
Math.Comput.Sci. (2020) 14:533–549
https://doi.org/10.1007/s11786-020-00450-8 Mathematics in Computer Science

Mac Lane’s Comparison Theorem for the Kleisli
Construction Formalized in Coq

Burak Ekici · Cezary Kaliszyk

Received: 30 November 2018 / Accepted: 15 December 2019 / Published online: 8 February 2020
© The Author(s) 2020

Abstract (co)Monads are used to encapsulate impure operations of a computation. A (co)monad is determined
by an adjunction and further determines a specific type of adjunction called the (co)Kleisli adjunction. Mac Lane
introduced the comparison theorem which allows comparing these adjunctions bridged by a (co)monad through
a unique comparison functor. In this paper we specify the foundations of category theory in Coq and show that
the chosen representations are useful by certifying Mac Lane’s comparison theorem and its basic consequences.
We also show that the foundations we use are equivalent to the foundations by Timany. The formalization makes
use of Coq classes to implement categorical objects and the axiom uniqueness of identity proofs to close the gap
between the contextual equality of objects in a categorical setting and the judgmental Leibniz equality of Coq. The
theorem is used by Duval and Jacobs in their categorical settings to interpret the state effect in impure programming
languages.

Keywords Adjunctions · Monads · Kleisli Construction · Comparison theorem · Coq

Mathematics Subject Classification 68N17 · 68N18 · 03F50 · 18A15 · 18A40

1 Introduction

Mac Lane’s comparison theorem for the (co)Kleisli construction relates two adjunctions bridged by a (co)monad
via the unique comparison functor. This theorem is well known and crucial in the domain of programming language
semantics since it helps build interpretations of impure computations based on (co)monads and adjunctions. This
paper deals with the Coq formalization of the mentioned theorem and can be seen as a first step towards providing
some formal recipe to study programming language semantics using (co)monads. In this section, we briefly describe

This work has been supported by the ERC Grant No. 714034 SMART.

B. Ekici (B)
Department of Computer Engineering, İstanbul Kültür University, Istanbul, Turkey
e-mail: b.ekici@iku.edu.tr

C. Kaliszyk
Department of Computer Science, University of Innsbruck, Innsbruck, Austria
e-mail: cezary.kaliszyk@uibk.ac.at

http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-020-00450-8&domain=pdf

534 B. Ekici, C. Kaliszyk

Fig. 1 The triangle form by
Jacobs

computational effects, some ways to formalize them, highlight the role of the comparison functor in some of these
formalizations. We end the section with an intuition of the comparison theorem implementation in Coq.

A function in mathematics always returns the same result on the same input. The result depends only on the
input arguments. However, in programming, a program might do other things besides computing a result. It might
be handling an exceptional case, caught by a non-terminating loop or stuck in an interaction with the outside world.
Such phenomena are known as computational side effects of programs. Following Moggi’s seminal approach [16],
one can interpret computational side effects in the Kleisli category of a monad or dually in a coKleisli category of a
comonad. For instance, in Moggi’s computational metalanguage, an effectful operation in an impure language with
arguments in X that returns a value in Y is interpreted as an arrow from �X� to T �Y � in the Kleisli category of a
monad T . Here �X� denotes the object of values of type X and T �Y � is the object of computations that return values
of type Y . The monad-comonad duality in modeling effects may be understood in general terms as a symmetric
correspondence between construction and observation among different sort of computational effects, for instance
between raising an exception and looking up a state [7].

Plotkin and Pretnar [18] presented handlers for algebraic effects by extending Moggi’s classification of terms
(values and computations) with a third level called handlers. This approach has then been implemented in the
programming language Eff [1] to handle effects.

Jacobs [12] introduced the state-and-effect triangles, depicted in Fig. 1, which capture the semantics of the
program state and their corresponding logics in a unified way within a triangle form.

In this setting, K L(T) denotes the Kleisli category of the monad T = GF while EM(T) is the Eilenberg–Moore
category of the algebras of T . The comparison theorem for the Kleisli construction (see Theorem 2.7) gives a unique
comparison functor L : K L(T) → A such that the left half of the diagram commutes. The functor L maps compu-
tations to their predicate transformers. This could be understood as interpreting programs via their actions on some
predicates that specify what holds at which point of the computation. One sort of such program semantics is the
weakest precondition calculus introduced by Hoare [10]. The comparison theorem for the Eilenberg–Moore con-
struction, that is outside the scope of this paper, also gives a unique comparison functor K : A → EM(T) making
the right half of the diagram above commutative. The functor K ◦ L : Kl(T) → EM(T) maps each computation
to the algebra that explain the state change during that computation.

Duval et al. [5] proposed another paradigm to formalize effects by mixing effect systems [13] and algebraic the-
ories, named the decorated logic. In a decorated logic, a term can be classified in three different sorts with respect to
its interaction with a given effect. It can be pure, an accessor or a modifier. For instance, a state accessor may read
from the program state but never modifies it while a modifier has the right to manipulate the state. The pure and
accessor terms may be understood as Moggi’s values and computations, and the modifiers can be seen as Plotkin
and Pretnar’s handlers. In Duval’s approach, pure terms with respect to a computational effect are interpreted in a
base category C with (co)monad on it. Accessor and modifier terms are then respectively interpreted in the Kleisli
category of the monad and the base category C (the codomain of the monad endofunctor) or dually in the coKleisli
category of the comonad and the base category C .

For instance, a pure term f (0) : X → Y in the logic which models the global state effect (decorated logic for the
state [6]) is interpreted as a map f : X → Y in the base category C . An accessor term f (1) : X → Y as an arrow
f � : X → Y in CD which implicitly corresponds to a map f : X × S → Y in the base category C . Similarly, a
modifier term f (2) : X → Y is interpreted as a map f : X × S → Y × S in C . Notice that terms are annotated with
“decorations” (super-scripted) that describe what computational (side) effect evaluation of a term may involve, and

Mac Lane’s Comparison Theorem 535

Fig. 2 Interpreting the
decorated logic for the state

the use of decorations keeps term signatures clear of the state structure S. This allows the logic to abstract from
the state and work with different implementations of the state structure. The decorations come with conversion
rules that basically say that a pure term can be seen as an accessor or a modifier, and similarly an accessor term
can be seen as a modifier term on demand. The former conversions are interpreted by the functor GD and D
respectively while the latter by FD, T . Obviously, for these conversions to be sound, the interpreting functors must
be faithful so that one can keep track of terms that are converted from the “lower” annotation/decoration levels.
Looking closer into the categorical settings of an interpretation of such logic, depicted in Fig. 2, we can say that the
monad T is handled by the coKleisli adjunction FD � GD : C → CD and further determines a Kleisli adjunction
FD, T � GD, T : CD, T → CD . The comparison theorem gives a unique comparison functor L : CD, T → C such
that equations L◦FD, T = FD andGD ◦L = GD, T hold. It is a special case of the theoremwhere the categoryCD, T

is indeed the full image category of the endofunctor D which is then decomposed by L into L ◦ FD, T ◦GD f = Df
for each f : X → Y in C , and L is faithful1. Now, the soundness of the all decoration conversions depends on the
faithfulness of the functors GD and FD, T . Also, the conversion from the decoration (0) to (2) can now safely be
factorized into first converting from (0) to (1) and then from (1) to (2).

