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Abstract The aim of this paper is to present a method for computing persistent homology that performs well at
large filtration values. To this end we introduce the concept of filtered covers. Given a parameter δ with 0 < δ ≤ 1
we introduce the concept of a δ-filtered cover and show that its filtered nerve is interleaved with the Čech complex.
We introduce a particular δ-filtered cover, the divisive cover. The special feature of the divisive cover is that it is
constructed top-down. If we disregard fine scale structure and X is a finite subspace of Euclidean space, then we
obtain a filtered simplicial complex whose size makes computing persistent homology feasible.
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1 Introduction

The concept of persistent homology was introduced in the early 2000s [6] and has since been used in a wide
range of applications. The persistent homology of a finite metric space X can be approached by using several
different constructions of filtered simplicial complexes, such as the Čech complex, Vietoris–Rips complex or
witness complex. Several approximations of the Vietoris–Rips complex have recently been proposed to speed up
calculations [5,11,12].

In this paper we construct a new approximation to the Čech complex computing persistent homology down to a
predefined threshold that can be chosen arbitrarily. The complexity of our algorithm grows with the ratio between
the radius of X and the threshold. We also present a version with theoretical guarantees on size and time. If X is a
subset of d-dimensional Euclidean space then the size of our approximation is bounded by an upper bound that is
independent of the cardinality n of X and the required computation time is linear in n. However the constants are
so big that this is no improvement in practice.
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The method presented here is fundamentally different from existing algorithms for persistent homology. Most
approximations to the Vietoris–Rips complex are fundamentally bottom-up [9,11,12], whereas our approach is
top-down.

We introduce the notion of filtered nerve of a filtered cover and we give an example of a filtered cover whose
filtered nerve has a filtered chain complex which is computationally tractable. Moreover we show that the resulting
nerve is interleaved with the Čech nerve in a multiplicative sense, similar to the Vietoris–Rips complex. In Sect. 2
we introduce the notion of filtered and δ-filtered covers and show that δ-filtered covers are interleaved with the
Čech filtration. Section 3 introduces divisive covers, a particular class of δ-filtered covers. Complexity estimates
for divisive covers are presented in Sect. 4. In Sect. 5 we show how divisive covers can be applied to synthetic and
to real world data sets and in Sect. 6 we discuss our results.

2 Filtered Covers

We introduce the notions of a filtered and δ-filtered cover of a bounded metric space. Throughout this section
X = (X, d) will be a fixed but arbitrary bounded metric space. First recall the definition of a cover.

Definition 2.1 A cover of X is a set U of subsets of X such that every point in X is contained in a member of U .

Recall that a simplicial complex K consists of a vertex set V and a set K of subsets of V with the property that if
σ is a member of K and if τ is a subset of σ , then τ is a member of K . Also recall that every simplicial complex K
has an underlying topological space |K |. The book [10] may serve as gentle introduction and reference to abstract
simplicial complexes.

Definition 2.2 LetU be a cover of X . The nerve N (U ) ofU is the simplicial complexwith vertex setU defined as
follows: A finite subset σ = {U0, . . . ,Un} ofU is a member of N (U ) if and only if the intersection ofU0∩· · ·∩Un

is non-empty.

Note that the nerve construction U �→ N (U ) is functorial in the sense that if U ⊆ V is an inclusion of covers
of X , then we have an induced inclusion N (U ) ⊆ N (V ) of nevers.

If B ⊆ A is an inclusion of partially ordered sets, we say that B is cofinal in A if for every a ∈ A, there exists
b ∈ B so that a ≤ b. Given a coverU , we consider it as a partially ordered set with partial order given by inclusion.
We will need the following result several times:

Lemma 2.3 If U ⊆ V are covers of X and if U is cofinal in V , then the geometric realization of the inclusion
N (U ) ⊆ N (V ) is a homotopy equivalence.

