
Math.Comput.Sci. (2017) 11:159–176
DOI 10.1007/s11786-017-0296-2 Mathematics in Computer Science

Faster Average Case Low Memory Semi-external
Construction of the Burrows–Wheeler Transform

German Tischler

Received: 25 April 2014 / Accepted: 23 June 2014 / Published online: 24 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract The Burrows–Wheeler transform has applications in data compression as well as full text indexing.
Despite its important applications and various existing algorithmic approaches the construction of the transform for
large data sets is still challenging. In this paper we present a new semi external memory algorithm for constructing
the Burrows–Wheeler transform. It is capable of constructing the transform for an input text of length n over a finite
alphabet in time O(n log2 log n) on average, if sufficient internal memory is available to hold a fixed fraction of
the input text. In the worst case the run-time is O(n log n log log n). The amount of space used by the algorithm
in external memory is O(n) bits. Based on the serial version we also present a shared memory parallel algorithm
running in time O(np max{log2 log n + log p}) on average when p processors are available.

Keywords Burrows-Wheeler transform · Semi-external algorithm · Parallel index construction

Mathematics Subject Classification 68W32 (Algorithms on Strings) · 68W10 (Parallel Algorithms)

1 Introduction

The Burrows–Wheeler transform (BWT) was introduced to facilitate the lossless compression of data (cf. [3]). It
has an intrinsic connection to some data structures used for full text indexing like the suffix array (cf. [19]) and
is at the heart of some compressed full text self indexes like the FM index (see [9]). The FM index requires no
more space than the k’th order entropy compressed input text plus some asymptotically negligible supporting data

1 By log we mean log2 in this paper.

Supported by the Wellcome Trust.
Full version of an extended abstract which appeared in the Proceedings of the 2nd International Conference on Algorithms for Big
Data.

G. Tischler (B)
The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
e-mail: german.tischler@sanger.ac.uk

G. Tischler
Max Planck Institut für molekulare Zellbiologie und Genetik, Pfotenhauerstraße 108, 01307 Dresden, Germany
e-mail: tischler@mpi-cbg.de

http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-017-0296-2&domain=pdf

160 G. Tischler

structures. Many construction algorithms for the BWT are based on its relation to the suffix array, which can be
computed from the input text in time linear in the length of that text (see e.g. [13,22]). While these algorithms run
in linear time and are thus theoretically optimal they require O(n log n)1 bits of space for the uncompressed suffix
array given an input text of length n while the text itself can be stored in a space of n�log σ� bits for an alphabet
of size σ where we often have σ � n and in most applications σ is constant. Algorithms for computing the suffix
array in external memory have been proposed (see e.g. [2,6]) but these algorithms require large amounts of space
and input/output in external memory. An asymptotically optimal internal memory solution concerning time and
space has been proposed [11]. However the space usage of this algorithm is O(n) bits for constant alphabets, where
an inspection of the algorithm suggests that the actual practical memory usage of the algorithm is several times the
size of the text in bits. The practical space usage of the algorithm subsequently presented in [23] is lower (i.e. the
involved constants are smaller) while theoretically not linear. It however still requires multiple times as much space
as the input text. A sample implementation given by the authors only works for input sizes of up to 232 (see [1])
and only handles a single level of the recursive algorithm. Given the implementation complexity of the algorithm
it remains unclear if it would scale well. Crochemore et al. present an algorithm computing the BWT in quadratic
time with constant additional space (see [4]). Beller et al. [1] propose a semi external algorithm for the construction
of the BWT based on induced sorting. An algorithm is called semi external if it uses non negligible amounts of
internal as well as external memory. According to the authors the algorithm scales to arbitrary input sizes and uses
about one byte (i.e. 8 bits) per input symbol in internal memory. An algorithm constructing the BWT of a text by
block-wise merging using a finite amount of internal memory is presented in [8]. The algorithm partitions the text
into a set of fixed size blocks. The run-time is O(n2/b) for a block size of b and a text length of n. It requires an
amount of internal memory which is roughly sufficient to compute the suffix array of a single of these block. In
particular the amount of internal memory used can be smaller than the space required for the text. In this paper we
modify this algorithm to run in time O(n log n log log n) in the worst case and O(n log2 log n) on average for the
case where we are able to keep a fixed fraction of the text in memory. Assuming the practically common case of a
finite alphabet the algorithm in [8] uses blocks of size O(n/ log n)when provided with O(n) bits of space in internal
memory so its total run-time for this setting is O(n log n). In consequence our algorithm is faster on average and
slower by O(log log n) for a very unlikely worst case. Compared to the algorithm presented in [1] our algorithm
can work with less internal memory. For DNA for instance the complete text can be held in memory using about 2
bits per symbol which is significantly less than a full byte (8 bits) per character. We also propose a parallel version
of our algorithm for the shared memory model. This algorithm runs in time O(np max{log2 n, log p}) on average
and with high probability when using p processors.

