12-gon, by using only a compass and
a straightedge, we obtain a surprisingly easy method to have another geometric approximation of π . The minimal
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Fig. 18 Case 43,261 in {12/5}

Fig. 19 Case 52,958 in
{12}

polynomial of the obtained number is x8 − 52x6 + 874x4 − 5516x2 + 9809, it is irreducible over Q, and the exact
form of the number is
√

13 − √
2 −

√
68 − 46

√
2.

This result was produced by WolframAlpha.
Obtaining further results will get computationally more difficult, because of the high number of possible cases.

This also means that at the moment the result above for n = 16 is yet incomplete. Also, computing one case for
higher n is usually harder computationally since more variables are involved.
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Fig. 20 Case 381,653 in {15/2}

Fig. 21 Case 266,067 in {16}—note that the diagonals inside the polygon, similarly to Example 8, are not concurrent

4.8 Other Examples

Some other results can be found at https://www.geogebra.org/m/AXd5ByHX. The software tool RegularNGons
can be launched on-line at http://prover-test.geogebra.org/~kovzol/RegularNGons/. An example run can be started
to request solving the case n = 5 by invoking the URL http://prover-test.geogebra.org/~kovzol/RegularNGons/?
n=5.

https://www.geogebra.org/m/AXd5ByHX
http://prover-test.geogebra.org/~kovzol/RegularNGons/
http://prover-test.geogebra.org/~kovzol/RegularNGons/?n=5
http://prover-test.geogebra.org/~kovzol/RegularNGons/?n=5
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5 Conclusion and Future Work

We presented an automated way on obtaining various new theorems on regular polygons, based on the work in
[4,24,28,29]. Enumerating the possible cases was an important detail in our work, we mapped the first non-negative
numbers to the possible cases bijectively, however, some cases in our definitions still yield the same segment RS.
This issue could be addressed later.

Further theorems can be developed by considering segments of higher kinds, not just of the second. The number
of cases to check—according to Proposition 4.2—grows rapidly. For the third kind, it is asymptotic to n16/215,
and is more than 119 billions for n = 5. That is, there can be lots of new theorems to explore, even if not all of
them are of interest. On the other hand, all new results remain in the same set of algebraic numbers according to
Proposition 4.4.

The high number of cases calls for distributed computing. Our further plan is to extend our software tool to be a
centralized system that assigns interesting tasks to the contributors’ computers. By this way the idle computer time
could be used to “mine” new geometry theorems.

Also, there are unexpected results on the structure of the appearing polynomials in the elimination step. Using
algebraic geometry methods in solving the question on the appearing lengths is successful, but some fine details
cannot be handled without determining the positive real roots of a polynomial explicitly. The used methods point
also forward to possible example uses in statements that are true just on parts.

Finally, we highlight that a conjecture given in Proposition 4.13 still requires a proof.
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