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Abstract We give a new construction of the outer automorphism of the symmetric group on six points. Our
construction features a complex Hadamard matrix of order six containing third roots of unity and the algebra of
split quaternions over the real numbers.
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1 Introduction

Sylvester showed that the fifteen two-subsets of a six element set can be formed into 5 parallel classes in six different
ways and that the action of S6 on these synthematic totals is essentially different from its natural action on six points
[13]. To our knowledge this was the first construction for the outer automorphism of S6.

Miller attributes the result that for n �= 6, Sn has no outer automorphisms to Hölder, and Sylvester’s construction
of the outer automorphism of S6 to Burnside [11]. He also gives a by-hand construction of the outer automorphism.
The papers of Janusz and Rotman, and of Ward provide easily readable accounts which are similar to Sylvester’s
[10,14]. Cameron and van Lint devoted an entire chapter (their sixth!) to the outer automorphism of S6 [2]. They
build on Sylvester’s construction to construct the 5-(12, 6, 1) Witt design, the projective plane of order 4, and the
Hoffman–Singleton graph.

Via consideration of the cube in R
3, Fournelle gives a heuristic for the existence of an outer automorphism of

S6, and constructs it with the aid of a computer [7]. Howard, Millson, Snowden and Vakil give two constructions of
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the outer automorphism of S6, and use this to describe the invariant theory of six points in certain projective spaces
[9].

In this notewegive a constructionwhichwebelieve has not previously been described, using a complexHadamard
matrix of order 6 and a representation of the triple cover of A6 over the complex numbers. This note is inspired by
a construction of Marshall Hall Jr [8] for the outer automorphism of M12 via a real Hadamard matrix of order 12,
and by Moorhouse’s classification of the complex Hadamard matrices with doubly transitive automorphism groups
[12]. It was in the latter paper that we first became aware of the complex Hadamard matrix of order 6 discussed in
this article, where it is described as corresponding to the distance transitive triple cover of the complete bipartite
graph K6,6.

2 Hadamard Matrices

Let ω be a primitive complex third root of unity. Then the matrix H6 is complex Hadamard.

H6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 ω ω ω ω

1 ω 1 ω ω ω

1 ω ω 1 ω ω

1 ω ω ω 1 ω

1 ω ω ω ω 1

⎞
⎟⎟⎟⎟⎟⎟⎠

This means that H6 satisfies the identity H6H
†
6 = 6I6, where for an invertible complex matrix A, A† is the complex

conjugate transpose of A. Equivalently, H6 reaches equality in Hadamard’s determinant bound. We refer the reader
to [6] for a comprehensive discussion of Hadamard matrices and their generalisations.

An automorphism of a complexHadamardmatrix is a pair ofmonomial matrices (P, Q) such that P−1HQ = H .
The set of all automorphisms of H forms a group under composition. In this note we will work with the subgroup of
automorphisms (P, Q) where all non-zero entries are third roots of unity, we denote this group Aut(H). Consider
now the projection maps ρ1(P, Q) �→ P and ρ2(P, Q) �→ Q. Since 1√

6
H6 is unitary, and for any automorphism

(P, Q) of H the identity HQH−1 = P holds, it follows that ρ1 and ρ2 are conjugate representations of Aut(H).
Note further that ρi is a faithful representation, since Q = I forces P = I . Thus Aut(H) is isomorphic to a finite
subgroup of monomial matrices of GLn(C). Furthermore, if Aut(H) contains a subgroup isomorphic to G, then
the projections ρ1 and ρ2 onto the first and second components of Aut(H) give two conjugate representations of G
by monomial matrices.

Every monomial matrix has a unique factorisation P = DK where D is diagonal and K is a permutation matrix.
The projection π : P �→ K is a homomorphism for any group of monomial matrices. In general, the representation
Aut(H)ρ1π is not linearly equivalent to the representation Aut(H)ρ2π . As mentioned above, this phenomenon was
first observed by Hall, who showed that the automorphism group of a Hadamard matrix of order 12 is isomorphic
to 2 · M12, and that ρ1π and ρ2π realise the two inequivalent actions of M12 on 12 points [8]. This interpretation
of the outer automorphism of M12 was also used by Elkies, Conway and Martin in their analysis of the Mathieu
groupoid M13 [4].

Throughout this note we use the following shorthand for monomial matrices: we list the elements of the diagonal
matrix D, and give the cycle notation for K as a permutation of the columns of the identity matrix (i.e. a right
action).

Consider the following pairs of monomial matrices.