The rest of this paper is structured as follows. In Sect. 2we introduce definitionswhichwewill be using throughout
the paper. Section3 gives a short overview over the algorithm of Ferragina et al. (cf. [8]) on which our new algorithm
is based. In Sect. 4 we present an algorithm for computing the minimal periods of all prefixes of a string in succinct
space. We show how to compute the suffix order for blocks of b suffixes drawn from a circular version of a string of
length n ≥ b in optimal time O(b) and space O(b log b) bits after collecting some repetition information about the
string in a preprocessing phase taking time O(n) and O(b log b) bits of space in Sect. 5. In Sect. 6 we show how to
merge the BWTs of two adjacent text blocks of length bl and br respectively given by their BWT in external memory
in time O ((bl + br) log log(bl + br)) and sufficient space in internal memory to hold a rank dictionary for the left
block.We describe in Sect. 7 how to combine the block sorting from Sect. 5 and block merging from Sect. 6 to obtain
a BWT construction algorithm based on a balanced instead of a skewed merge tree. In Sect. 8 we describe a parallel
version of our algorithm. Finally in Sect. 9 we summarise our results and discuss some remaining open problems.

2 Definitions

For a string s = s0s1s2 . . . sm−1 of length |s| = m ∈ N we define s[i] = si for 0 ≤ i < m and for s = s0s1 . . . we
define s[i] = si for 0 ≤ i . For a finiteword u and a finite or infiniteword vwewrite their concatenation as uv. For any
finitewords u, x and finite or infinitewordsw, v such thatw = uxvwe call u a prefix, v a suffix and x a factor ofw. A

Faster Average Case Low Memory Semi-external Construction 161

prefix, suffix or factor of some stringw is called proper if it is not identical withw. The empty word consisting of no
symbols is denoted by ε. For a string s and indices 0 ≤ i ≤ j < |s|wedenote the factor s[i]s[i+1] . . . s[j] by s[i, j].
For any i, j such that i > j the term s[i, j] denotes the emptyword. A finite wordw has period p iffw[i] = w[i+ p]
for i = 0, . . . , |w|− p−1 and an infinite wordw has period p iffw[i] = w[i+ p] for i = 0, 1, For a finite word
u and k ∈ N the k’th power uk of u is defined by u0 = ε and ui+1 = uiu for i ∈ N. A wordw is primitive if it is not a
power of aword u such that |u| < |w|. Aword u is a root ofw ifw = uk for some k ∈ N. Awordw is a square if there
is a word u such thatw = u2. Throughout this paper let� = {0, 1, . . . , σ −1} denote a finite alphabet for some σ ∈
N, σ > 0 and let t = t0t1 . . . tn−1 ∈ �n denote a finite string of length n > 0. We define the semi infinite string t̃ by
t̃[i] = t[i−�i/n	n] for i ≥ 0.Wedefine the suffix t̃i of t̃ as t̃i = t̃[i]t̃[i+1] . . . and t̃i < t̃ j for i, j ∈ N, i
= j iff either
t̃i = t̃ j and i < j or for the smallest � ≥ 0 such that t̃[i+�]
= t̃[j+�]wehave t̃[i+�] < t̃[j+�]. The suffix array A of
t is defined as the permutation of the numbers 0, 1, . . . , n−1 such that t̃A[i] < t̃A[i+1] for i = 0, 1, . . . , n−2 and the
Burrows–Wheeler transform (BWT) B = b0b1 . . . bn−1 of t is given by bi = t̃[A[i]+n−1] for i = 0, 1, . . . , n−1.

