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Abstract Group exponentiation is an important and relatively expensive operation used in many public-key cryp-
tosystems and, more generally, cryptographic protocols. To expand the applicability of these solutions to computa-
tionally weaker devices, it has been advocated that this operation is delegated from a computationally weaker client
to a computationally stronger server. In the case of a single, possibly malicious, server, this problem has remained
open since the introduction of a formal model. In previous work we have proposed practical and secure solutions
applicable to two classes of specific groups, related to well-known cryptosystems. In this paper, we investigate this
problem in a general class of multiplicative groups, possibly going beyond groups currently subject to quantum
cryptanalysis attacks. Our main results are efficient delegation protocols for exponentiation in these general groups.
The main technique in our results is a reduction of the protocol’s security probability (i.e., the probability that a
malicious server convinces a client of an incorrect exponentiation output) that is more efficient than by standard
parallel repetition. The resulting protocols satisfy natural requirements such as correctness, security, privacy and
efficiency, even if the adversary uses the full power of quantum computers. In particular, in our protocols the client
performs a number of online group multiplications smaller by 1–2 orders of magnitude than in a non-delegated
computation.
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1 Introduction

In emerging applications related to Cloud Computing and the Internet of Things, including RFID networks, interest
is growing on deploying cryptography solutions onto computationally weaker devices. To achieve that goal, it has
been advocated that the most expensive cryptographic operations are delegated from a computationally weaker
client to a computationally stronger server. Group exponentiation is an important operation and among the most
expensive ones used in many public-key cryptosystems and, more generally, cryptographic protocols. Many studies
have already been performed towards various types of delegation of group exponentiation, but almost exclusively
in the case of abelian groups; specifically, groups related to discrete logarithm or factoring problems (see, e.g.,
[17,19,22,28] and references therein).

As progress is beingmade towards building a large-scale quantum computer [36], much attention is being devoted
in the cryptography community to early quantum computer algorithms such as Shor’s [34], capable of solving in
quantum polynomial time both the discrete logarithm and the factoring problem. More specifically, the problem at
the heart of Shor’s algorithms, also known as the hidden subgroup problem, can be solved in quantum polynomial
time over any finite abelian group, but currently seems much harder over non-abelian groups [29]. Therefore, the
study of cryptographic solutions over non-abelian, or just general, groups is an appealing research direction within
quantum-resistant cryptography (see, e.g., [2,26,27] and references therein).

In this paper we consider the problem of a client delegating to a server the exponentiation function over a
large class of general multiplicative groups, not limited to abelian groups and thus going beyond groups currently
subject to quantum cryptanalysis attacks. We target solutions that satisfy natural requirements of correctness (i.e.,
if client and server follow the protocol, then at the end of the protocol execution, the client’s output is the desired
exponentiation), security (i.e., if the client follows the protocol, no malicious adversary corrupting the server can
convince the client of an incorrect exponentiation, except with small probability), privacy (i.e., if the client follows
the protocol, no malicious adversary corrupting the server can obtain some information about the client’s input
exponent), and efficiency (most notably, the client’s runtime in the online phase is smaller than in a non-delegated
computation of the exponentiation). As in all previous work in the area, we consider a model with an offline phase,
where a trusted party can precompute exponentiations, and store them on the client’s device to be later used in the
online phase, when the client becomes aware of the input to the exponentiation function.

Related Work. Secure delegation of computation can be seen as a successor of previous research areas such as
computational program checking and testing (see, e.g., [1,7,8]). Early research in secure delegation include [3],
which studied delegation of scientific computations and [28], which presented the first formal security definition of
secure delegation of computation. In particular, this latter paper considered the delegation of exponentiation over a
specific cyclic group in the presence of two servers of which one was untrusted and of a single server almost always
returning a correct computation. Several papers have been published in this area since then. We can classify all
secure (single-server) delegation protocols we are aware of in 3 main classes, depending on whether they delegate
(a) exponentiation in a specific group; (b) other specific operations (e.g., linear algebra operations, group inverses,
elliptic curve pairings); and (c) an arbitrary polynomial-time computable function.

With respect to (a), protocols were proposed for a single exponentiation in specific groups related to discrete
logarithm or factoring problems (see, e.g., [12,17,18,28] and references therein). These protocols delegate expo-
nentiation in settings where the client is assumed to be powerful enough to run a not-too-large number of group
multiplications, but not powerful enough to evaluate the delegated exponentiation function (unless in an offline
phase, before the exponentiation input is known). There are also many protocols in the literature for delegating a
single exponentiation, not targeting or achieving all of our requirements (see, e.g., [13,19,20,30,31,35,38]). Almost
all of these solutions can improve the client efficiency also in the offline phase, under a pseudo-random powers
generation assumption, in turn based on the hidden-subset-sum hardness assumption [9,33], or a the (stronger)
subset sum hardness assumption. We note that these assumptions need to be reevaluated in light of more recent
results. In [16] we proposed batch delegation of exponentiation for specific discrete logarithm and RSA groups
from batch verification, leveraging the small exponent test introduced and studied by [5] over prime-order groups.
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With respect to (b), a number of protocols for delegating linear algebra operations and/or scientific computation
were proposed (see, e.g., [3,4,6,21,32]). These protocols delegate various linear algebra operations in settingswhere
the client is assumed to be powerful enough to run some other linear algebra operations of lower time complexity,
but not powerful enough to evaluate the delegated linear algebra function. Efficient and secure delegation of group
inverses for a general group, from a client powerful enough to run group multiplication, was presented in [11]. The
delegation of the computation of elliptic curve pairings also has received much attention (see, e.g., [10,14,24]).
In these protocols bilinear pairings are delegated by a client that only performs group exponentiations and/or
multiplications, but in all of these protocols the delegation has been experimentally evaluated to be more costly or
only slightly less costly than computing a pairing without delegation.

With respect to (c), in [22] the authors proposed a protocol using garbled circuits (see [37]) and fully homomorphic
encryption [23]. This protocol delegates functions in settings where the client is powerful enough to run encryption
and decryption algorithms of a fully homomorphic encryption scheme, but not powerful enough to homomorphically
evaluate a circuit that computes decryption steps in the garbling scheme for the function. Different protocols, not
using garbled circuits, were later proposed in [15]. These protocols delegate functions in settings where the client
is assumed to be powerful enough to run encryption and decryption algorithms of a fully homomorphic encryption
scheme, but not enough to homomorphically evaluate the delegated function.