τ1 := ([1, 1, 1, 1, 1, 1](2, 3, 4, 5, 6), [1, 1, 1, 1, 1, 1](2, 3, 4, 5, 6))
τ2 := ([1, 1, ω, ω, ω, ω](1, 2), [1, 1, ω, ω, ω, ω] (1, 2)(3, 6)(4, 5)) .

We define ∗ to be the entry-wise complex conjugation map, and consider the group X = 〈τ1, τ2, ∗〉.
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Proposition 1 The group X is of the form 310 · S6 · 2.
Proof Since τ ∗

1 = τ1 and τ ∗
2 = τ−1

2 , we have that X0 = 〈τ1, τ2〉 is normal in X . Hence X = X0 � 〈∗〉, with X0 of
index 2 in X .

The commutator [τ2, ∗] = ([1, 1, ω, ω, ω, ω], [1, 1, ω, ω, ω, ω]) consists of diagonal matrices; furthermore

τ ′
2 := [τ2, ∗]−1τ2 = ((1, 2), (1, 2)(3, 6)(4, 5)),

a pair of permutation matrices. Recall that 〈s, t | s6 = t2 = (st)5 = [t, s2]2 = [t, s3]2 = 1〉 is a presentation for
S6 (see [1], for example). A computation with t = τ ′

2 and

s = τ1τ
′
2 = ((1, 2, 3, 4, 5, 6), (1, 2, 6)(3, 5))

shows that all the relations in this presentation hold for these elements s, t , and hence Y = 〈τ1, τ ′
2〉 is isomorphic

to a quotient of S6. On the other hand, Y ρ1π is easily seen to be isomorphic to S6, so we conclude that Y ∼= S6.
Now let N be the subgroup of X consisting of all elements for which each component is a diagonal matrix. Since
τ

ρi
1 and τ

ρi
2 have determinants in {±1}, every element of the projection Xρi

0 also has determinant ±1. However all
the elements of Nρi have third roots of unity along the diagonal, and so must have determinant 1. As a result, Xρi

0
is isomorphic to a subgroup of M � S6 where M ∼= 35 is the group of unimodular diagonal matrices with entries
from 〈ω〉, and S6 acts as Y ρiπ . The only non-trivial S6-submodule of M is the constant module of order 3.

Define ni+1 := [τ2, ∗]τ i1 for each i ≥ 1. (We shift subscripts because the action of τ1 on [τ2, ∗] gives elements
of N which have the non-initial rows of H6 as the diagonal of the first component.) Since [τ2, ∗] ∈ X0, we have
ni ∈ X0 for 2 ≤ i ≤ 6. Observe that

n3n
2
4n

2
5 = ([1, 1, 1, 1, ω, ω], [1, 1, 1, 1, ω, ω])

(n3n
2
4n

2
5)

τ ′
2 = ([1, 1, 1, 1, ω, ω], [1, 1, ω, ω, 1, 1]) .

So neither of the projections Nρ1 , Nρ2 are onto the constant module, and the kernel of Nρ1 is neither trivial nor
the constant module. It follows that N ∼= M × M . Finally, we observe that monomial matrices normalise diagonal
matrices, and that X0 acts as a group of monomial matrices in each component. It follows that N � X0, and that Y
is a complement of N in X0. Since ∗ acts on N by inversion, N � X . ��

The group X has a natural action on 6× 6 matrices over C where (P, Q) ∈ X0 acts as H (P,Q) = P−1HQ, and
∗ acts by complex conjugation. We compute the stabiliser of H6 under this action. We denote this group Aut◦(H6)

to emphasise that this is a group of semi-linear transformations in its action on the normal subgroup N . We require
the subgroups X0, Y and N defined in Proposition 1 in the proof of the following.

Proposition 2 The groupAut◦(H6) is isomorphic to the nonsplit extension 3·S6, andAut◦(H6) contains aC-linear
subgroup isomorphic to 3 · A6.

Proof It is easily verified by hand that H τ1
6 = H6 while H τ2

6 is the complex conjugate H∗
6 . Therefore both τ1 and

the product τ2∗ fix H6. We claim that Aut◦(H6) = 〈τ1, τ2∗〉.
First, we show that the intersection Aut◦(H6) ∩ N has order 3. To prove this, suppose that (D, E) ∈ N , and that

D−1H6E = H6, or equivalently DH6 = H6E . Since the first column of H6 is constant, D must be a scalar matrix.
So D commutes with H6, and we have DH6 = H6D = H6E . Hence D = E , so (D, E) = (ωi I, ωi I ) for some i .
Since these elements do leave H6 invariant, the claim is proved.