3 BWT Construction by Block-Wise Merging

We give a short high level description of the algorithm by Ferragina et al. [8] as we will be modifying it. Unlike our
algorithm it assumes the input string to have a unique minimal terminator symbol. Given a block size b the input
string t is partitioned into c = �n/b� blocks T0, T1, . . . , Tc−1 of roughly equal size. The algorithm starts by suffix
sorting the last block, computing its BWT Bc−1 and the bit array gtc−1 which denotes for each suffix in Tc−1 but
the first whether it is smaller or larger than the first. The BWT of Ti . . . Tc−1 for i < c − 1 is computed by first
computing the suffix array for the suffixes starting in Ti by using the text of Ti and Ti+1 in memory and handling
the comparison of suffixes starting in Ti but equal until both have entered Ti+1 by using the bit vector gti+1 which
explicitly stores the result of this comparison. The BWTs of Ti and Ti+1Ti+2 . . . Tc−1 are merged by computing
the ranks of the suffixes starting in Ti+1Ti+2 . . . Tc−1 in the sorted set of suffixes of Ti and computing a gap array
Gi which denotes how many suffixes from Ti+1Ti+2 . . . Tc−1 are to be placed before the suffixes in Ti , between
two adjacent suffixes in Ti and after all suffixes in Ti . This process follows a backward search of Ti+1Ti+2 . . . Tc−1

in Ti . Using the array Gi it is simple to merge the two BWTs together. For computing the rank of a suffix from
Ti+1 . . . Tc−1 it is necessary to know whether it is smaller or larger than the one at the start of Ti+1Ti+2 . . . Tc−1 as
Bi is not a conventional BWT. For further details about the algorithm the reader is referred to [8].

4 Computing the Minimal Period of the Prefixes of a String

A border of a stringw is a string u such thatw = uv = xu and |v| = |x |
= 0. The border array B of a stringw is the
integer array of length |w| such that B[i] stores the length of the longest border of w[0, i] for i = 0, 1, . . . , |w|− 1.
When a string w has the border array B, then the minimal period of w[0, i] for 0 ≤ i < |w| can be obtained as
i+1−B[i] (see e.g. Proposition 1.5 in [5]). The uncompressed border array for a string of length b can be stored using
bwords, i.e. b�log b� bits. Due to the properties of the border array (the value at index i+1 can be atmost 1 larger than
the value at index i and all values are non-negative) it is however easy to use a succinct version in O(b) bits. For the
rest of the section letw denote a string and letB denote the border array ofw. Thenwe can representB as the bit vector
B̃ = 10B[0]−B[1]+110B[1]−B[2]+11 . . . 0B[b−1]−B[b−2]+11 andB[i] can be retrieved as i−rank0(B̃, select1(B̃, i)) for
i = 0, 1, . . . , b−1 where rank0(B̃, i) denotes the number of 0 bits in B̃ up to and including index i and select1(B̃, i)
returns the index of the i + 1’th 1 bit in B̃. Indexes for the rank and select operations can be stored in o(b) extra bits
(see e.g. [21]). Themost common indexes for these operations are tailored for static bit vectorswhile the computation
of the border array (see for instance Sect. 1.6 in [5]) incrementally extends the array while using the already existing
prefix to deduce the next value. The rank and select indexes as presented in Sect. 6.1 in [21] are however easily
adapted for the case of only appending bits at the end of the bit vector. Both types of indexes partition the indexed bit
vector into blocks. In the case of rank the blocks consist ofβ0 = �log2 |B̃|� bits of B̃. An arrayR0 is used to explicitly

162 G. Tischler

store rank0(B̃, β0i) for i = 0, 1, . . . , � n
β0

� − 1 where each element ofR0 takes �log |B̃|� bits. The blocks are again
partitioned into smaller blocks of length β1 = � log |B̃|

2 � (for the sake of simplicity in the discussion we assume β1

divides β0. The method is easily extended to the case where β0 is not exactly a multiple of β1). Another integer array
R1 is used to store rank0(B̃, β1i) − rank0(B̃, �β1i

β0
) for i = 0, 1, . . . , � n

β1
� − 1. Each element ofR1 takes �logβ0�

bits. We can incrementally build the rank dictionary by adding one value to R0 and �β0
β1