Proof Since U is cofinal in V there exists a map f : V → U such that V ⊆ f (V ) for all V ∈ V . Note that the
formula N f ({V0, . . . , Vn}) = { f (V0), . . . , f (Vn)} defines a simplicial map N f : N (V ) → N (U ). Similarly, the
inclusion i : U → V induces a simplicial map Ni : N (U ) → N (V ).

Since V ⊆ f (V ) for all V ∈ V , the composite N f ◦ Ni is contiguous with the identity map on N (U ) in the
sense that for every face σ of N (U ), the set σ ∪ (N f ◦ Ni(σ )) is a face of N (U ). It follows that the geometric
realization of N f ◦ Ni is homotopic to the identity on the geometric realization of N (U ) [13, Lemma 2 p. 130].
Similarly the geometric realization of Ni ◦ N f is homotopic to the identity on the geometric realization of N (V ).

�

We are now ready to define and establish some basic properties of filtered bases and filtered nerves.

Definition 2.4 A filtered basis of X is a basisU for the metric topology on X with the property that X is a member
of U . Given t > 0 we write Ut for the cover of X consisting of members of U contained in an open ball in X of
radius t .

Definition 2.5 Let U be a filtered basis of X . The filtered nerve of U is the collection {N (Ut )}t>0 together with
the inclusions N (Us) ⊆ N (Ut ) induced by the inclusions Us ⊆ Ut .
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Since X is bounded there exists T > 0 so that N (Ut ) = N (U ) for t ≥ T .

Definition 2.6 Let U be a filtered basis of X and let δ be a parameter satisfying 0 < δ ≤ 1. We say that U is a
δ-filtered basis of X if for every x ∈ X and every r > 0, there exists a member A of Ur containing B(x, δr).

Example 1 The Čech cover C = Č (X) consisting of all balls in X is 1-filtered.

Example 2 Let 0 < δ < 1 and choose x ∈ X and R > 0 so that X is contained in the open ball B(x, R). We claim
that the subset U = Č (X, δ) of the Čech cover Č (X) consisting of balls of radius δk R, where k is a nonnegative
integer, is a δ-filtered basis of X . Indeed, let k be the nonnegative integer with δk+1R ≤ r ≤ δk R. Since δr ≤ δk+1R,
the set B(p, δr) is contained in the member B(p, δk+1R) of Uδk+1R for every p ∈ X . We can finish the argument
by noting that since δk+1R ≤ r the cover Uδk+1R is a subcover of Ur .

We now introduce some notation regarding persistent homology. For the rest of this section F will denote a fixed
but arbitrary field.

A persistence module V = (Vt )t>0 consists of a F-vector space Vt for each positive real number t together with
homomorphisms

Vs<t : Vs → Vt

for s < t . These homomorphisms are subject to the condition that Vs<t ◦ Vr<s = Vr<t whenever r < s < t . Given
λ1, λ2 ≥ 1, two persistence modules V and W are multiplicatively (λ1, λ2)-interleaved if there exist F-linear maps
ft : Vt → Wλ1t and gt : Wt → Vλ2t for all real numbers t such that for all s < t the following relations hold

fλ2t ◦ gt = Wt<λ1λ2t ,

gλ1t ◦ ft = Vt<λ1λ2t ,

gt ◦ Ws<t = Vλ2s<λ2t ◦ gs and

ft ◦ Vs<t = Wλ1s<λ1t ◦ fs .

Given a simplicial complex K , we write H∗(K ) for the homology of K with coefficients in the field F.
The following example justifies working with the intrisic Čech complex instead of the relative Čech complex.

Example 3 Let X be a subspace of a metric space M , let C (X) be the filtered basis from Example 1. Let C (X, M)

be the relative Čech cover consisting of balls in M with center in X , that is, with C (X, M)t consisting of balls in
M with center in X of radius at most t .