To sum up briefly, the comparison theorem is crucial in the domain of computational effects as it is used by
Duval and Jacobs to model the state effect.

1.1 Contribution

We refine the paper proof of Mac Lane’s comparison theorem for the Kleisli construction. We then formalize the
basics of category theory in Coq up to a proof of the mentioned theorem. We show a number of basic consequences
that follow from the theorem as well as an equivalence between our foundation of category theory and other Coq
developments. The sources of the formalization are explained in Sects. 3.2 and 3.3, and can be downloaded from
the link below:

https://github.com/ekiciburak/ComparisonTheorem-MacLane/tree/completeProof

For the organization of the files, please refer to “Appendix A”.

1.2 Organization of the Paper

In Sect. 2 we give a paper proof to the comparison theorem, since it has not been given in the book [14]. Then
we explain a certification of this proof in a Coq implementation. We start by comparing the existing approaches to
formalize category theory and our design choices in Sect. 3.1. Then, in Sect. 3.2 we summarize a formalization in
Coq of categorical objects that appear in the theorem statement. Our formalization benefits from the use of Coq type
classes and is in this respect similar to the approaches by Gross et al. [9], Timany et al. [20,21] John Wiegley [23].
The use of type classes is a very suitable way of defining categorical objects. This way we combine, in a type
class, the characterization of the object that is being defined, usually as expressions in the Type universe, and the

1 See the Coq proof of the statement in the attached library, in UseCase.v file. The proof generalizes the state comonad.

https://github.com/ekiciburak/ComparisonTheorem-MacLane/tree/completeProof

536 B. Ekici, C. Kaliszyk

coherence conditions that the provided characterization needs to respect as the Prop universe instances. We give,
in Sect. 3.3, a Coq proof of the comparison theorem in which we assume the uniqueness of identity proofs (UIP)
and proof irrelevance. We make use of the former to close the gap between Coq’s judgmental (Leibniz) equality
and the contextual equality in categorical settings: we fail in some cases showing that two categorical objects are
judgmentally equal since they are equal only contextually. We use the latter in showing that two instances of the
same class are equal in satisfying the coherence conditions that live in Coq’s Prop. Also, we benefit from the
functional extensionality axiom in proving, for instance, that two arrows in a category are the same.

Apreliminary version of this paper,with an incomplete proof formalization,was presented at FormalMathematics
for Mathematicians workshop [8].

2 Adjoint Functors and Monads

Adjunctions and monads are objects that can be derived from one another. Every adjunction gives raise to a monad
but only some specific type of adjunctions come out of monads. In this section, we show how to turn adjunctions
into monads and how to handle Kleisli adjunctions from monads. We then give a proof of Mac Lane’s comparison
theorem.

Definition 2.1 Let C and D be two categories. The functors F : C → D and G : D → C form an adjunction
F � G : D → C iff there exist natural transformations η : I dC ⇒ GF and ε : FG ⇒ I dD with the following
coherence conditions satisfied:

F
Fη

idF

FGF

εF
=

F

G
ηG

idG

GFG

Gε
=

G

εFX ◦ FηX = idFX for each X in C (2.1)

GεA ◦ ηGA = idGA for each A in D (2.2)

Informally speaking, an adjunction is a possible similarity measure between functors. It is a concept such as
equality, equivalence and isomorphism, considered as the weakest notion among them. It can be understood as a
further weakening of an isomorphism. If we look for isomorphisms in between two functors, say F and G, we first
require them to be defined from the same source category to the same target category. Only then, we search for
two natural transformations between F and G defined in opposite directions such that their composition gives the
identity natural transformation over the functor F or G depending on the order of composition.

An adjunction is weaker. It can relate two functors defined between the same categories but in the opposite direc-
tions, i.e., F : C → D and G : D → C . Obviously, we cannot look for an equality, equivalence nor isomorphism
between F and G since they do not live in the same type, from a type-theoretic point of view; meaning they cannot
be directly compared. Indeed, this is the point where the notion of adjointness comes into the play by providing a
possible way to compare them via their compositions. Therefore, for the functors F : C → D and G : D → C to
qualify as adjoints, there need to be two natural transformations η : IdC ⇒ GF and ε : FG ⇒ IdD satisfying the
coherence conditions stated in Eqs. (2.1) and (2.2). The former can be depicted and explained as follows:

X
Id f

ηX =
Y

ηY

GFX
GF f

GFY

F

FX
F(I d f)

FηX =

I d(FX) =

FY

FηY

Id(FY)FGFX
FGF f

εFX =
FGFY

εFY

F X
F f

FY

=

Mac Lane’s Comparison Theorem 537

If F and G are adjoint functors, then this condition intuitively tells us that the following case holds for each map
f : X → Y in the category C : we have maps I d f : X → Y and GF f : GFX → GFY also in C . Using the
natural transformation η, we can deform the map I d f into GF f . We then transport this deformation through the
functor F from the category C into the categoryD . There, using the natural transformation ε, we can do an inverse
deformation (or better a formation) and form the map f back in the form of F f since we are in D . Note that we
independently have the other very similar condition at Eq. (2.2) satisfied.

Example 1 In the Calculus of Inductive Constructions (CIC), the conjunction and implication over propositions are
adjoint operations. To show this, we first take the Prop universe as the category of propositional formulas and entail-
ments, and name itCatP. It is then possible to form two endo-functors F,G : ∀p ∈ obj (Cat P),Cat P → Cat P as

F(p) = λq.p ∧ q

F(p) f = λ(H : p ∧ a).match H with conj x y ⇒ conj x (f y),∀ f : a → b

G(p) = λq.p 	⇒ q

G(p) f = λ(H : p 	⇒ a)(x : p). f (H x), ∀ f : a → b

We now define two natural transformations
∀η : ∀p ∈ obj (Cat P), I dCat P ⇒ G(p) ◦ F(p) and ∀ε : ∀p ∈ obj (Cat P), F(p) ◦ G(p) ⇒ I dCat P as

η(p) = λ(y : id q)(x : p).conj x y, ∀q ∈ obj (cat P)

ε(p) = λ(H : p ∧ (p 	⇒ q)).match H with conj x y ⇒ y x,∀q ∈ obj (cat P)

where conj x y is a proof of x ∧ y.
It is straightforward to check that the functors F and G form an adjunction through η and ε by simply showing

that Eqs. (2.1) and (2.2) are satisfied. It is interesting to notice that ε is modus-ponens.

There are other equivalent ways to formulate the notion of adjunction. For instance, the following Proposition 2.2
makes use of an isomorphism of hom-functors and may better highlight the connection between an isomorphism
and an adjunction. Also, an adjunction can be seen as a generalization of the “equivalence” between categories.