� values to R1 each time
β0 bits have been appended to the underlying bit vector. This can trivially be done in time O(β0) for each block
of size β0. The answers for a block yet to be completed can be stored explicitly in an array of size β0 which takes
β0�logβ0� = O(log2 B̃ log B̃) bits and thus is asymptotically negligible compared to the space used for the bit vector
itself. Using this method the rank operation can be computed in time O(1) at any time and the time for adding each
single bit to the vector is amortised constant. The method for keeping constant time select operations is conceptually
very similar. The data structure partitions the bit vector B̃ such that each block contains ζ0 = �log2 |B̃|� bits of value
1. Again we can keep enough space to store the answers for a single incomplete block explicitly and extend the
index for select each time the total number of 1 bits in the intermediate bit vector reaches an integer multiple of ζ0.

Lemma 1 Let x denote a string over a finite alphabet� = {0, 1, . . . , γ −1}. The border array of x can be computed
in time O(|x |) and using space O(|x | log γ) bits.

Lemma 2 Let x denote a string over a finite alphabet � = {0, 1, . . . , γ − 1}. The sequence of minimal periods of
the prefixes of x can be enumerated in time O(|x |) and space O(|x | log γ) bits.

Using the periodicity lemma (see Lemma 1 in [17]) we in addition obtain the following lemma.

Lemma 3 Let x denote a string over a finite alphabet � = {0, 1, . . . , γ − 1}. If x has any period q ≤ �|x |
2 	 then

there exists a minimal period p of x such that p ≤ �|x |
2 	 and p divides all other periods of x whose value does not

exceed � |x |
2 	. It is decidable in time O(|x |) and space O(x log γ) bits whether x has any period p ≤ �|x |

2 	 and if it
has any such periods then their minimum can be computed in the same time and space bounds.

Proof Let x denote a string over a finite alphabet � = {0, 1, . . . , γ − 1} and let P denote the set of all periods of x
whose value does not exceed � |x |

2 	. If P is empty, then the lemma holds as x has no relevant periods. Otherwise let

p be the minimal element of P . Then for any element q of P we have p + q ≤ |x | as p ≤ q ≤ �|x |
2 	. According to

the periodicity lemma this implies that the greatest common divisor of p and q is also a period of x . As P contains
all the periods of x not exceeding � |x |

2 	, p is the minimal element of P and the greatest common divisor of p and
q divides p it follows that this greatest common divisor is p. As p is the minimal period of x it can be computed
in time O(|x |) and space O(|x | log γ) bits according to Lemma 2. ��

5 Sorting Single Blocks

The algorithm by Ferragina et al. processes each single block relying on knowledge about the priorly fully processed
following block, in case of the last block the terminator. For our algorithm we need to be able to sort a single block
without knowing the complete sorted order of the next block. For this purpose we need to be able to handle
repetitions, one of the major challenges along the way, efficiently. For the following argumentation we will need
the occurring block sizes to be as similar as possible, so we will deduce a final block size from a target block size
chosen to satisfy memory constraints. Let b′ denote a preliminary target block size such that 0 < b′ ≤ n. From b′
we can deduce a final block size b as

b =
⌈

n⌈ n
b′

⌉
⌉

. (1)

In Eq.1 the denominator denotes the number ν of blocks required for the preliminary block size b′. The final block
size is obtained as the smallest number b of symbols required to keep this number of blocks ν, in particular we have

Faster Average Case Low Memory Semi-external Construction 163

b ≤ b′ As b is the smallest such number we have μ′ = νb − n such that 0 ≤ μ′ < ν and equally μ = ν − μ′ such
that 1 ≤ μ ≤ ν. In consequence we can decompose the set of indices [0, n) on t into μ sub intervals of length b
and ν − μ sub intervals of length b − 1 and define the index blocks Bi by

Bi =
{ [ib, (i + 1)b) for 0 ≤ i < μ

[μb + (i − μ)(b − 1), μb + (i + 1 − μ)(b − 1) for μ ≤ i < ν
(2)

Informally we have μ blocks of size b and ν − μ blocks of size b − 1 such that the blocks of size b precede the
ones of size b − 1. Blocks of size b − 1 only exist if b does not divide n.