The homology of the intrinsic Čech chain complex C∗(X)t consisting of linear combinations of subsets σ ⊆ X
with the property that σ ⊆ B(x, t) for some x ∈ X is isomorphic to the homology of N (C (X)t ). Similarly, the
homology of the ambient Čech chain complex C∗(X, M)t consisting of linear combinations of subsets σ ⊆ X with
the property that σ ⊆ B(p, t) for some p ∈ M is isomorphic to the homology of N (C (X, M)t ). By construction
C∗(X)t ⊆ C∗(X, M)t , and by the triangle inequality C∗(X, M)t ⊆ C∗(X)2t . Thus, the persistent homology of
N (C (X)) is (1, 2)-interleaved with the persistent homology of N (C (X, M)).

By the Nerve Theorem [7, Corollary 4G.3], if all non-empty intersections of balls in M are contractible, the
geometric realization of the nerve N (C (X, M)t ) of the cover C (X, M)t , consisting of balls in M with center in X
of radius at most t , is homotopy equivalent to the union of all balls in M of radius t with center in X . This is the
interior of the t-thickening of X in M .

Theorem 2.7 (Relationship between δ-filtered basis and Čech complex) Let C be the Čech cover from Example 1,
let U be a δ-filtered basis of X and N (C ) and N (U ) be their filtered nerves. Then the persistent homology of
N (U ) is multiplicatively (1, 1/δ)-interleaved with the persistent homology of N (C ).

Proof By definition, the partially ordered set Cr is cofinal in Cr ∪ Ur and Ur is cofinal in Cδr ∪ Ur . Thus,
by Lemma 2.3, the homology H∗(N (Cr )) is isomorphic to the homology H∗(N (Cr ∪ Ur )) and the homology
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H∗(N (Ur )) is isomorphic to the homology H∗(N (Cδr ∪ Ur )). Now the result follows from functoriality of the
nerve construction by considering the composites

Cδr ∪ Ur ⊆ Cr ∪ Ur ⊆ Cr ∪ Ur/δ

and

Cr ∪ Ur ⊆ Cr ∪ Ur/δ ⊆ Cr/δ ∪ Ur/δ.


�
An easy diagram chase now gives:

Corollary 2.8 If t > 0 can be chosen so that in the situation of Theorem 2.7, the F-linear maps H∗(N (Cδt<t ))

and H∗(N (Ct<t/δ)) are both isomorphisms, then H∗(N (Ct )) is isomorphic to the image of the homomorphism
H∗(N (Ut<t/δ)).

In [2, Theorem 1] it is shown that if X is open in M = R
d , then the conditions of Corollary 2.8 are satisfied when

2t/δ is smaller than the weak feature size of X . In [3] these considerations have been extended to similar results
when X is a finite subset of a compact subset M of Rd . Moreover, [4, Homological Inference Theorem] shows
similar results for the homological feature size of X .

Next we introduce δ-filtered covers, which do not require the cover to be a basis.

Definition 2.9 Let U be a cover of X , and δ and r be parameters satisfying 0 < δ ≤ 1 and r ≥ 0. We say that U
is a δ-filtered cover of X of resolution r if there exists a filtered basis V such that Us is cofinal in Vs for all s ≥ r .

Corollary 2.10 Let X be a bounded metric space, r ≥ 0 andU and V be as in Definition 2.9. Then the persistent
homology of NUt and the persistent homology of NVt are isomorphic for t ≥ r .

Proof This is a direct consequence of Lemma 2.3. 
�

3 Divisive Covers

In this section we discuss an algorithm to construct a δ-filtered cover of a bounded metric space X . First it divides
X into two smaller sets. It continues by dividing the biggest of the resulting two sets into two, and then iteratively
divides the biggest of the remaining sets in two.

In order to describe the algorithm, we first define diameter and relative radius of a subset of a metric space.

Definition 3.1 Let X be a metric space and let Y be a subset of X .

1. The diameter of Y is defined as

d(Y ) = sup{d(y1, y2) | y1, y2 ∈ Y }.
2. The radius of Y relative to X is defined as

r(Y ) = inf{r > 0 | Y ⊆ B(x, r) for some x ∈ X}
Definition 3.2 A δ-division of a subset Y of radius r relative to a bounded metric space X consists of a cover
{Y1,Y2} of Y consisting of proper subsets of Y with the property that for every y ∈ Y the intersection Y ∩ B(y, δr)
is contained in at least one of the sets Y1 and Y2.