Proposition 2.2 An adjunction F � G : D → C determines a bijection of natural transformations defined between
hom-functors

ϕX, A : HomD (FX, A)
∼=−→ HomC (X, GA) (2.3)

for each X ∈ C and A ∈ D as follows:

ϕX, A f = G f ◦ ηX : X → GA for each f : FX → A (2.4)

ϕ−1
X, Ag = εA ◦ Fg : FX → A for each g : X → GA. (2.5)

Definition 2.3 A monad T = (T, η, μ) in a category C consists of an endo-functor T : C → C equipped with
two natural transformations

η : I dC ⇒ T μ : T 2 ⇒ T (2.6)

538 B. Ekici, C. Kaliszyk

such that the following diagrams commute:

T 3 μT

Tμ =
T 2

μ

T 2
μ

T

T
ηT

Tη idT

T 2

=
μ

T 2
=

μ
T

μ ◦ Tμ = μ ◦ μT μ ◦ Tη = μ ◦ ηT (2.7)

μ ◦ ηT = idT (2.8)

μ ◦ Tη = idT (2.9)

The natural transformationsμ and η can be respectively seen as the binary multiplication and the identity operations
of the monad. Then, the coherence condition given by the above diagram on the left (aka the associativity square)
ensures that the multiplication is an associative operation. While the one on the right (aka the unit triangles) assures
the neutrality of the identity with respect to the multiplication.

Example 2 A monad is in fact a monoid in the category of endo-functors with its identity being unit η : I dC → T
of the monad and its binary operation being the multiplication μ : T 2 → T . The properties of the monoidal identity
meet the coherence conditions at unit triangles. The associativity square can be formed by the associativity of the
monoid’s binary operation.

Proposition 2.4 An adjunction F � G : D → C determines a monad on C and a comonad on D as follows:

• The monad (T, η, μ) on C has endo-functor T = GF : C → C , unit η : I dC ⇒ T where ηX = ϕX, FX (idFX)

and multiplication μ : T 2 ⇒ T such that μX = G(εFX).
• The comonad (D, ε, δ) on D has endo-functor D = FG : D → D , counit ε : D ⇒ I dD where εA =

ϕ−1
GA, A(idGA) and co-multiplication δ : D ⇒ D2 such that δA = F(ηGA).

Proposition 2.5 Each monad (T, η, μ) on a category C determines a Kleisli category CT and an associated
adjunction FT � GT : CT → C as follows:

C
FT

⊥

T

CT
GT

• The categories C and CT have the same objects and there is a morphism f � : X → Y in CT for each morphism
f : X → TY in C .

• For each object X in CT , the identity arrow is idX = h� : X → X in CT where h = ηX : X → T X in C .

• The composition of a pair of morphisms f � : X → Y and g� : Y → Z in CT is given by the Kleisli composition:
g� ◦ f � = h� : X → Z where h = μZ ◦ Tg ◦ f : X → T Z in C .

• The functor FT : C → CT is the identity on objects. On morphisms,

FT f = (ηY ◦ f)�, for each f : X → Y in C . (2.10)

• The functor GT : CT → C maps each object X in CT to T X in C . On morphisms,

GT (g�) = μY ◦ Tg, for each g� : X → Y in CT . (2.11)

Below lemma is used in Theorem 2.7 to prove the uniqueness of the comparison functor.

Mac Lane’s Comparison Theorem 539

Lemma 2.6 Let F � G : D → C be an adjunction. For each f : X → GY in C , and g, h : FX → Y in D , if
f = Gg ◦ ηX and f = Gh ◦ ηX then g = h.

Proof By assumption, we have Gg ◦ ηX = Gh ◦ ηX thus εY ◦ F(Gg ◦ ηX) = εY ◦ F(Gh ◦ ηX) which is
εY ◦ FGg ◦ FηX = εY ◦ FGh ◦ FηX . The naturality of ε gives g ◦ εFX ◦ FηX = h ◦ εFX ◦ FηX . Finally, since
εFX ◦ FηX = idFX , we conclude that g = h. �

Theorem 2.7 (The comparison theorem for the Kleisli construction [14, Ch. VI, §5, Theorem 2]) Let F � G : D →
C be a adjunction and let (T, η, μ) be the associated monad on C . Then, there is a unique comparison functor
L : CT → D such that GL = GT and LFT = F, where CT is the Kleisli category of (T, η, μ), with the associated
adjunction FT � GT : CT → C .

C
FT

F

⊥

T

�

CT
GT =

!L

D

G

Intuitively, one can start with an arbitrary adjunction F � G : D → C . This determines a monad T on the base
category C and dually a comonad on the category D as stated in Proposition 2.4. Later, the monad T creates a
Kleisli category CT together with a Kleisli adjunction FT � GT : CT → C as in Proposition 2.5. The theorem
states that one can compare these arbitrary and structured adjunctions using a functor L : CT → D (aka comparison
functor) which is unique and making the above diagram commutative in both directions.

Proof Let us first assume that L : CT → D is a functor satisfying GL = GT and LFT = F . So that the below
given diagram commutes.

C
FT

idC =

CT

L

GT

=

C

idC

C
F

D
G

C

Let θX, Y : HomCT (FT X,Y)
∼=−→ HomC (X,GTY) be a bijection associated to the adjunction FT � GT provided by

Proposition 2.2. Similarly, let ψX, Y : HomD (FX,Y)
∼=−→ HomC (X,GY) be a bijection associated to the adjunc-

tion F � G. Since units of adjunctions FT � GT and F � G are the unit η of the monad (T, η, μ) by [14, Ch. IV,
§7, Proposition 1], we obtain the commutative diagram below:

HomCT (FT X,Y)
θX,Y

LFT X,Y

HomC (X,GTY)

idX,GT Y

HomD (LFT X, LY)

=

HomC (X,GTY)

= =

HomD (FX, LY)
ψX,LY

HomC (X,GLY)

Therefore, LFT X,Y = ψ−1
X,LY ◦ θX,Y . Using the Eq. (2.4) in Proposition 2.2, we have: θX,Y f � = GT f � ◦ ηX : X →

GTY, for each f � : FT X = X → Y in CT . SinceGT f � = μY ◦T f inC , for each f � : X → Y inCT , by Eq. (2.11),

540 B. Ekici, C. Kaliszyk

we have θX,Y f � = μY ◦T f ◦ηX : X → GT FT Y = GTY.Thanks to the naturality of η, we get θX,Y f � = μY ◦ηTY ◦
f . The monadic axiom μY ◦ ηTY = idTY yields θX,Y f � = f : X → GTY . Since GT = GL and FT is the identity
on objects, we have θX,Y f � = f : X → GLY and LFT Y = LY = FY. Now, by Eq. (2.5) in Proposition 2.2,
we obtain ψ−1

X,LY f = εLY ◦ F f = εFY ◦ F f = ψ−1
X,FY f for each f : X → GFY in C . Hence ψ−1

X,LY (θX,Y f �) =
ψ−1

X,FY f = εFY ◦ F f. In other words, given a functor L satisfying GL = GT and LFT = F , then it must be such

that LX = FX for each object X in CT and L f � = εFY ◦ F f in D for each f � : X → Y in CT .