When comparing two suffixes of t̃ starting at indices i and j such that i < j we may encounter two cases. In
the first case we have t̃[i, j − 1]
= t̃[j, j + (j − i − 1)]. Then the comparison requires handling at most j − i
symbol pairs, i.e. at most 2b − 2 symbols if the two suffixes start in the same block of length b as defined above.
In the second case we have t̃[i, j − 1] = t̃[j, j + (j − i − 1)], i.e. a square with period j − i at index i in t̃ . Thus
situations which require us to have access to ω(b) symbols for sorting the suffixes of a block of indices on t̃ are
induced by repetitions of periods strictly smaller than b. In consequence only repetitions with a period smaller than
b are relevant for our block sorting.

Definition 1 Let B denote a block of b indices on t̃ starting at index i , i.e. the set of suffixes t̃i+ j for j =
0, 1, . . . , b − 1.

• B propagates a repetition of period p, 1 ≤ p ≤ b iff t̃i [0, b + 2p − 1] has period p.
• B generates a repetition of period p, 1 ≤ p ≤ b iff t̃[b− p, b− 1] = t̃[b, b+ p− 1] and the block of b suffixes

starting at i + b propagates a repetition of period p.

If a block propagates repetitions of any periods, then there is a uniqueminimal period dividing all other propagated
periods according to Lemma3. This uniqueminimal period can then be computed in time O(b) and space O(b log σ)

bits using minor modifications of standard string algorithms (see Sect. 4). As there is a unique minimal period
propagated by a block if any and as for repetition generation we are only interested in periods which are propagated
by the next block we can compute the relevant generation properties of a block in the same time and space bounds.
The suffix order on t̃ defined as above defines the order of two suffixes at indices i and j such that i
= j by index
comparison if t̃i = t̃ j . This case can only appear if the text t itself has a period p which is smaller than n and divides
n, i.e. when t = αi for some string α and some integer i > 1. For sorting the suffixes in our blocks we can avoid
this case. If t is an integer power of a string α such that |α| < b for some exponent k > 1, then we will observe that
each of our blocks propagates period p, thus this case is easily detected given precomputed repetition propagation
information. In this case the Burrows–Wheeler transform of t can be obtained from the Burrows–Wheeler transform
for α by repeating each symbol k times, e.g. if abc is the Burrows–Wheeler transform for α and we have k = 2
then the transform for t is aabbcc. Similar arguments can be employed to obtain the suffix array and inverse suffix
array of t from the reduced variants for α. Thus in the following we will without loss of generality assume that t is
not an integer power of a string of period smaller than b. In consequence all suffix comparisons required for sorting
the suffixes starting in a block are decided by character inequality and not by position. Using information about
short period repetitions in the input string, we are able to handle the sorting of a single block of suffixes extending
beyond the end of the block efficiently by reducing long repetitions as we show in the following lemma.

Lemma 4 A block of b circular suffixes of t̃ can be sorted in lexicographical order using time O(b) and space
O(b log b) bits using precomputed repetition propagation data.

Proof The pairwise order between all suffixes of the block is decided by character inequalities. However these
character inequalities may happen after
(n) symbols in each case. Note however that if we compare two strings u
and v lexicographically such that u = αβkγ and v = αβkδ we obtain the same result as when comparing u′ = αγ

and v′ = αδ, i.e. as when we remove the repetition of β from both. Now assume we are sorting the circular suffixes
of t for a block starting at index i with block length b, i.e. we are sorting b strings of infinite length where for each

164 G. Tischler

pair of strings the comparison ends after less than n steps. When comparing a pair of such strings starting at offsets
j and k in the block such that without loss of generality j < k we may encounter the following cases.

1. There exists � < (b− j)+ (k − j) = b+ k −2 j such that t̃[i + j + �]
= t̃[i + k + �]. Then as b+ k −2 j < 2b
the order between the strings would be correctly reflected in a suffix sorting of t̃[i, i + 2b − 1], where 2b is
O(b).