OurContributions.Weshow a number of interactive protocols allowing a client to securely delegate exponentiation
in a general class of groups to a single, possibly malicious, server. Our protocols mainly target the delegation of
function FG,exp,k(x) = xk (i.e., fixed-exponent, variable-base exponentiation over multiplicative group G), but we
also reformulate them so to delegate function FG,exp,g(x) = gx (i.e., variable-exponent, fixed-base exponentiation).

Our first protocol, in Sect. 3.1, consists of a direct parallel repetition of (a slightly simplified version of) a
protocol from [11] that achieves security probability 1/2. Our main result, in Sect. 3.2, is a class of protocols where
the security probability is reduced more efficiently than by direct parallel repetition. Their privacy and security
properties are satisfied even if the adversary corrupting the server is not limited to run in (classical or quantum)
polynomial time, and they achieve an efficiency tradeoff, in that they improve the client’s runtime during the online
protocol phase, while increasing the server’s runtime and requiring offline computations returning data to be stored
on the client’s device. Our theoretical analysis, only considering group exponentiations and multiplications, and
neglecting simpler operations such as equality checks and random element generations, suggests that our first (resp.,
second) protocol reduces the client’s online runtime by 1 (resp., 1 to 2) orders of magnitude with respect to the
textbook exponentiation algorithm, while increasing the server runtime and the protocol communication complexity
by 2 (resp., 1) orders of magnitude and the offline client runtime between a constant and 1 order of magnitude.

In Sect. 3.3 we adapt these protocols so to delegate variable-exponent fixed-base exponentiation. The resulting
protocols have similar efficiency properties, with a slight improvement on the client’s online runtime, which can
be about 2 orders of magnitude less than in the textbook exponentiation algorithm, according to our theoretical
analysis.

Finally, in Sect. 3.4, we present our software implementation, in Python 3.6, using commodity computing
resources and the gmpy2 package, which confirms that our protocols improve the client’s online runtime with
respect to the exponentiation algorithm available in the same package.

A preliminary version of this paper has appeared in [39].

2 Models and Definitions

In this section we formally define delegation protocols, and their correctness, security, privacy and efficiency
requirements, building on the definitional approach from [11] (also based on [22,28]), and describe group notations
and protocol preliminaries.

Basic Notations. The expression y ← T denotes the probabilistic process of randomly and independently choosing
y from set T . The expression y ← A(x1, x2, . . .) denotes the (possibly probabilistic) process of running algorithm
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A on input x1, x2, . . . and any necessary random coins, and obtaining y as output. The expression (zA, zB) ←
(A(x1, x2, . . .), B(y1, y2, . . .)) denotes the (possibly probabilistic) process of running an interactive protocol
between A, taking as input x1, x2, . . . and any necessary random coins, and B, taking as input y1, y2, . . . and any
necessary randomcoins,where zA, zB are A and B’s final outputs, respectively, at the endof this protocol’s execution.

System scenario, entities, and protocol.We consider a systemwith two types of parties: clients and servers, where
a client’s computational resources are expected to be more limited than those of a server, and therefore clients are
interested in delegating the computation of specific functions to servers. In all our solutions, we consider a single
client, denoted as C , and a single server, denoted as S. We assume that the communication link between each client
and S is authenticated or not subject to integrity or replay attacks, and note that such attacks can be separately
addressed using known techniques in cryptography and security. As in all previous work in the area, we consider
a model with an offline phase, where for instance exponentiations to random exponents can be precomputed and
made somehow available to the client. This model has been justified in several ways, all motivated by different
application settings. In the presence of a trusted party (say, setting up the client’s device), the trusted party can simply
perform the precomputed exponentiations and store them on the client’s device. If no trusted party is available, in
the presence of a pre-processing phase where the client’s device may not have significant computation constraints,
the client can itself perform the precomputed exponentiations and store them on its own device. For simplicity of
description, we will consider a generic Offline algorithm keeping in mind that it is run by either a trusted party or
a client without significant computation constraints.

Let σ denote the computational security parameter (i.e., the parameter derived from hardness considerations on
the underlying computational problem), and let λ denote the statistical security parameter (i.e., a parameter such
that evens with probability 2−λ are extremely rare). Both parameters are expressed in unary notation (i.e., 1σ , 1λ).
When performing numerical performance analysis, we use σ = 2048 and λ = 128, as these are currently the most
often recommended parameter settings in cryptographic protocols and applications.

Let F be a function, and let desc(F) denotes F’s description. Assuming desc(F) is known to both C and
S, and input x is known only to C , we define a client-server protocol for the delegated computation of F in
the presence of an offline phase as a 2-party, 2-phase, communication protocol between C and S, denoted as
(C(1σ , 1λ, desc(F), x), S(1σ , 1λ, desc(F))), and consisting of the following steps:

1. pp ← Offline(1σ , 1λ, desc(F)),
2. (yC , yS) ← (C(1σ , 1λ, desc(F), pp, x), S(1σ , 1λ, desc(F)).

As discussed above, Step 1 is executed in an offline phase, when the input x to the function F is not yet available.
Step 2 is executed in the online phase, when the input x to the function F is available to C . At the end of both
phases, C learns yC (intended to be = F(x)) and S learns yS (usually an empty string in this paper). S. We will
often omit desc(F), 1σ , 1λ for brevity of description. Executions of delegated computation protocols can happen
sequentially (each execution starting after the previous one is finished), or concurrently (S runs at the same time
one execution with each one of many clients).

Correctness. Informally speaking, the correctness requirement states that if both parties follow the protocol, at the
end of the protocol execution, C’s output y is, with high probability, equal to the evaluation of function F on C’s
input x . A formal definition follows.