We first prove that some map L : CT → D , characterized by LX = X and L f � = εY ◦ F f , is actually a functor
satisfying GL = GT and LFT = F :

1. For each X in CT , due to the fact that idX = (ηX)� in CT , we have L(idX) = L((ηX)�) = εFX ◦ FηX . By [14,
Ch. IV, §1, Theorem 1], we get εFX ◦ FηX = idFX = idLX . For each pair of morphisms f � : X → Y and
g� : Y → Z in CT , by Kleisli composition, we obtain L(g� ◦ f �) = εFZ ◦ FGεFZ ◦ FGFg ◦ F f. Since ε is
natural, we have εFZ ◦ Fg ◦ εFY ◦ F f which is L(g�) ◦ L(f �) in D . Hence L : CT → D is a functor.

2. For each object X in CT , LX = FX in D and GLX = GFX = T X = GT X in C . For each morphism
f � : X → Y in CT , L f � = εFY ◦ F f in D by definition. Hence, GL f � = GεFY ◦ GF f. Similarly, Eq. (2.11)
gives GT f � = GεFY ◦ GF f. We get GL f � = GT f � for each mapping f �. Thus GL = GT .

3. FT is the identity on objects, thus LFT X = LX = FX . For each morphism f : X → Y in C , we have
FT f = (ηY ◦ f)� in CT , by definition. So that LFT f = L(ηY ◦ f)� = εFY ◦ FηY ◦ F f. Due to ε and η being
natural, we have εFY ◦ FηY = idFY yielding LFT f = F f for each mapping f . Therefore LFT = F .

We additionally need to show that the functor L : CT → D , as characterized before, satisfying the equations
GL = GT and LFT = F is unique. Otherwise put, for each functor R : CT → D satisfying GR = GT and
RFT = F , we need to obtain R = L . Let us show in the following items that the functors L and R map objects
and morphisms in the same way:

• For each object X in CT , we have LX = FX = RFT X by definition of L and the assumption RFT = F . Since
FT is the identity on objects (see the fourth item in Proposition 2.5), we get LX = RX .

• For eachmorphism f � : X → Y inCT , (correspondingly f : X → TY inC), wewould end upwith L f � = R f �

if we can demonstrate that f = G(L f �)◦ηX = G(R f �)◦ηX holds inC , thanks to Lemma 2.6.We first trivially
get f = GT f � ◦ ηX = GT f � ◦ ηX using the assumed equations GR = GT and GL = GT . Then, we have
GT f � ◦ ηX = μY ◦ GF f ◦ ηX by definition of GT . That amounts to GT f � ◦ ηX = μY ◦ ηGFY ◦ f due to the
naturality of η. The monadic axiom μY ◦ ηGFY = idGFY yields GT f � ◦ ηX = f . Therefore L f � = R f �.

We have ∀R : CT → D,GR = GT ∧ RFT = F 	⇒ R = L thus the functor L is unique. �

Example 3 Todemonstrate a use case of the comparison theorem,we startwith a comonad D on an arbitrary category
C . Thanks to Proposition 2.5,we get the coKleisli categoryCD with the coKleisli adjunction FD � GD : C → CD in
association.We further know from the dual of Proposition 2.4 that the coKleisli adjunction gives us a comonad (which
is indeed the D itself) on the base categoryC and amonad T on the codomain categoryCD . By Proposition 2.4 itself,
we can obtain theKleisli categoryCD, T of themonad T with theKleisli adjunction FD, T � GD, T : CD, T → CD . It
is obvious that the categoryCD, T is the full-image category of the endo-functor of the comonad D which we started
with: it is made of the objects of C , and for each arrow f �
 : X → Y in CD, T , there is an arrow f : DX → DY in
C . Now, Theorem 2.7 provides the unique comparison functor L : CD, T → C with the equations L ◦ FD, T = FD

and GD ◦ L = GD, T satisfied. Furthermore, it is possible to prove the fact that the functors L and GT, D ◦ FT form
the full-image decomposition of the endo-functor of the comonad D. Otherwise put, this endo-functor is indeed

Mac Lane’s Comparison Theorem 541

L ◦ (FD, T ◦ GD) : C → C .

CD

FD, T

FD

⊥

T

�
CD, T

GD, T =
!L

C

GD

D

C
GD

D

CD
FD, T

FD

=

CD, T

!L
=

C

Notice that it is possible to keep building the Kleisli categories over coKleisli categories by subsequent applications
of Propositions 2.5 and 2.4. Such constructions obviously follow a pattern.

C
GD

D2

CD
FD, T

CD, T
=

GD,T,D
CD,T,D

FD,T,D,T
CD,T,D,T

!KC

For instance the Kleisli category CD,T,D,T built over the coKleisli, Kleisli and coKleisli categories provided by the
comonad D on C is the full-image category of the composition of the endo-functor of D with itself: it is made of
the objects of C and for each arrow f �
�
 : X → Y in CD,T,D,T , there is a corresponding arrow f : D2X → D2Y
in C . And, the comparison theorem gives us a unique functor K : CD,T,D,T → C which decomposes the endo-
functor of D composed with itself into K ◦ (FD,T,D,T ◦ GD,T,D ◦ FD, T ◦ GD) : C → C . This means that
K ◦ (FD,T,D,T ◦ GD,T,D ◦ FD, T ◦ GD) f = D2 f for each f in C .

In general, when there are subsequent dual adjunctions, a coKleisli over a Kleisli or vice versa, out of the same
monad or comonad, the comparison functor provided by Theorem 2.7 can be used to annihilate these adjunctions
in such a way that one basically returns to the initial point up to the number of annihilations that the endo-functor
of the initial monad or comonad composed to itself.

We have formalized all of the categorical content mentioned so far in Coq, and briefly explain the formalization
in the following Sect. 3.

3 Coq Formalization

3.1 Related Work: Category Theory in Proof Assistants

We have developed our own category theory library in Coq for the sole purpose of formalizing and proving the
comparison theorem. As already mentioned earlier and detailed in the next Sect. 3.2, in order to formalize categor-
ical objects that take part in the theorem, we make use of Coq type classes. That is similar to what has been done
by Timany et al [21] and Wiegley [23] in their Coq libraries, and by Daniel Peebles in his Agda library [17]. We
managed to formally verify in Coq that the intersection of our formalization of categorical objects and the one by
Timany are equivalent. As Timany does, we benefit from Coq’s universe polymorphism in our formalization but
never explicitly mention universe levels. We rely on typical ambiguity where Coq automatically resolves universe
constraints, i.e., “smallness/largeness” of objects in categorical terms. Since there is no typical ambiguity is allowed
in Agda, Peebles’ library handles all related universe levels explicitly.