Definition 3.3 Let X be a metric space. A δ-divisive cover of X of resolution r ≥ 0 is a cover U of X containing
X and a δ-division {Y1,Y2} of every Y ∈ U of radius r(Y ) > r .

Lemma 3.4 Let U be a δ-divisive cover of resolution r ≥ 0 of a bounded metric space X. If every non-empty
subset of U has a minimal element with respect to inclusion, then U is a δ-filtered cover of resolution r .
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Proof Let x ∈ X and let s > r . Let Y ∈ U be minimal under the condition that B(x, δs) ⊆ Y . Suppose that
r(Y ) > s and let {Y1, Y2} be a δ-division of Y contained inU . Since B(x, δs) ⊆ B(x, δr(Y ))we have that B(x, δs)
is contained in either Y1 or Y2 and Y1 and Y2 are proper subsets of Y . This contradicts the minimality of Y . 
�
Corollary 3.5 If U is a finite δ-divisive cover of X, then U is a δ-filtered cover.

There exist many ways to construct δ-divisions. Here is an elementary one:

Lemma 3.6 Let Y be a subset of a bounded metric space X and suppose that y1 and y2 are points in Y of maximal
distance. Given δ with 0 < δ < 1/2 let f = (1 − 2δ)/(1 + 2δ) and let Y1 consist of the points y ∈ Y satisfying
f d(y, y1) ≤ d(y, y2). Similarly, let Y2 consist of the points y ∈ Y satisfying f d(y, y2) ≤ d(y, y1). Then {Y1,Y2}
is a δ-division of Y .

Proof Let x ∈ X and let r = r(Y ) be the relative radius ofY . By symmetrywemaywithout loss of generality assume
that d(x, y1) ≤ d(x, y2).Wewill show that if z ∈ B(x, δr)∩Y , then z ∈ Y1, that is, that f d(z, y1) ≤ d(z, y2). Since
the radius of Y is smaller than or equal to the diameter d(y1, y2) of Y it suffices to show that d(x, z) ≤ δd(y1, y2)
implies that f d(z, y1) ≤ d(z, y2). However since d(y1, y2) ≤ d(y1, x) + d(x, y2) ≤ 2d(x, y2) we have

d(z, y1) ≤ d(z, x) + d(x, y1) ≤ δd(y1, y2) + d(x, y2) ≤ (2δ + 1)d(x, y2)

and

d(x, y2) ≤ d(x, z) + d(z, y2) ≤ δd(y1, y2) + d(z, y2) ≤ 2δd(x, y2) + d(z, y2)

Since f = (1 − 2δ)/(1 + 2δ) this gives

f d(z, y1) ≤ (1 − 2δ)d(x, y2) ≤ d(z, y2).


�
Given a bounded metric space X , a method for δ-division and r ≥ 0, we construct in Algorithm 1 a δ-divisive

cover U r of X of resolution r . Thus the persistent homology of (U r )s≥r is δ-interleaved with the persistent
homology of (C )s≥r .

Algorithm 1: Divisive cover algorithm
Input : A bounded metric space X , a method for δ-division and r ≥ 0
Output: A δ-divisive cover U r of X
X0 = X
Create list L = {0}
i = 0
while There exists a j ∈ L such that r(X j ) > r do

k = argmax j∈L {diameter of X j }
Construct a δ-division (Xi+1, Xi+2) of Xk
remove k from L and add i + 1 and i + 2 to L
i = i + 2

end
U r = {X0, X1, . . . , Xi }

4 Complexity of the Divisive Cover Algorithm

For the study of complexity of Algorithm 1 we will restrict attention to the situation where X is a finite subset ofRd

with the L∞-metric d∞. For 1 ≤ i ≤ d, we let pri : Rd → R be the coordinate projection taking (v1, . . . , vd) ∈ R
d

to vi .