Definition 2.1 Let σ, λ be the security parameters, let F be a function, and let (C, S) be a client-server protocol for
the delegated computation of F . We say that (C, S) satisfies δc-correctness if for any x in F’s domain, it holds that

Prob
[
out ← CorrExpF(1

σ , 1λ) : out = 1
] ≥ δc,

for some δc close to 1, where experiment CorrExp is detailed below:
CorrExpF(1

σ , 1λ)

1. pp ← Offline(desc(F))

2. (yC , yS) ← (C(pp, x), S)
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3. if yC = F(x) then return: 1
else return: 0

Security. Informally speaking, the security requirement states that if C follows the protocol, a malicious adversary
corrupting S and even choosing C’s input x can only convince C with a small probability to output, at the end of
the protocol, some y′ different from value F(x) or some failure symbol ⊥. We will also call this probability as the
security probability, and denote it as εs . A desirable value for it will be 2−λ, for some statistical security parameter
λ, concretely set as, for instance, equal to 128. A formal definition follows.

Definition 2.2 Let σ, λ be the security parameters, let F be a function, and let (C, S) be a client-server protocol
for the delegated computation of F . We say that (C, S) satisfies εs-security against a malicious adversary if for
any algorithm A, it holds that

Prob
[
out ← SecExpF,A(1σ , 1λ) : out = 1

] ≤ εs,

for some εs close to 0, where experiment SecExp is detailed below:
SecExpF,A(1σ , 1λ)

1. pp ← Offline(desc(F))

2. (x, aux) ← A(desc(F))

3. (y′, aux) ← (C(pp, x), A(aux))
4. if y′ =⊥ or y′ = F(x) then return: 0

else return: 1.

Privacy. Informally speaking, the privacy requirement states the following: if C follows the protocol, a malicious
adversary corrupting S cannot obtain any information about C’s input x from a protocol execution. This is for-
malized by extending the indistinguishability-based approach typically used in formal definitions for encryption
schemes. That is, the adversary can pick two inputs x0, x1, then one of these two inputs is chosen at random and
used by C in the protocol with the adversary acting as S, and then at the end of the protocol the adversary can only
guess which input was used by C with probability 1/2. A formal definition follows.

Definition 2.3 Let σ, λ be the security parameters, let F be a function, and let (C, S) be a client-server protocol
for the delegated computation of F . We say that (C, S) satisfies εp-privacy (in the sense of indistinguishability)
against a malicious adversary if for any algorithm A, it holds that
∣∣∣∣Prob

[
out ← PrivExpF,A(1σ , 1λ) : out = 1

] − 1

2

∣∣∣∣ ≤ εp,

for some εp close to 0, where experiment PrivExp is detailed below:
PrivExpF,A(1σ , 1λ)

1. pp ← Offline(desc(F))

2. (x0, x1, aux) ← A(desc(F))

3. b ← {0, 1}
4. (y′, d) ← (C(pp, xb), A(aux))
5. if b = d then return: 1

else return: 0.

Efficiency.Wemeasure the efficiency of a client-server protocol (C, S) for the delegated computation of function F
by the efficiency metrics (tF , tP , tC , tS, cc), meaning that F can be computed (without delegation) using tF atomic
operations, C can be run in the offline phase using tP atomic operations and in the online phase using tC atomic
operations, S can be run using tS atomic operations, and C and S exchange messages of total length at most cc. In
our theoretical analysis, we only consider the most expensive group operations as atomic operations (e.g., group
multiplications and/or exponentiation), and neglect lower-order operations (e.g., equality testing, random element
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generations, additions and subtractions over Zn-type groups). While we naturally try to minimize all these protocol
efficiency metrics, our main goal is to design protocols where tC << tF , even if possibly resulting in tS being
somewhat larger than tF and cc being somewhat larger than the length of F’s input and output. We note that,
according to the textbook ‘square-and-multiply’ algorithm, tF is, on average, = 1.5σ group multiplications, where
σ denotes the length of the binary representation of a group element. As a theoretical goal, we target protocols
where tC is much smaller than σ group multiplications.

Group notations. Let � denote the length of the binary representation of a group’s elements. We say that a group
is efficient if its description is short (i.e., has length polynomial in �), its associated operation ∗ and the inverse
operation are efficient (i.e., they can be executed in time polynomial in �). The security parameter σ and the group
element length � are typically set as the same value. In the rest of the paper we study two types of exponentiation
in any efficient group, depending on whether the base or the exponent are the input to the exponentiation function.

Fixed-exponent variable-base exponentiation. Let (G, ∗) be an efficient group of order q, and let k be an integer
known to both parties, and assumed, for simplicity, less than q. Also, let y = xk denote the fixed-exponent variable-
base exponentiation (in G) of x to the k-th power; i.e., the value y ∈ G such that x ∗ · · · ∗ x = y, where the
multiplication operation ∗ is applied k − 1 times. Then we denote by FG,exp,k : G → G the function that maps
every x ∈ G to the fixed-exponent variable-base exponentiation (in G) of x to the k-th power.

Variable-exponent fixed-base exponentiation. Let (G, ∗) be an efficient group, and let g be an element with order q,
for some large integer q known to the client, and let y = gx denote the variable-exponent fixed-base exponentiation
(in G) of g to the x-th power; i.e., the value y ∈ G such that g ∗ · · · ∗ g = y, where the multiplication operation
∗ is applied x − 1 times. Also, let Zq = {0, 1, . . . , q − 1} and FG,exp,g : Zq → G denote the function that maps
every x ∈ Zq to the variable-exponent fixed-base exponentiation (in G) of g to the x-th power.

Protocol preliminaries. In all our protocols, inputs commons to client and server include a description of the
group, the exponentiation function to be delegated, a computational parameter 1σ and a security parameter 1λ. The
input to the exponentiation function will be known to the client only. Our main protocol descriptions will be for
the fixed-exponent variable-base exponentiation function FG,exp,k and therefore k will also be known to both client
and server. When we describe our protocols for the variable-exponent fixed-base exponentiation function FG,exp,g ,
the group element g will also be known to both client and server, and the client will also know g’s order q.

3 Delegating Exponentiation in General Groups

In this section we present our protocols for the delegation of exponentiation in a general class of groups to a single
(possibly malicious) server.