The only difference in object formalizations between our library and the one of Wiegley is that he makes use of
setoid equivalences in stating proof obligations while we use Coq’s judgmental equality. With the setoid approach,
equivalence proofs between objects may become simpler. However, this approach brings an overhead: always needs

542 B. Ekici, C. Kaliszyk

the proof of the fact that every function send equivalent elements to equivalent elements. Using Coq’s judgmental
equality, we skip this problem but face another one: categorical objects are usually not judgmentally but contextually
equal. To have the judgmental equality as the contextual equality, we make use of the UIP assumption. Peebles
also makes use of the setoid approach in his above mentioned Agda library.

Unlike the libraries by Gross et al [9] and Ahrens et al [22], we are not yet benefiting from HoTT proposals:
no use of higher order inductive types nor the Univalence Axiom. Again the reason for this is that we managed to
implement the comparison theorem without being in the need of such structures. However, the formalization can
be clearly adapted to use the Univalence Axiom instead of the UIP axiom if needed.

In addition to the ones we have mentioned above, there are other implementations of category theory in type
theory. For instance, in Agda, Capriotti’s [3] formalization is based on HoTT. Ishii [11] and Pouillard [19] make use
of records. The agda-categories library [4] also benefits from the records, and avoids the UIP axiom when
it comes to do equational reasoning.

Categories and functors have also been specified by Byliński in Mizar [2], using set theoretic permissive types
and record types. However the formalization is limited by the use of explicit Grothendieck universes and it would
be very hard if not impossible to extend it to the comparison theorem.

Chad Brown has specified the foundations of category theory in the Egal proof system where he gives definitions
tometa and locally small categorieswith the use of predicates over Egal types and sets respectively. He also defines
small categories over Egal sets. His specification would possibly allow the comparison theorem to be formalized
using metacategories but it might be cumbersome due to the heavy use of predicates.

3.2 Formalization of Categorical Objects

In a Coq implementation, we represent category theoretical objects such as categories, functors, natural transforma-
tions, monads and adjunctions with data structures having single constructors and several fields, namely classes.
For instance, the Functor class is implemented as follows:

Class Functor (C D: Category): Type � mk_Functor
{ fobj : @obj C → @obj D;

fmap : ∀ {a b: @obj C} (f: arrow b a), (arrow (fobj b) (fobj a));
preserve_id : ∀ {a: @obj C}, fmap (@identity C a) = (@identity D (fobj a));
preserve_comp : ∀ {a b c: @obj C} (g : @arrow C c b) (f: @arrow C b a), fmap (g o f) = (fmap g) o
(fmap f) }.

Remark 3.1 The Coq type “arrow C b a” is the type of maps from a to b (not from b to a) in the category C as
it makes the composition “relatively” easier.

In order to build a Functor class instance, one needs to instantiate four fields. The first two, called fobj and
fmap, describe how the instance in question would map objects and arrows from the category C to D. The last two,
namely preserve_id and preserve_comp, are coherence conditions asserting the facts that the characteri-
zation provided in the first two fields should preserve the identity and the composition.

One difficulty with such an implementation would arise when proving an equality between two functor instances.
To do so, one needs to mainly show that they map objects and arrows in the same way. It is fine to put Coq’s Leibniz
equality between fobj F and fobj G since Coq can implicitly infer the fact that they are instances of the same
type. This is however not the case for fmap F and fmap G. Namely, Coq cannot implicitly infer the fact that
they are living in the same type. Meaning, this type coercion needs to be proven explicitly. To overcome the issue,
we hide this explicit coercion behind the heterogeneous (or John Major’s) equality, by McBride [15], at the lemma
statement below:

Lemma F_split: ∀ (C D: Category) (F G: Functor C D), fobj F = fobj G → JMeq (fmap F) (fmap G) → F = G.

Mac Lane’s Comparison Theorem 543

This complicates the equality proofs since one needs to show fmap F and fmap G are instances of the same type
each time before proving that they map arrows in the same way. In doing so, we usually prefer converting the goal
into the shape where we need to prove an equality over dependent pairs:

...
______________________________________(1/1)
{p : (∀ a b : obj, arrow b a → arrow (fobj F b) (fobj F a)) =

(∀ a b : obj, arrow b a → arrow (fobj G b) (fobj G a)) &
match p in (_ = y) return y with

| eq_refl ⇒ @fmap _ _ F
end = @fmap _ _ G}

If such a proof of the fact that “fmap F and fmap G are instances of the same type” is given as p, then it is still
necessary to show that p is indeed the eq_refl. Only then we can try proving that fmap F equalizes to fmap G.
The proof of p = eq_refl usually requires to make UIP (uniqueness of identity proofs) assumption depending
on the structures that F and G are relating. This is in fact a similar sort of complication that would be brought by the
use of setoid equivalences (as in [23]) when replaced by the Leibniz equality. Also note that to prove the equalities
between coherence conditions, preserve_id and preserve_comp, we assume proof irrelevance.

A natural transformation instance defined form the functor F to G has a component (aka transformation) of type
arrow (G a) (F a) in the category D for each object a in C. We name this trans in the implementation.
The instance also satisfies the coherence condition which is named comm_diag. This intuitively says that using
the compatible components, trans a and trans b, of the natural transformation, one can deform the arrow
fmap F f into fmap G f.

Class NaturalTransformation (C D: Category)

(F G: Functor C D): Type � mk_nt
{ trans : ∀ (a: @obj C), (@arrow D (fobj G a) (fobj F a));

comm_diag: ∀ {a b: @obj C} (f: arrow b a), fmap G f o trans a = trans b o fmap F f }.

We now have the required basics to formalize the notion of adjunctions as formally stated in Definition 2.1:

Class Adjunction {C D: Category} (F: Functor C D)

(G: Functor D C): Type � mk_Adj
{ unit : NaturalTransformation (@IdFunctor catC) (Compose_Functors F G);

counit: NaturalTransformation (Compose_Functors G F) (@IdFunctor D);
ob1 : ∀ a, (trans counit (fobj F a)) o fmap F (trans unit a) = @identity D (fobj F a);
ob2 : ∀ a, (fmap G (trans counit a)) o trans unit (fobj G a) = @identity C (fobj G a) }.

where unit and counit correspond to natural transformations η and ε and proof obligations ob1 and ob2
implement Eqs. (2.1) and (2.2) respectively. This means that to build an adjunction between given functors, one
needs to provide two natural transformations satisfying the proof obligations. We also implement monads as a Coq
type class in parallel with the formalism given in Definition 2.3:

Class Monad (C: Category) (T: Functor C C): Type � mk_Monad
{ eta : NaturalTransformation IdFunctor T;

mu : NaturalTransformation (Compose_Functors T T) T;
comm_diagram1 : ∀ (a: @obj C), trans mu a o fmap T (trans mu a) = trans mu a o trans mu (fobj T a);
comm_diagram2 : ∀ (a: @obj C), trans mu a o fmap T (trans eta a) = trans mu a o trans eta (fobj T
a);
comm_diagram2_b1: ∀ (a: @obj C), trans mu a o fmap T (trans eta a) = identity (fobj T a);
comm_diagram2_b2: ∀ (a: @obj C), trans mu a o trans eta (fobj T a) = identity (fobj T a) }.