We next claim that there is no element (D, E) of N such that DH∗
6 = H6E ; suppose to the contrary that such a

(D, E) exists. Precisely the same argument as before shows that Dmust be scalar. This implies that H∗
6 = H6ED−1,

but this equation has no solution in diagonal matrices: since the first row of H∗
6 is equal to the first row of H6, we

would require ED−1 = I6, from which we derive H6 = H∗
6 , a contradiction.

Consider the subgroup K := 〈τ1, τ2∗, N 〉 of X . Since X = 〈K , ∗〉 and ∗ /∈ K , we have |X : K | = 2 and
X = K ∪ (K ∗). It follows, moreover, from the previous arguments that no element of K sends H6–H∗

6 , and hence
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no element of the right coset K∗ can fix H6. Therefore, Aut◦(H6) ⊆ K , and from the first paragraph of the proof we
also have Aut◦(H6)N = K . The quotient Aut◦(H6)/(Aut◦(H6) ∩ N ) is isomorphic to K/N , an index 2 subgroup
of X/N ∼= S6 · 2. In particular K/N contains A6 as a normal subgroup of index 2. Since the element Nτ2∗ does
not lie in A6 and does not centralise A6 it follows that K/N ∼= S6.

We have shown that Aut◦(H6) has a normal subgroup of order 3 with quotient isomorphic to S6. The elements
(τ2∗)τ

i
1 for 0 ≤ i ≤ 4 project onto a set of Coxeter generators for S6. With these generators, it is straightforward to

construct a Sylow 3-subgroup of Aut◦(H6). One such subgroup is generated by

x := ([ω, 1, ω, ω, 1, ω](1, 2, 3), [ω, 1, ω, 1, ω, ω](1, 4, 6)(2, 3, 5))
y := ([ω,ω, 1, 1, ω, ω](4, 5, 6), [ω,ω,ω, ω, ω, ω](1, 4, 6)(2, 5, 3)) .

A computation shows that [x, y] = ([ω,ω,ω, ω, ω, ω], [ω,ω,ω, ω, ω, ω]). This shows that the commutator
subgroup contains the normal subgroup of order 3, hence the extension is non-split. Elements of Aut◦(H) which
map onto odd permutations act on [x, y] by inversion. So the centraliser of this normal subgroup is of index 2 in
Aut◦(H): this is necessarily a non-split central extension 3 · A6.

A perfect group S has a largest non-split central extension Ŝ which is unique up to isomorphism. The center of Ŝ
is the Schur multiplier of S, and every non-split central extension of S is a quotient of Ŝ. The number of generators
of the Schur multiplier is bounded by g − r where g is the number of generators in a presentation of S and r is the
number of relations. We refer the reader to Wiegold’s survey on the Schur multiplier for proofs of all these results
[15]. Since A6 is shown in [3] to have the presentation

〈a, b | a4, b5, abab−1abab−1a−1b−1〉 ,

it follows that the Schur multiplier of A6 is cyclic. Hence the non-split extension 3.A6 is unique up to isomorphism.
Now, since Aut◦(H) splits over 3·A6, we have that 3·A6 < Aut◦(H) < Aut(3·A6). Suppose that ξ ∈ Aut(3.A6)

such that the image of ξ in Aut(A6) is the trivial automorphism. Let σ ∈ 3.A6 be an element of order 15, projecting
onto a 5-cycle in A6. Then σ 5 generates the central subgroup of order 3. Each coset of 〈σ 5〉 contains a unique
element of order 5, which is fixed by hypothesis. So either 〈σ 〉 is fixed element-wise, or ξ = ∗. Moreover, any two
subgroups of order 15 intersect in 〈σ 5〉, so the action of ξ is identical on all 5-cycles. Since the 5-cycles generate
A6, the action of ξ is completely determined.

So each choice of actions on 3 and on A6 determines at most one isomorphism class of groups. It follows that
Aut◦(H) is uniquely described as the group of shape 3.S6 with trivial center.

The projection of ρ1(Aut◦(H)∩ X0) is clearly a faithful linear representation of 3.A6 over the complex numbers,
completing the proof. ��

In fact, 3.A6 is the largest subgroup of Aut◦(H6) admitting a faithful 6-dimensional representation over C. So
this is Aut(H6). A useful way to understand the actions of X and of Aut◦(H6) is via a permutation action on 18
points, which we now describe. Let P1 = τ

ρ1
1 and P2 = τ

ρ1
2 , and define the following 18 × 6 matrices:

M1 =
⎛
⎝

H
ωH

ω2H

⎞
⎠ and M2 =

⎛
⎝

H∗
ωH∗

ω2H∗

⎞
⎠ .