We note that general conversion techniques are known in the cryptography literature to transform a protocol
secure against a honest adversary into one secure against a malicious adversary. Typically these techniques are
based on zero-knowledge proofs of knowledge of secrets that certify the correctness of the computation, a method-
ology often used in cryptography papers since [25]. In their most general version, these techniques do not perform
well with respect to many efficiency metrics. Even considering their most simplified version, basic proofs of knowl-
edge of exponents in the literature require the verifier to perform group exponentiations, which is precisely what
the client is trying to delegate in our protocols. Accordingly, new techniques are needed. Our first protocol, in
Sect. 3.1, uses a direct parallel repetition of an efficient subprotocol that achieves security probability 1/2, this latter
subprotocol being an improved version of our scheme from Sect. 5 of [11]. Our second protocol, in Sect. 3.2, is
actually a parameterized class of protocols where, for some values of two parameters c,m, the security probability
is reduced more efficiently than by direct parallel repetition. The protocols in Sects. 3.1 and 3.2 are presented
for fixed-exponent variable-base exponentiation. Analogue protocols are achieved for variable-exponent fixed-base
exponentiation and are briefly presented in Sect. 3.3. Finally, in Sect. 3.4 we show performance results from our
software implementation of these protocols.
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3.1 Delegating Fixed-Exponent Variable-Base Exponentiation: a Cut-and-Choose Approach

Wefirst describe a basic protocol (bC1, bS1)with constant security probability (obtained by simplifying the protocol
in Sect. 5 of [11]) and then the final protocol ( f C1, f S1), obtained as a parallel repetition of the basic protocol.
A protocol (bC1, bS1) with constant security probability. In an offline phase, bC1 randomly chooses u0, u1 ∈ G,
b ∈ {0, 1} and computes vb = ukb and v1−b = u−k

1−b. In the online delegation phase, bC1 computes zb = ub and
z1−b = x ∗ u1−b, and sends (z0, z1) to bS1. Next, bS1 computes wi = zki , for i = 0, 1 and sends (w0, w1) to bC1.
Finally, bC1 checks that wb = vb; if not, bC1 returns failure symbol ⊥; otherwise, bC1 returns y = w1−b ∗ v1−b.

We now observe that protocol (bC1, bS1) satisfies correctness, privacy, security (with probability 1/2), and
efficiency (with tC = 2 multiplications, tS = 2 exponentiations, and tP = 2 exponentiations plus 1 inversion in G).

The efficiency properties are verified by protocol inspection. The correctness property follows by observing
that if bC1 and bS1 follow the protocol, bC1’s equality verification is satisfied, and thus C’s output y satisfies
y = w1−b ∗ v1−b = zk1−b ∗ u−k

1−b = (x ∗ u1−b)
k ∗ u−k

1−b = xk, which implies that y = FG,exp,k(x) for each x ∈ G.
The privacy property follows by observing that the message z0, z1 sent by bC1 does not leak any information about
x , since they are randomly and independently distributed in G, as so are chosen u0 and u1. To see that the security
property is satisfied, for any probabilistic polynomial-time adversary corrupting bS1, consider the values w0, w1

returned by the adversary to bC1. If the adversary honestly computeswi = zki for both i = 0, 1, then the probability
it fools bC1 into an incorrect output y is 0. Thus, assume the adversary computes wc 
= zkc , for some bit c ∈ {0, 1}.
Then note that bC1 will find this out and return failure symbol ⊥ when b = c, and, since the message (z0, z1) leaks
no information about b, the equality b = c holds with probability at least 1/2. This implies that the probability that
the adversary fools bC1 into an incorrect output y is ≤ 1/2.

A protocol ( f C1, f S1) with exponentially small security probability. Protocol ( f C1, f S1) consists of λ parallel
executions of the basic protocol (bC1, bS1), with the only additional modification that the output of f C1 is defined
as y if in all λ parallel executions bC1 would return the same value y, or as failure symbol⊥ otherwise (that is, if bC1

returns ⊥ in any one of the parallel executions, or two different values 
=⊥ in any two of the parallel executions).
Protocol ( f C1, f S1) satisfies correctness, privacy, security (with probability 1/2λ), and efficiency (with tC =

2λ multiplications, tS = 2λ exponentiations, tP = 2λ random bases to known-exponent exponentiations plus λ

inversion in G, and cc = O(λσ)). The proof of these properties is a direct extension of the proofs for the properties
of (bC1, bS1).

We remark that for the typical setting λ = 128, C only performs 256 group multiplications. This is about 1 order
of magnitude smaller than 1.5σ , the average number of group multiplications in the square-and-multiply algorithm,
which can be = 3072 for the setting σ = 2048, which has been recommended on some commonly used groups in
cryptography.

3.2 Delegating Fixed-Exponent Variable-Base Exponentiation: Improved Security Probability Reduction

In this subsectionwe improve the approach in Sect. 3.1 by studying computation-efficient (in terms ofC’s parameters
tP , tC ) reductions of the security probability εs . Our overall approach towards this goal can be briefly summarized
as follows: first, we propose a basic protocol (bC2, bS2) with improved constant security probability and then we
define a final protocol ( f C2, f S2) that performs a suitable parallel repetition (with a reduced number of repetitions)
of this basic protocol.

Theorem 3.1 Let σ, λ be security parameters and c,m be protocol parameters. There exists (constructively) a
client-server protocol (bC2, bS2) for delegated computation of function FG,exp,k which satisfies

1. δc-correctness, for δc = 1
2. εs -security, where εs is a constant that depends on parameter c (see Table 1 for exact values, ranging between

0.10763, for c = 2,m = 100, to 0.04538, for c = 9,m = 100)
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3. εp-privacy, for εp = 0
4. efficiency with parameters (tF , tP , tC , tS, cc), where

• tF is = 1 group exponentiation in G
• tS is = m group exponentiations in G
• tP is = c group exponentiations with random bases in G and 1 inversion in G
• tC is = 2 group multiplications in G
• cc = 2m elements in G

We remark that this protocol strictly improves the security probability achievable when bC2 only performs 2 group
multiplication in G during the protocol. As a comparison, the atomic protocol from Sect. 3.1 was only achieving
security probability 1/2. However, there is a tradeoff with the other metrics, as this protocol does increase the
number of group exponentiations from bS2 and the number of precomputed group exponentiations with random
bases. Other comparisons for specific values of parameter c appear in the proof of the protocol’s properties.