544 B. Ekici, C. Kaliszyk

In the above script, eta and mu are concerned with the two natural transformations stated in (2.6). The first field
comm_diagram1 is the proof obligation requiring the associativity of the monad multiplication mu as in Eq. (2.7).
The remaining obligations comm_diagram2, comm_diagram2_b1 and comm_diagram2_b2 are also con-
sulting the neutrality of the monad identity eta with respect to the multiplication as in Eqs. (2.7), (2.8) and (2.9).
Basically, to construct amonad instance, one needs to provide an identity and an associativemultiplication as natural
transformations, satisfying these four obligations. Also, IdFunctor is the identity functor over the base category
C in the above script.

We have so far briefly discussed the categorical objects that appear in the formal statement Theorem 2.7 in a
Coq implementation. In the next Sect. 3.3, we comment on how to build a proof instance to the statement in Coq,
in a similar manner to its paper proof.

3.3 A Coq Proof of the Comparison Theorem

In order to state and prove the comparison theorem in Coq, we need to (1) demonstrate that every adjunction gives
a monad on the base category that is actually the statement of Proposition 2.4, (2) show that every monad deter-
mines a Kleisli category and a Kleisli adjunction in association as in Proposition 2.5, (3) characterize some map
L : CT → D as{
LX = FX

L f � = εFY ◦ F f, for each f � : X → Y in CT

and show that it is indeed a functor, (4) prove that the functor L meets equations L ◦ FT = F and G ◦ L = GT , (5)
and finally show that L is unique. Notice that first two steps are used to state the theorem in Coq and the remaining
three are indeed the proof steps.

Remark 3.2 The natural transformation ε used above in item three is the counit of the comonad that the coKleisli
adjunction determines over CT .

Remark 3.3 In the following proof scripts, we only present a brief taste of the proofs as the characterizations of the
objects being built, and skip the parts showing that the coherence conditions are satisfied. For the complete proofs,
please look at the library.

Let us start with the formalization of Proposition 2.4:

Theorem adj_mon: ∀ {C1 C2: Category} (F: Functor C1 C2) (G: Functor C2 C1),

let T � (Compose_Functors F G) in let T2 � (Compose_Functors T T) in Adjunction F G → Monad
C1 T.

Proof. intros C1 C2 F G T T2 A.
unshelve econstructor; destruct A as (eta, eps, cc1, cc2).
- exact eta.
- refine (@mk_nt C1 C1 T2 T (fun a ⇒ fmap G (trans eps (fobj F a))) _). ... Qed.

Theorem adj_comon: ∀ {C1 C2: Category} (F: Functor C1 C2) (G: Functor C2 C1),

let D � (Compose_Functors G F) in let D2 � (Compose_Functors D D) in Adjunction F G → coMonad
C2 D.

Proof. intros C1 C2 F G D D2 A.
unshelve econstructor; destruct A as (eta, eps, cc1, cc2).
- exact eps.
- refine (@mk_nt C2 C2 D D2 (fun a ⇒ fmap F (trans eta (fobj G a))) _). ... Qed.

Remark 3.4 The unshelve econstructor tactic breaks up the under-construction (type class) instance so
that it could be constructed field by field as opposed to be done in one go.

As explicitly given above, the endo-functor T of the monad that the adjunction A builds on the base category
C1 is G ◦ F. Its unit is the unit (eta) of the adjunction while the multiplication is defined in terms of the counit

Mac Lane’s Comparison Theorem 545

eps, and implemented benefiting the refine tactic: the constructor mk_nt is “refined” to build the correspond-
ing NaturalTransformation instance with the underlying map being G(eps (F)) for each object a in C1.
Dually, the endo-functor D of the comonad that the adjunction A builds on the co-domain category C2 is F ◦ G,
its counit is the counit (eps) of the adjunction, and the co-multiplication is defined in terms of the unit eta as
F(eta (Ga)) for each object a in C2.

We implement Proposition 2.5 in three steps starting with the fact that every monad gives raise to a Kleisli
category whose objects are the ones of the base category C and morphisms are of the form f� : b → a for each
f : b → Ta in C.

Definition Kleisli_Category (C: Category) (T: Functor C C) (M: Monad C T): Category.
Proof. unshelve econstructor.

- exact (@obj C).
- intros a b. exact (@arrow C (fobj T a) b). ... Defined.

Once we obtain this category, we can claim that there is a special adjunction, namely the Kleisli adjunction between
the base categoryC and theKleisli category.We implement the candidate adjoint functors as in Eqs. (2.10) and (2.11).

Definition FT

{C D: Category} (T: Functor C C) (M: Monad C T) (KC � (Kleisli_Category C T M)): Functor C KC.
Proof. destruct M as (eta, mu, cc1, cc2, cc3, cc4).

unshelve econstructor.
- exact id.
- intros a b f. exact (trans eta b o f). ... Defined.

Definition GT

{C D: Category} (T: Functor C C) (M: Monad C T) (KC � (Kleisli_Category C T M)): Functor KC C.
Proof. destruct M as (eta, mu, cc1, cc2, cc3, cc4).

unshelve econstructor; simpl.
- exact (fobj T).
- intros a b g. exact (trans mu b o fmap T g). ... Defined.

Left candidate adjoint map, named FT in the implementation, is the identity on objects and maps each arrow
f : a → b in C to an arrow (eta b ◦ f)� in the Kleisli category. The right candidate, called GT, maps each object
a in the Kleisli category to an object Ta in C. For each g� : a → b in the Kleisli category we have an arrow
(mu b ◦ Tg) in C via GT. In the rest of the definitions, we basically show that both maps are indeed functors.
We then prove that these candidate functors do actually form an adjunction:

Theorem mon_kladj: ∀ {C D: Category} (F: Functor C D) (G: Functor D C)

(T � Compose_Functors F G) (M: Monad C T) (FT � FT T M) (GT � GT T M), Adjunction FT GT.
Proof. intros C D F G T M FT GT.

unshelve econstructor.
- unshelve econstructor.

+ intro a. destruct M as (eta, mu, cc1, cc2, cc3, cc4).
exact (trans eta a).
...

- unshelve econstructor.
+ intro a. exact (identity (fobj G (fobj F a))). ... Qed.