For 1 ≤ i ≤ 18, let Rowi (Mj ) denote the i th row of Mj (where j = 1, 2). Let P1 act on the rows of M1, and
similarly the rows of M2, as follows:

P1 · M1 =
⎛
⎝

P1H
ωP1H

ω2P1H

⎞
⎠

By letting P2 act on the rows of M1 and M2 in a similar manner, we find that P1 and P2 act in the same way on
the rows of M1 and the rows of M2, and hence act on the set �(18) := {{Rowi (M1),Rowi (M2)}|i = 1, . . . , 18}.
Also, letting ∗ act as complex conjugation on M1 and M2, we see that ∗ also induces a permutation of �(18). Thus
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τ1, τ2 and ∗ all induce permutations of �(18) and, identifying {Rowi (M1),Rowi (M2)} with i , for each i , we get a
permutation representation of X on 18 points with the following generating permutations:

τ1 = (2, 3, 4, 5, 6)(8, 9, 10, 11, 12)(14, 15, 16, 17, 18),

τ2 = (1, 2)(3, 15, 9)(4, 10, 16)(5, 11, 17)(6, 18, 12)(7, 8)(13, 14),

∗ = (7, 13)(8, 14)(9, 15)(10, 16)(11, 17)(12, 18).

The kernel of X in this action is the subgroup of N of order 35 consisting of pairs with trivial first component. The
restriction to Aut◦(H6) is faithful, however. One could construct a faithful action of X by taking the permutation
action induced by its action on the rows of H6 together with the induced action on columns.

Remark 3 The matrix H6 and the group 3.A6 can be realised over any field k for which k× has a subgroup of order
3. In the case that k is the finite field of order 4, the rows of H6 span the Hexacode, introduced by Conway as
part of a construction for the group M12. It is discussed in detail in Sect. 11.2 of [5]. In particular, this code is the
extended quadratic residue code with parameters (6, 3, 4). Uniqueness can easily be verified by hand: observe that
the punctured code is the Hamming (5, 3, 3) code, which is unique, and that any pair of one-bit extensions which
increase the minimum distance are isomorphic. The 6-dimensional C-representation of 3 · A6 has been previously
described in the literature, normally via its action on a set of vectors in C

6 derived from the hexacode. In particular,
Wilson gives the action of 3 · A6 on certain vectors of weight 4 in Sect. 2.7.4 of [16].

3 The Outer Automorphism of S6

Finally we construct the outer automorphism of S6 over the split-quaternions. Recall that the split-quaternions are
a 4-dimensional R-algebra with basis [1, i, β, βi] where [1, i] generates the usual algebra of complex numbers and
β2 = 1, iβ = − i . We denote the split quaternions by B. They admit an R-linear representation generated by

i �→
(
0 −1
1 0

)
, β �→

(
0 1
1 0

)
.

Observe that Aut◦(H6) admits a B-linear representation if and only if ∗ does, and that the latter is realised by
(β I6, β I6).

Since H6 is invertible over C, it is invertible over B. Now, rearranging the matrix equation H τ2∗
6 = H6, and using

the same notation as before for monomial matrices, we obtain that

H6 [[β, β, βω, βω, βω, βω] (1, 2)(3, 6)(4, 5)] H−1
6 = [[β, β, βω, βω, βω, βω] (1, 2)] .

Note that (βω)2 = (βω)2 = 1 so that the matrix on the right hand side of the above equation is an involution.
As was the case over the complex numbers, H6 intertwines the projections ρ1 and ρ2. We observe that for any

g ∈ Aut◦(H), we have that gρ1 = H6gρ2H−1
6 . But, as illustrated above, τρ1π

2 is a 2-cycle, while the projection τ
ρ2π
2

is a product of 3 disjoint 2-cycles. We conclude that the representations ρ1π and ρ2π of S6 cannot be conjugate.
Thuswhereas the permutation representations ofS6 on 6 points are not equivalent, and themonomial representations
of 3 · A6 are not equivalent, we have constructed two explicit B-linear representations of 3 ·S6 which are equivalent
under conjugation by H6. Moreover, although the representation is not defined over C, the intertwiner H6 is.

Theorem 4 There exists an irreducible 6-dimensional monomial representation of 3 ·S6 over the split-quaternions.
Two conjugate representations of 3·S6 intertwined by the complexHadamardmatrix H6 give an explicit construction
for the outer automorphism of S6.
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