Informal description of protocol (bC2, bS2). Our main approach consists of reducing the security probability by
a more time-efficient approach than the direct parallel repetition approach in Sect. 3.1. While we do not know how
to avoid the above parallel repetition, we show that we can reduce the number of repetitions by designing a more
efficient protocol with security probability much smaller than 1/2. As a first simple example of this approach, by
starting from protocol (bC1, bS1) with security probability 1/2 from Sect. 3.1, and including 2 random ‘decoy’
values in G in the client’s message to the server, we obtain a protocol with the following properties: (1) it does not
increase the client’s number of multiplications, (2) it only slightly increases computation by the server; and (3) it can
be seen to reduce the security probability from 1/2 to 1/3. Our protocol generalizes this idea of using random decoy
values in G to a parameterized number m, also representing an upper bound on the number of values that the client
sends to the server. This generalization reduces the security probability, even though not as much as we would like.
Accordingly, the other idea is that of increasing the number of equality checks, since these are much less expensive
than modular multiplications. We then introduce a second parameter c, representing an upper bound on the number
of equality checks that the client wants to execute, as well as the number of pre-computed exponentiations that the
client can afford. Specifically, in the resulting protocol, of the m values in G sent by the client to the server, one
value is used to compute the function output, c − 1 values are used to perform equality checks, and m − c values
are decoy values. The resulting protocol achieves a security probability which is, very roughly speaking, linear in
1/c, and thus the number of repetitions to reduce the probability to 2−λ, can be reduced to about λ/ log2 c. We can
actually define a class of protocols that is parameterized by c and m and analyze what values for these parameters
give us a more time-efficient reduction of the security probability than what achieved in Sect. 3.1. The two main
high-level takeaways on that analysis are: (1) a moderately large value for m is just as good as a huge value; (2)
values of c ∈ {4, . . . , 9} result in a reduced number of group multiplications from the client.

Formal description of protocol (bC2, bS2). Let G be an efficient group of order q, and a known exponent value
k ∈ Zq .

Input to bS2 and bC2: 1σ , desc(FG,exp,k), and parameters 1c, 1m

Input to bC2: x ∈ G

Offline instructions:

1. bC2 randomly chooses distinct j1, . . . , jm ∈ {1, . . . ,m}
2. bC2 randomly chooses ui ∈ G, sets vi = uki , for i = 1, . . . , c − 1, vc = u−k

c and z ji = ui , for i = 1, . . . , c
3. bC2 randomly and independently chooses z jc+1 , . . . , z jm ∈ G

Online instructions:

1. bC2 sets z jc = x ∗ uc and sends z1, . . . , zm to bS2
2. bS2 computes w j = zkj for j = 1, . . . ,m

bS2 sends w1, . . . , wm to bC2
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3. if w j1 
= v j1 or w j2 
= v j2 or . . . or w jc−1 
= v jc−1 then
bC2 returns: ⊥ and the protocol halts

bC2 computes y = w jc ∗ vc and returns: y

Properties of protocol (bC2, bS2): The efficiency properties are verified by protocol inspection. In particular, note
that during the protocol bC2 only performs 2 multiplications in G, and S performs c exponentiations in G. During
the offline phase, bC2 performs c exponentiations in G and 1 subtraction in G.

The correctness properties follows by observing that if bC2 and bS2 follow the protocol, none of the inequality
verifications in step 3 will be satisfied. Thus, bC2’s output is 
=⊥ and is equal to y = w jc ∗ vc = zkjc ∗ vc =
(x ∗ uc)k ∗ u−k

c = xk, which implies that bC2’s output is = FG,exp,k(x) for each x ∈ G.
The privacy property follows by observing that themessage z1, . . . , zm sent by bC2 does not leak any information

about x . Note that values in this message are generated in 3 different ways, and are in all 3 cases uniformly and
independently distributed in G. Specifically, bC2 sets z j1 , . . . , z jc−1 as equal to u1, . . . , uc−1, respectively, and the
latter are uniformly and independently chosen from G. Moreover, C sets z jc as x ∗ uc, which is still uniformly dis-
tributed in G, since so is uc, for any x ∈ G. Finally, bC2 uniformly and independently chooses z jc+1 , . . . , z jm from
G. This concludes the proof of the privacy, as defined in Sect. 2. We also observe that, by the same reasons of this
proof, protocol (bC2, bS2) satisfies the following property: for any x , z1, . . . , zm are uniformly and independently
distributed in G. We will use this latter fact in the proof of the security property.

To prove the security property against a malicious bS2 we need to compute an upper bound εs on the security
probability that bS2 convinces bC2 to output a y such that y 
= FG,exp,k(x). With respect to a random execution of
(bC2, bS2) where bC2 uses x as input, we define the following events:

• ey,
=, defined as ‘bC2 outputs y such that y 
= FG,exp,k(x)’
• ey,=, defined as ‘bC2 outputs y such that y = FG,exp,k(x)’
• e⊥, defined as ‘bC2 outputs ⊥’

By inspection of (bC2, bS2), we see that the events ey,
=, ey,=, e⊥ are mutually exclusive, and one of them always
happens. We obtain the following fact.

Fact 3.1. Event ey,
= happens if and only if event (¬ e⊥) ∧ (¬ ey,=) happens.
With respect to a random execution of (bC2, bS2) where bC2 uses x as input, we recall that j1, . . . , jm denote
distinct values randomly chosen from {1, . . . ,m} in step 1 of the protocol in offline phase, and (w1, . . . , wm)

denotes the message sent by bS2 to bC2 in step 2 of the protocol in online phase. Then, we further define eW
as the set { j | w j = FG,exp,k(z j )} and dW the set { j | w j 
= FG,exp,k(z j )}. Note that (eW, dW ) is a partition of
{1, . . . ,m}. We observe that bC2 does not output ⊥ whenever j1, . . . , jc−1 belong to eW , and that bC2 does not
output y = FG,exp,k(x) whenever jc belong to dW . We obtain the following fact.

Fact 3.2. It holds that:

1. Prob [¬ e⊥ ] = Prob
[
j1 ∈ eW ∧ . . . ∧ jc−1 ∈ eW

]
,

2. Prob
[ ¬ ey,=

] = Prob [ jc ∈ dW ].