26 N. Blaser, M. Brun

Lemma 4.1 (Decision division) Let X be a finite subset of Rd equipped with the L∞-metric d∞ and let x1 and x2
be points in X of maximal distance. Choose a coordinate projection pri so that d∞(x1, x2) = | pri (x1 − x2)|. Given
δ with 0 < δ < 1 let X1 consist of the points x ∈ X satisfying | pri (x1 − x)| ≤ 1+δ

2 | pri (x1 − x2)|. Similarly, let X2

consist of the points in x ∈ X satisfying | pri (x2 − x)| ≤ 1+δ
2 | pri (x1 − x2)|. Then (X1, X2) is a δ-division of X.

Proof Let p ∈ X and let r be the relative radius of X . Note that d(x1, x2) = 2r in the situation of the asserted
statement. We have to show that the intersection of X with the ball centered in p of radius δr is contained in
one of X1 and X2. Let us for convenience write y1 = pri (x1) and y2 = pri (x2) and let us assume that y1 < y2.
It suffices by construction to show that the interval [pri (p) − r, pri (p) + r ] is contained in one of the intervals
[y1, y1 + (1 + δ)(y2 − y1)/2] and [y2 − (1 + δ)(y2 − y1)/2, y2]. This follows from the fact that the intersection
[y2 − (1 + δ)(y2 − y1)/2, y1 + (1 + δ)(y2 − y1)/2] of these intervals has length δ(y2 − y1) = 2rδ. 
�

Theorem 4.2 Let X be a finite subset of Rd equipped with the L∞-metric d∞ and let t > 0. If X has cardinality
n, then the cover V of X obtained from Algorithm 1 is constructed in O(2kddn) time, where k = �log 1+δ

2
(t/r)�.

The size of the cover V is at most 2kd . The nerve of V can be constructed in O(22
kd
dn) time.

Note that for fixed d and δ, the term 2kd is polynomial in the ratio r/t between the radius r of X and the threshold
radius t .

Let V be as in Theorem 4.2. Given s ≥ t we write Vs for the cover of X given by members of V of radius less
than s. By construction, for s ≥ t , the inclusion of Vs in Us is cofinal. Thus by Lemma 2.3, for filtration values
greater than t , the persistent homology of the cover V coincides with the persistent homology of U .

Proof of Theorem 4.2 Note that in the L∞-metric, the radius of a subset of Rd is given by the maximum of the
radii of its coordinate projections to R. A δ-decision division (4.1) reduces the radius of this coordinate projection
by the factor 1+δ

2 . Thus the radius of any d-fold δ-divided part of X is at most r
( 1+δ

2

)
, where r is the radius of X .

If we let k = �log 1+δ
2

(t/r)�, then the radius of any kd-fold δ-divided part of X is at most r( 1+δ
2 )k ≤ t . Since each

δ-decision division consists of two parts, we conclude that V can be produced by making at most 2kd δ-decision
divisions. Since we work in the L∞ metric, extremal points can be found by computing min- and max-values for the
coordinate projections of points in X . Similarly δ-decision division can be made by computing min- and max-values
for the coordinate projections of points in X . Each of these steps require O(nd) time, so the cover is of size at most
2kd and it can be constructed in O(2kdnd) time.

Finally, the nerve of the cover V is constructed by calculating intersections of members of V . Calculating the
intersection of i ≤ d subsets of X can be done by, for each element x of X , deciding if x is a member of the
intersection. The complexity of this is O(ni). Since the cardinality of V is at most 2kd , independently of n, the time
of calculating the nerve is O(22

kd
n). 
�

We shall use the following result to show that a δ-decision division of X ⊆ R
d gives a d−1/pδ-divisive cover of

X in the L p-metric. This stems from the fact that all L p-metrics are equivalent.

Proposition 4.3 Let d1 and d2 be metrics on X and let α and β be positive numbers such that for all x, y ∈ X the
inequality

αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y)

holds. Then every δ-filtered cover of (X, d1) is a δα/β-filtered cover of (X, d2).