To close the goal above, it suffices to build two natural transformations with signatures IdC ⇒ GT ◦ FT and
FT ◦ GT ⇒ IdD, and then show that they satisfy the coherence conditions ob1 and ob2 given as fields (proof
obligations) of the Adjunction class. The component of the former natural transformation is simply the unit,
eta a for each a in C, of the monad that we have started with. It is the map from fobj G (fobj F a) to a for
each object a in the Kleisli category for the latter natural transformation. Notice that this map corresponds to the

546 B. Ekici, C. Kaliszyk

identity map over the object fobj G (fobj F a) in the category C. We now characterize some map L, which will
then be the comparison functor, and show that with such a characterization L qualifies as a functor:

Definition L: ∀ {C D: Category} (F: Functor C D) (G: Functor D C) (A: Adjunction F G),

let M � (adj_mon F G A) in let CM � (adj_comon F G A) in

let CK � (Kleisli_Category C (Compose_Functors F G) M) in

let FT � (FT (Compose_Functors F G) M) in let GT � (GT (Compose_Functors F G) M) in Functor CK D.
Proof. intros C D F G A M CM CK FT GT.

unshelve econstructor.
- exact (fobj F).
- intros a b f.

destruct CM as (eps, delta, cc1, cc2, cc3, cc4).
exact (trans eps (fobj F b) o fmap F f). ... Defined.

The functor Lmaps objects in the same way with the functor F, namely fobj L = fobj F. For each f� : a → b
in the Kleisli category, Lf� = eps (Fb) ◦ Ff in the category D. This eps here is the counit of the comonad that
the Kleisli adjunction determines over the Kleisli category.

We then show that the functor L makes the diagram in the theorem statement commutative by satisfying the
equations FT o L = F and L o G = GT:

Lemma commL: ∀ {C D: Category} (F: Functor C D) (G: Functor D C) (A: Adjunction F G),

let M � (@adj_mon C D F G A) in let CK � (Kleisli_Category C (Compose_Functors F G) M) in

let FT � (FT (Compose_Functors F G) M) in let GT � (GT (Compose_Functors F G) M) in
Compose_Functors FT (L F G A) = F ∧ Compose_Functors (L F G A) G = GT.

Proof. intros C D F G A1 M CK FT GT; split.
- apply F_split.

+ easy.
+ apply eq_dep_id_JMeq, EqdepFacts.eq_sigT_iff_eq_dep, eq_existT_uncurried. ... Qed.

We need to prove functor equalities at both sides of the goal conjunction. Since both sides follow similar proofs,
it suffices to show the proof of the left component. We start with an application of the lemma F_split which
generates two sub-goals:

1. fobj (Compose_Functors FT (L F G A)) = fobj F. This goal is trivial since by definition L
behaves as F on objects and FT as the identity.

2. JMeq (fmap (Compose_Functors FT (L F G A))) (fmap F). This one is more involved. We
turn the goal into the shape of an equality over dependent pairs after applying a sequence of standard library
lemmas (given in the above script) and a cbn reduction:

...
______________________________________(1/1)
{p: (∀ a b : obj, arrow b a → arrow (fobj F b) (fobj F a)) = (∀ a b : obj, arrow b a →
arrow (fobj F b) (fobj F a)) &
match p in (_ = y) return y with
| eq_refl ⇒ fun (a b : obj) (f : arrow b a) ⇒ trans counit (fobj F b) o fmap F (trans unit b o f)
end = @fmap _ _ F}

Obviously, such a p exists as eq_refl. The rest of the proof follows from the coherence conditions provided
by the adjunction A under the functional extensionality assumption.

It now remains to implement the fact that the functor L is unique in order to get the whole proof formalized in Coq.
For that, we start with implementing a helper statement as in Lemma 2.6:

Mac Lane’s Comparison Theorem 547

Lemma adj_unique_map: ∀ (C D: Category) (F: Functor C D) (G: Functor D C) (A: Adjunction F G),
(∀ (a: @obj C) (b: @obj D) (f: @arrow C (fobj G b) a) (g h: @arrow D b (fobj F a)),
f = fmap G g o (trans (@unit C D F G A) a) → f = fmap G h o (trans (@unit C D F G A) a) → g

= h).
Proof. intros C D F G A a b f g h Hg Hh.

destruct A as (eta, eps, cc1, cc2).
rewrite Hg in Hh. apply (f_equal (fmap F)), (f_equal (fun w ⇒ comp((trans eps) _) w)) in Hh.

... Qed.

In the above proof script, we first build the equation trans eps b o fmap F (fmap G g o eta a) =
trans eps b o fmap F (fmap G g o eta a) by subsequent applications of f_equal to the equation
fmap G g o (trans eta a) = fmap G h o (trans eta a) named Hh. Then, using the naturality
of eta and one of the coherence conditions of the adjunction A we close the goal.
It finally comes to summarize how the unicity proof is formalized in Coq:

Lemma uniqueL: ∀ {C D: Category} (F: Functor C D) (G: Functor D C) (A1: Adjunction F G),

let M � (adj_mon F G A1) in let CK � (Kleisli_Category C (Compose_Functors F G) M) in

let FT � (FT (Compose_Functors F G) M) in let GT � (GT (Compose_Functors F G) M) in

let A2 � (mon_kladj F G M) in
∀ R : Functor CK D, Compose_Functors FT R = F ∧ Compose_Functors R G = GT → (L F G A1) = R.

Proof. intros C D F G A1 M CK FT GT A2 R.
...
apply F_split.
- ...

- ... apply (adj_unique_map _ _ _ _ A1) with (f � f). ... Qed.

It is indeed an equality proof between functors L and R which proceeds with an application of F_split. This
gives us two sub-goals to discharge: (1) they map objects and (2) morphisms in the same way. The former trivially
follows from the definition of L and the assumption FT o R = F. In the proof of the latter, we follow similar
steps with the one of commL in such a way that we need to successfully tackle the heterogeneous equality as the
second enumeration above. We use the UIP axiom since L and R map arrow in the same way only contextually
not judgmentally. We end up with a goal of the following shape: trans counit (fobj F b) o fmap F
f = fmap a b f, for all f : a → GFb in C (natively f� : a → b in CK). We then apply the helper lemma
adj_unique_map and get two goals: f = fmap G (trans counit (fobj F b) o fmap F f) o
trans unit a and f = fmap G (fmap a b f) o trans unit a. The proofs of both goals follow
from the coherence conditions of the adjunction A1. Finally, we state the comparison theorem and prove it in Coq:

Theorem ComparisonMacLane: ∀ {C D: Category} (F: Functor C D) (G: Functor D C) (A1: Adjunction F G),

let M � (adj_mon F G A1) in let CK � (Kleisli_Category C (Compose_Functors F G) M) in

let FT � (FT (Compose_Functors F G) M) in let GT � (GT (Compose_Functors F G) M) in

let A2 � (mon_kladj F G M) in ∃ !L, (Compose_Functors FT L) = F ∧ (Compose_Functors L G) = GT.
Proof. intros C D F G A1 M CT FT GT A2. ∃ (L F G A1). split. - apply commL. - apply uniqueL. Qed.

The goal simply gets discharged by providing an existence of such a comparison functor followed the application
of the fact that the functor makes the proof diagram commutative in both directions, and finally showing the fact
that it is unique.