Note that since bS2 is malicious, eW could even be the empty set. However, note that the strategy of incorrectly
computing allwi ’s is not a good one for bS2 as the resulting message (w1, . . . , wm)will not pass bC2’s verifications
and bC2 will then output failure symbol ⊥. More generally, a malicious bS2 can choose the wi , as some arbitrary
function of the message (z1, . . . , zm), as well as of other information public to both protocol participants. However,
we now observe that bS2 cannot choose this message as a function of the random values j1, . . . , jm chosen by bC2

in offline phase of the protocol. This follows from the definition of the values z1, . . . , zm , which makes them to
have a distribution independent from that of j1, . . . , jm . Specifically, as already observed when proving the privacy
property of (bC2, bS2), the values z1, . . . , zm are uniformly and independently distributed inG, regardless of values
j1, . . . , jm . We obtain the following

Fact 3.3. The distribution of values w1, . . . , wm ∈ G is independent from the distribution of values j1, . . . , jm ∈
{1, . . . ,m}.
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This latest fact is important while studying strategies available to S, implying that S cannot compute the wi ’s based
on the random values j1, . . . , jc chosen by C in step 1 of the protocol.

The rest of the proof consists of computing an upper bound εs on the probability of event ey,
= via an analysis
of the best strategy for bS2, and considers 4 cases, depending on the value of parameter c in protocol (bC2, bS2).

Case c = 2 In this case, bC2 is including m − 2 decoy elements in G to its message z1, . . . , zm in step 1 and then
performing a single inequality check in step 3 of the protocol. We have the following

Prob
[
ey,
=

] = Prob [¬ e⊥ ] Prob
[ ¬ ey,=|¬ e⊥

]

= Prob [ j1 ∈ eW ] Prob [ j2 ∈ dW | j1 ∈ eW ]

= |eW |
m

|dW |
m − 1

= |eW |(m − |eW |)
m(m − 1)

,

where the first equality follows from Fact 3.1, the second equality follows from Fact 3.2, the third equality follows
from Fact 3.3, and the last equality from definitions of eW, dW .

Now, note that S can choose message (w1, . . . , wm) arbitrarily so to maximize the above probability. The
above ratio is maximized by setting |eW | = �m/2 (as well as |eW | = �m/2�), in which case we obtain that
εs = Prob

[
ey,
=

] = m/(4(m − 1)), indicating that εs gets very close to 1/4 as m grows.
This result can be interpreted by saying that using m − 2 random decoy elements in G as part of bC2’s mes-

sage reduces the probability from 1/2 (as in the atomic protocol from Sect. 3.1) to almost 1/4, while requiring no
additional computation of group multiplications from bC2.

Case c= 3 In this case, bC2 is includingm−3 decoy elements inG to its message z1, . . . , zm in step 1, using 3 pre-
computed exponentiations with random exponents, and then performing 2 inequality checks in step 3 of the protocol.

By directly adapting the same probability derivation steps as in the case c = 2, we obtain that

Prob
[
ey,
=

] = |eW |(|eW | − 1)(m − |eW |)
m(m − 1)(m − 2)

.

As before, note that bS2 can choose message (w1, . . . , wm) arbitrarily so to maximize the above probability, and,
after differentiation, we see that the above ratio is maximized by setting |eW | = (m + 1 + √

m2 − m + 1)/3. By
setting m = 100, we obtain that εs = Prob

[
ey,
=

] = 0.1504 < 1/6. Further increasing m does not help reducing
the probability by much as, for instance, by setting m = 1000 we obtain that εs = Prob

[
ey,
=

] = 0.1484.
This result can be interpreted by saying that using m − 3 random decoy elements in G as part of bC2’s mes-

sage and 1 additional precomputed exponentiation of a random exponent reduces the probability from 1/2 (as in
the atomic protocol from Sect. 3.1) to slightly less than 1/6, while requiring no additional computation of group
multiplications from bC2. As detailed later, when this protocol is combined with direct parallel repetition to reduce
εs to 2−λ, the overall number of C’s group multiplications is smaller than in the case c = 2.

Case c = 4, . . . ,m − 1. In this case, bC2 is including m − c decoy elements in G to its message z1, . . . , zm in step
1, using c pre-computed exponentiations with random exponents, and then performing c − 1 inequality checks in
step 3 of the protocol.

By directly adapting the same probability derivation steps as in the case c = 2, 3, we obtain that

Prob
[
ey,
=

] = Prob [¬ e⊥ ] Prob
[ ¬ ey,=|¬ e⊥

]

= Prob
[
j1, . . . , jc−1 ∈ eW

]
Prob

[
jc ∈ dW | j1, . . . , jc−1 ∈ eW

]

=
(|eW |
c−1

)

( m
c−1

) · m − |eW |
m − c + 1

.

As before, note that bS2 can choose message (w1, . . . , wm) arbitrarily so to maximize the above probability.
To analyze the above ratio, differentiation does not help since there is a high-degree polynomial and known upper
bounds on binomial coefficients are too loose. A tool-based trend analysis revealed that this ratio approximately
behaves like O(1/c) when studied as a function of c. Furthermore, we exactly computed the value
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Table 1 Values of εs for protocol (bC2, bS2), for c = 4, . . . , 10 and m = 100, 1000

c = 4 5 6 7 8 9 10

m = 10 0.13333 0.11111 0.10000 0.10000 0.10000 0.10000 0.10000

m = 20 0.11739 0.09391 0.07982 0.06842 0.06316 0.05789 0.05263

m = 40 0.11106 0.08212 0.07249 0.06219 0.05465 0.04918 0.04442

m = 60 0.10912 0.08403 0.07053 0.06024 0.05117 0.04692 0.04232

m = 80 0.10818 0.08457 0.06963 0.05930 0.05169 0.04588 0.04135

m = 100 0.10763 0.08403 0.06906 0.05874 0.05117 0.04538 0.04080

m = 1000 0.10568 0.08212 0.06718 0.05685 0.04928 0.04350 0.03894

εs = Prob
[
ey,
=

] = max
j=4,...,m−1

( j
c−1

)

( m
c−1

) · m − j

m − c + 1
,

for all values of c that guarantee some improved efficiency on the number tC (of bC2’s group multiplications during
the protocol) without making the number tP (of group exponentiations with random exponents computed during the
offline phase) toomuchworse. Specifically, we looked at all values of c such that the obtained εs is smaller than what
could be obtained by a parallel repetition of �c/2 executions of the atomic protocol fromSect. 3.1with security prob-
ability 1/2. It turns out that values c = 4, 5, 6, 7, 8 and 9 guarantee some improved efficiency on tC without making
tP muchworse, but starting from c = 10, the dependency of this protocol’s value tP on c starts becomingmuch larger
than the one for the protocol in Sect. 3.1. The obtained values for εs when c = 4, . . . , 10 are reported inTable 1 below.
Note that when c = 4, . . . , 9 the obtained value for εs is strictly smaller than the value 2−�c/2 that could be obtained
using the protocol from Sect. 3.1. Instead, when c = 10, the value εs = 0.03894 is > 0.03125 = 2−5, and the
protocol from Sect. 3.1 starts arguably offering a much better efficiency tradeoff.