Proof We emphasize the metrics d1 and d2 in the notation by writing U
d1
t and U d2

t for the covers of X consisting
of members of U contained in a closed ball of radius t in (X, d1) and (X, d2) respectively.
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By assumption, there are inclusions of balls

Bd1 (x, t/β) ⊆ Bd2 (x, t) ⊆ Bd1 (x, t/α) ,

so

U d1
t/β ⊆ U d2

t ⊆ U d1
t/α.

Given a point x ∈ X and a radius t > 0, we can find a set A ∈ U d1
t/β such that Bd1(x, tδ/β) ⊆ A since U is

δ-filtered in (X, d1). Due to the above inclusions, A is also in U d2
t and Bd2(x, tδα/β) ⊆ Bd1(x, tδ/β) ⊆ A. Thus

U is an δα/β-filtered cover of (X, d2). 
�
In the case where d1 is the L∞-metric and d2 is the L p-metric on Rd the inequalities in Proposition 4.3 hold for

α = 1 and β = d1/p. Thus, ifU is a δ-filtered cover of X with respect to the L∞-metric, then it is a d−1/pδ-filtered
cover of X with respect to the L p-metric. In particular it is δ/

√
d-filtered with respect to the Euclidean metric.

5 Examples

5.1 Generated Data

5.1.1 Sphere

We used divisive cover with the δ-division of Lemma 3.6 to calculate the persistent homology of a generated sphere.
We generated 1000 data points with a radius normally distributed with a mean of 1 and a standard deviation of 0.1
and uniform angle. The top panel of Fig. 1 shows the resulting persistence barcodes.

5.1.2 Torus

We calculated the persistent homology of a generated torus using divisive cover with the δ-division of Lemma 3.6.
We generated 400 data points on a torus. The torus was generated as the product space of 20 points each on two
circles of radius 1 with uniformly distributed angles. The second panel of Fig. 1 shows the persistence barcodes of
the generated torus.

5.2 Natural Images

The space of 3 by 3 high-contrast patches of natural images has been analysed using witness complexes before [1].
The authors analysed high-density subsets of 50,000 random 3 by 3 patches from a collection of 4 × 106 patches
[8]. They denote the space X (k, p) of p percent highest density patches using the k-nearest neighbours to estimate
density and find that X (300, 30) has the topology of a circle. We repeat this analysis using divisive cover with
the δ-division of Lemma 3.6 and show that calculating persistent homology without landmarks is possible for real
world data sets. The bottom panel of Fig. 1 show the persistence barcodes of X (300, 30).

6 Conclusion

Filtered covers as the underlying structure for filtered complexes provides new insights into topological data analysis.
It can be used as a basis for new constructions of simplicial complexes that are interleaved with the Čech nerve.
We are not aware of any previous literature that made use of covers in such a way. Divisive covers are just one
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Fig. 1 Persistence barcodes using divisive cover. All barcodes are shown for relative diameter between 0.4 and 1. The first panel shows
the persistence barcodes of a sphere using divisive cover with δ = 0.05 and the second panel shows persistence barcodes of a torus with
δ = 0.06. The third panel shows persistence barcodes of X (300, 30), with δ = 0.025

possible way to create δ-filtered covers. Many other constructions are available, for example optimized versions of
the δ-filtered Čech cover we have presented.

The idea of a divisive cover is conceptually simple and easy to implement. Compared to the Čech nerve, the
nerve of a divisive cover can be substantially smaller. On the other hand, the witness complex is often considerably
smaller than the divisive cover complex. Although we give theoretical guarantees that are linear in n, in practice
persistent homology calculations using the divisive cover algorithm proposed here are not competitive with state
of the art approximations to the Vietoris–Rips complex [5,11]. We see divisive covers as a new class of simplicial
complexes that can be studied in a fashion similar to Vietoris–Rips filtrations. It is possible to reduce the size of
the divisive cover complex, for example by using landmarks. We did not address such improvements in the present
paper. It might also be possible to combine a version of the Vietoris–Rips complex for low filtration values and a



Divisive Cover 29

version of the divisive cover complex for high filtration values. The version of divisive cover we have presented is
easy to implement and performs well at large filtration values.
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