4 Conclusion

The categorical setting inwhich a comonaddetermining a coKleisli adjunctionwith amonadover aKleisli adjunction
is used as an interpretation environment to formalize the state effect by Duval. See Fig. 2. The state-effect-triangles,

548 B. Ekici, C. Kaliszyk

as in Fig. 1, by Jacobs also provide a categorical setting to interpret the state effect. Mac Lane’s comparison theorem
plays an important role in both approaches. In the former, the provided unique comparison functor annihilates the
“dual” adjunctions and serves a better understanding of modifier terms. While in the latter, the comparison functor
directly interprets a map that maps programs to some predicates that describe their actions during the computations.
For example, it may be seen as theweakest precondition functorwhichmaps programs to their weakest preconditions
given any post-condition.

We have formalized in Coq the comparison theorem for the Kleisli construction together with the use case given
in Example 3. We also showed that the foundations we use are equivalent to the foundations of Timany. Our for-
malization currently suffices to analyze Duval’s approach but only the one half of the approach by Jacobs. To build
on this, we plan to continue with formalizing a proof of comparison theorem for the monad algebras in Coq. This
is a variant of the comparison theorem for the Kleisli construction in such a way that the Kleisli category CT of
the monad T is replaced with the Eilenberg–Moore category C T of algebras of T . This will then give a complete
picture of the state-effect triangles by Jacobs in a Coq formalization. Beck’s monadicity theorem [14, Ch. VI, §7,
Theorem 1] constitutes a next possible challenging formalization goal.

Acknowledgements Open access funding provided by University of Innsbruck and Medical University of Innsbruck.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

Appendix A. Organization of the Coq Sources

In the accompanying library youwill find 9 Coq source files. The following 8 files are indeed relevant for the proof of
the comparison theorem and its use case (Example 3): Imports,Category, Functor,NaturalTransformation,Monad,
Adjunction, Comparison and UseCase. They are given in an order such that subsequent one always depends on the
previous ones. I.e., UseCase depends on all files.

The remaining file, namely equivalence, includes the equivalence proofs of the overlapping parts of our library
with the one of Timany [20].

We have named in the implementation the lemma/theorem and definition statements as they appear in the paper.
Below we provide information about which statement is located in which file:
• Functor.v: Functor (class), F_split (lem).
• NaturalTransformation.v: NaturalTransformation (cls).
• Monad.v: Monad (class), Kleisli_Category (def), FT (def), GT (def).
• Adjunction.v: Adjunction (class), adj_mon (thm), adj_comon (thm), mon_kladj (thm),adj_unique_map (lem).
• Comparison.v: L (def), commL (lem), uniqueL (lem), ComparisonMacLane (thm).
• UseCase.v: Example 3 as AnniliationOfDualAdjunctions (thm).

The sources have been tested to compile fine with coqc versions 8.7.2, 8.8.0, 8.8.1 and 8.8.2 within
approximately 7 seconds on an Intel Core i7-7600U machine with 20GB external memory, and running Ubuntu
18.04 LTS.

References

1. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log. Algebr. Methods Program. 84(1), 108–123 (2015)
2. Byliński, C.: Introduction to categories and functors. Form. Math. 1(2), 409–420 (1990)

http://creativecommons.org/licenses/by/4.0/

Mac Lane’s Comparison Theorem 549

3. Capriotti, P.: pcapriotti/agda-categories. https://github.com/pcapriotti/agda-categories/, (2014)
4. Carette, J., Hu, J., Stucki, S., Sebe, MO: agda/agda-categories. https://github.com/agda/agda-categories (2019)
5. Domínguez, C., Duval, D.: Diagrammatic logic applied to a parameterisation process. Math. Struct. Comput. Sci. 20(4), 639–654

(2010)
6. Dumas, J.-G., Duval, D., Fousse, L., Reynaud, J.-C.: Decorated proofs for computational effects: States. In: Golas, U., Soboll, T.

(eds.), Proceedings Seventh ACCAT Workshop on Applied and Computational Category Theory, Tallinn, Estonia, 1 April 2012,
Vol. 93 of EPTCS, pp. 45–59 (2012)

7. Dumas, J.-G., Duval, D., Fousse, L., Reynaud, J.-C.: A duality between exceptions and states. Math. Struct. Comput. Sci. 22(4),
719–722 (2012)

8. Ekici, B.: Towards Mac Lane’s Comparison Theorem for the (co)Kleisli construction in Coq. In: Proceedings of the 3rd FMM
2018, co-located with the 11th CICM (2018)

9. Gross, J., Chlipala, A., Spivak, D.I.: Experience implementing a performant category-theory library in Coq. In: Klein, G., Gamboa,
R. (eds.), Interactive Theorem Proving—5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14–17, 2014. Proceedings, Vol. 8558 of LNCS, pp. 275–291. Springer (2014)

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)
11. Ishii, H.: konn/category-agda. https://github.com/konn/category-agda, (2013)
12. Jacobs, B.: A recipe for state-and-effect triangles. Log. Methods Comput. Sci. 13(2) (2017)
13. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’88, pp. 47–57, New York, NY, USA (1988). ACM
14. Mac Lane, S.: Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathematics. Springer, Berlin (1971)
15. McBride, C.: Eliminationwith amotive. In: TYPES, Vol. 2277 of Lecture Notes in Computer Science, pp. 197–216. Springer (2000)
16. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
17. Peebles, D.: copumpkin/categories. https://github.com/copumpkin/categories, (2018)
18. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Log. Methods Comput. Sci. 9(4) (2013)
19. Pouillard, N.: crypto-agda/crypto-agda. https://github.com/crypto-agda/crypto-agda/tree/master/FunUniverse (2015)
20. Timany, A.: amintimany/categories. https://github.com/amintimany/Categories (2017)
21. Timany, A., Jacobs, B.: Category theory in Coq 8.5. In: Proceedings of the 1st FSCD, Porto, Portugal, pp. 30:1–30:18 (2016)
22. Voevodsky, V., Ahrens, B., Grayson, D., et al.: UniMath—a computer-checked library of univalent mathematics. https://github.

com/UniMath/UniMath (2018)
23. Wiegley, J.: jwiegley/category-theory. https://github.com/jwiegley/category-theory (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/pcapriotti/agda-categories/
https://github.com/agda/agda-categories
https://github.com/konn/category-agda
https://github.com/copumpkin/categories
https://github.com/crypto-agda/crypto-agda/tree/master/FunUniverse
https://github.com/amintimany/Categories
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://github.com/jwiegley/category-theory

	Mac Lane's Comparison Theorem for the Kleisli Construction Formalized in Coq
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Organization of the Paper

	2 Adjoint Functors and Monads
	3 Coq Formalization
	3.1 Related Work: Category Theory in Proof Assistants
	3.2 Formalization of Categorical Objects
	3.3 A Coq Proof of the Comparison Theorem

	4 Conclusion
	Acknowledgements
	Appendix A. Organization of the Coq Sources
	References