Overall, this result can be interpreted by saying that using m − c random decoy elements in G as part of bC2’s
message and c − 2 additional precomputed exponentiations with random exponent reduces the probability from
1/2 (as in the atomic protocol from Sect. 3.1) to approximately O(1/c), while requiring no additional group mul-
tiplication from bC2. As detailed later, when this protocol is combined with direct parallel repetition to reduce
εs to 2−λ, the overall number of bC2’s group multiplications gets smaller as c increases. This comes at a cost of
increasing the number of precomputed exponentiations with random exponent, but this tradeoff might be acceptable
in applications where many precomputed exponentiations with random exponents are available or easy to obtain,
especially in the parameter setting c ≤ 9.

Casec = m. In this case, C is not including any decoy elements in G to its message z1, . . . , zm in step 1, is using
c = m pre-computed exponentiations with random exponents, and then performing m − 1 inequality checks in step
3 of the protocol. By directly adapting the same probability derivation steps as in the case c = 2, . . . ,m − 1, we
obtain that the probability Prob

[
ey,
=

]
is> 0 only when |eW | = m−1 and |dW | = 1, in which case we obtain that

εs = Prob
[
ey,
=

] = Prob [¬ e⊥ ] Prob
[ ¬ ey,=|¬ e⊥

]

= Prob
[
j1, . . . , jm−1 ∈ eW

]
Prob

[
jm ∈ dW | j1, . . . , jm−1 ∈ eW

]

= 1

m
· 1 = 1

m
.

This result can be interpreted by saying that this protocol can reduce the security probability to 1/m, even in the
potentially interesting case m = ω(1). However, this comes at a cost, in terms of precomputed exponentiations of
random exponents, that is higher than the cost incurred with the protocol from Sect. 3.1, when adapted to reach the
same security probability. ��
A protocol ( f C2, f S2) with exponentially small security probability. Protocol ( f C2, f S2) consists of r =
�λ/ log(1/εs)� parallel executions of the basic protocol (bC2, bS2), with the only additional modification that
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Table 2 Performance and security parameters for ( f C2, f S2) when m = 100 and c = 2, . . . , 9

c 2 3 4 5 6 7 8 9 10

εs when r = 1 0.2526 0.1504 0.1076 0.0840 0.0672 0.0588 0.0512 0.0454 0.0408

r 65 47 40 36 33 32 30 29 28

tP 130 141 160 180 198 224 240 261 280

tC 130 94 80 72 66 64 60 58 56

Here, tP is number of exponentiations, and tC is number of multiplications

the output of f C1 is defined as y if in all λ parallel executions bC1 would return the same value y, or as failure
symbol ⊥ otherwise (that is, if bC1 returns ⊥ in any one of the parallel executions, or two different values 
=⊥ in
any two of the parallel executions).

We obtain the following

Theorem 3.2 Let σ, λ be security parameters and c,m be protocol parameters. There exists (constructively) a
client-server protocol ( f C2, f S2) for delegated computation of function FG,exp,k which satisfies

1. δc-correctness, where δc = 1
2. εs -security, where εs = 2−λ

3. εp-privacy, for εp = 0
4. efficiency with parameters (tF , tP , tC , tS, cc), where r = �λ/ log2(1/εs)� and

• tF is = 1 group exponentiation in G
• tS is = m · r group exponentiations in G
• tP is = c · r group exponentiations with random bases and r inversions in G
• tC is = 2r group multiplications in G
• cc = 2m · r elements in G.

Protocol ( f C2, f S2) satisfies correctness, privacy, security (with probability 1/2λ), and efficiency (with tC = 2r
group multiplications, tS = mr group exponentiations, tP = cr group exponentiations with random bases and r
inversions, and cc = 2mrσ ).

The proof of these properties is obtained by extension of the proofs for the properties of (bC2, bS2). We remark
that for the typical setting λ = 128, C performs as low as 56 group multiplications and the number of group
multiplications is 1 to 2 orders of magnitude smaller than 1.5σ , the average number of group multiplications in the
square-and-multiply algorithm, which can be = 3072 for the setting σ = 2048, recommended on some commonly
used groups in cryptography.

To numerically evaluate the efficiency of this protocol, we evaluate its main efficiency metrics, with the typical
setting of λ = 128, in Table 2 below.
Note that it could be possible to further reduce the number of f C2’s group multiplications during the protocol
below 28 (the number obtained for m = 100, c = 10). However, as mentioned before, starting from c = 10, the
protocol offers an arguably worse tradeoff with the other efficiency metrics (mainly, the number of group exponen-
tiations with random exponents from the offline phase, the number of group exponentiations from f S2, etc.) than
the protocol from Sect. 3.1.

3.3 Delegating Variable-Exponent Fixed-Base Exponentiation

We describe our protocols for the delegation of variable-exponent fixed-base exponentiation over our general class
of groups. They are obtained by applying notation changes to the protocols in Sects. 3.1 and 3.2, which happen to
result in slightly more efficient client online runtime.
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Let G be an efficient group of order q, and let g ∈ G be a base value known to both parties.

A protocol (bC3, bS3) with constant security probability. In an offline phase, bC3 randomly chooses u0, u1 ∈ Zq

and computes v0 = gu0 and v1 = gu1 . In the delegation phase, bC3 randomly chooses bit b ∈ {0, 1} and computes
zb = ub and z1−b = x − u1−b mod q, and sends (z0, z1) to bS3. Next, bS3 computes wi = gzi , for i = 0, 1 and
sends (w0, w1) to bC1. Finally, bC3 returns failure symbol ⊥ if wb 
= vb or returns y = w1−b ∗ v1−b otherwise.
We note that bC3 requires one less multiplication than bC1.

A protocol ( f C3, f S3) with exponentially small security probability. Protocol ( f C3, f S3) consists of λ parallel
executions of the basic protocol (bC3, bS3), with the only additional modification that the output of f C3 is defined
as y if in all λ parallel executions bC3 would return the same value y, or as failure symbol⊥ otherwise (that is, if bC3

returns ⊥ in any one of the parallel executions, or two different values 
=⊥ in any two of the parallel executions).

A protocol (bC4, bS4)with constant security probability.

Input to bS4and bC4: 1σ , desc(FG,exp,g), g ∈ G, parameters 1c, 1m

Input to bC4: x ∈ Zq

Offline instructions:

1. bC4 randomly chooses distinct j1, . . . , jm ∈ {1, . . . ,m}
2. bC4 randomly chooses ui ∈ Zq , sets vi = gui and z ji = ui , for i = 1, . . . , c
3. bC4 randomly and independently chooses z jc+1 , . . . , z jm ∈ Zq

Online instructions:

1. bC4 sets z jc = (x − uc) mod q and sends z1, . . . , zm to bS2
2. bS4 computes w j = gz j for j = 1, . . . ,m

bS2 sends w1, . . . , wm to bC2

3. if w j1 
= v j1 or w j2 
= v j2 or . . . or w jc−1 
= v jc−1 then
bC4 returns: ⊥ and the protocol halts

bC4 computes y = w jc ∗ vc and returns: y

A protocol ( f C4, f S4) with exponentially small security probability. Protocol ( f C4, f S4) consists of r =
�λ/ log(1/εs)� parallel executions of the basic protocol (bC4, bS4), with the only additional modification that
the output of f C4 is defined as y if in all λ parallel executions bC1 would return the same value y, or as failure
symbol ⊥ otherwise (that is, if bC4 returns ⊥ in any one of the parallel executions, or two different values 
=⊥ in
any two of the parallel executions). This protocol satisfies correctness, privacy, security (with probability 1/2λ), and
efficiency with complexity similar to those in ( f C2, f S2), with the notable difference that the number of online
group multiplications by the client is reduced by a multiplicative factor of 2.

3.4 Software Implementation and Performance Results

We implemented our protocols in Sect. 3.3, choosing as example group the multiplicative group (Z∗
p, · mod p),

for p = 2q + 1, and p, q are large primes such that |p| = 2048.
Our implementation was carried out on a macOS High Sierra Version 10.13.4 laptop with 2.7 GHz Intel Core i5

processor with memory 8 GB 1867MHz DDR3. The protocols were coded in Python 3.6 using the gmpy2 package.
The obtained performance data is grouped in two tables. Table 3 contains parameters c,m, εs , running times

tF , tP , tC , tS and improvement ratio tF/tC for protocol (bC3, bS3) and protocol (bC4, bS4). Similarly, Table 4
contains parameters c,m, r , running times tF , tP , tC , tS and improvement ratio tF/tC for protocol ( f C3, f S3) and
protocol ( f C2, f S2). Here, parameter r represents the number of parallel repetitions of (bC3, bS3) and (bC4, bS4)
needed to get desired security probability εs = 2−128 in protocols ( f C3, f S3) and ( f C4, f S4), respectively.

A software implementation of protocols in Sects. 3.1 and 3.2 is expected to produce very similar (and only
slightly less efficient) performance results.
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Table 3 Performance of Protocols (bC3, bS3) and (bC4, bS4) on 2048-bit input lengths

(bC3, bS3) (bC4, bS4)

c NA 5 6 7 8

m NA 60 100 60 100 60 100 60 100

εs 0.50000 0.08403 0.08403 0.07053 0.06719 0.06024 0.05875 0.05117 0.05118

tF 0.003534 0.003631 0.003702 0.003685 0.003650 0.003686 0.003534 0.003728 0.003889

tP 0.007150 0.018332 0.019067 0.022506 0.022261 0.025946 0.025042 0.030026 0.031786

tC 0.000012 0.000021 0.000023 0.000021 0.000022 0.000022 0.000021 0.000023 0.000027

tS 0.007084 0.217909 0.369758 0.219471 0.364578 0.219965 0.354359 0.224488 0.381499
tF
tC

290.439 170.183 159.103 173.823 162.595 169.744 169.855 161.170 145.072

Table 4 Performance of Protocols ( f C3, f S3) and ( f C4, f S4), for εs = 2−128

( f C3, f S3) ( f C4, f S4)

c NA 5 6 7 8

m NA 60 100 60 100 60 100 60 100

r 128 36 36 34 33 32 32 30 30

tF 0.003651 0.003799 0.003637 .003851 0.003804 0.003705 0.004338 0.003709 0 .004046

tP 0.953298 0.686819 0.684862 0.769721 0.770282 0.850836 0.862347 0.910533 0.962034

tC 0.000779 0.000393 0.000268 0.000443 0.000270 0.000378 0.000289 0.000367 0.000304

tS 0.957278 8.05238 13.2509 7.58752 12.4730 7.15478 12.1795 6.70609 11.7280
tF
tC

4.68362 9.67187 13.5511 8.68811 14.0649 9.79045 15.0138 10.1090 13.3077

4 Conclusions

We studied the problem of a computationally weak client delegating group exponentiation to a single, possibly mali-
cious, computationally powerful server, as originally left open in [28]. We solved this problem by two protocols
that provably satisfy formal correctness, privacy (against adversaries of unlimited power), security (with exponen-
tially small probability) and efficiency requirements, in a general class of multiplicative groups, including groups on
which no quantum cryptanalysis attacks are currently known. Open problems include: (a) achieving better efficiency
tradeoffs as done in [17] for discrete logarithm groups and in [18] for RSA groups, where similar improvements
on the client’s online runtime were achieved with only constant overhead to server runtime and communication
complexity; and (b) reducing the dependency of the offline computations on the number of delegated group exponen-
tiation computations (in our protocols, as well as previous protocols in the literature, when delegating many group
exponentiation computations, the complexity of the offline phase increases at least linearly with such computations).
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