2. Otherwise we have t̃[i + j, i + k − 1] = t̃[i + k, i + k + (k − j) − 1], i.e. a square of period k − j at position
i + j in t̃ and this repetition extends to at least index i + b+ (k + j) − 1 in t̃ . There is thus a complete instance
of a rotation of the root of the square in t̃ after the end of the considered block (the root of the repetition may
overlap the block boundary or come to lie outside of the block). In consequence the block may generate a
repetition of period k − j depending on whether the following block propagates a repetition of this period. If
t̃[i + j, i + k − 1] is an integer power of a shorter primitive string u, then let p = |u|, otherwise let p = k − j .
Now we may encounter two sub cases. If the following block does not propagate period p, then the order
between our two strings starting at index i + j and i + k in t̃ would be correctly reflected in a suffix sorting of
t̃[i, i + 2b + 2p − 1] due to the definition of the propagation of a repetition. Note that 2b + 2p − 1 is O(b) as
p ≤ k − j < b. Now assume the following block does propagate period p. Let β = t̃[i + b, i + b+ p− 1] and
let α = t̃[i, i + (b− p)−1]. Then the block can be written as αβ. Further we know that t̃[i]t̃[i +1] . . . = αβmγ

for some integerm > 1+�b/p� and γ [0, p−1]
= β. Using precomputed information about the single blocks’
repetition propagation properties and adequate data structures it is simple to deduce the numbers m and γ in
time O(b). For each block propagating a repetition we store the index of the closest following block in t̃ which
no longer propagates this repetition in an array. This array can be computed in time O(n) with a single scan
over the list of repetitions propagated by the single blocks. Even for a moderate block size in O(log2 n) the
space required for this array is asymptotically negligible compared to the text and it can be stored in external
memory. Now for computing m and γ we can go to the last following block still propagating the repetition and
perform a naive scan of the text until the repetition ends. This scan will terminate in time O(b). For determining
the order of the suffixes in the current block it is sufficient to sort αβ1+�b/p�γ which has length O(b). ��
Sorting the suffixes of t̃ starting in a given block of length b using the precomputed repetition generation and

propagation block properties can thus be performed in time O(b) using space O(b log b) bits in internal memory.
Given the explicit suffix sorting for a block, it is trivial to determine, whether any other suffix in the block is lexico-
graphically smaller or larger than the first suffix of the block and store the resulting bit vector in external memory.

For forward searching using the suffix array it is useful to in addition have the longest common prefix (LCP)
array. For two finite strings u, v let LCP(u, v) = argmaxmin{|u|,|v|}

l=0 u[0, � − 1] = v[0, � − 1]. For two infinite
strings u, v let LCP(u, v) = ∞ if u = v and LCP(u, v) = i where i is the smallest non negative integer such that
u[i]
= v[i] otherwise. For a block of indices [i, i + b − 1] on t̃ such that i ∈ N let A denote the permutation of
i, i + 1, . . . , i + b− 1 such that t̃A[j] < t̃A[j+1] for j = 0, 1, . . . , b− 2. Then the LCP array of the block is defined
by LCP[0] = 0 and LCP[i] = LCP(t̃A[i−1], t̃A[i]) for i = 1, 2, . . . , b − 1. Using a repetition reduction method
similar to the suffix sorting case we obtain the following result.

Lemma 5 The LCP array for a block of b circular suffixes on t̃ can be computed in time O(b) and space O(b log b)
bits using precomputed repetition propagation data.

Proof As the input string is without loss of generality not an integer power of a string of period p < b all suffix
comparisons on t̃ within a block are decided by character inequalities. In consequence the values in the LCP
array of a block are finite but the array can contain values in
(n) as the considered suffixes extend beyond the
end of the block. Given a finite string s and the suffix array of s the LCP array for s can be computed in time
O(|s|) and stored in an array of size O(s log s) bits (see [16]). Thus if the block does not generate a repetition,
then we can compute the LCP array for the block in time O(b) and represent it as an array using O(b log b)
bits. This involves extending the text block by O(b) elements (see above), computing the LCP array using the
suffix array and the text and filtering the LCP array so that only suffixes inside the original block remain. If we
find suffixes outside the original block between two original suffixes than we need to combine the minimum of

Faster Average Case Low Memory Semi-external Construction 165

the corresponding entries with the second original block value, e.g. if the block starts at index i and we have
A[j] < i + b,A[j + 1] ≥ i + b,A[j + 2] ≥ i + b, . . . ,A[j + k] < i + b then the LCP value between
the suffixes at the block indices A[j] and A[j + k] is min{LCP[j + 1],LCP[j + 2], . . . ,LCP[j + k]} and we
drop the LCP values relating to suffixes outside the block. Now assume the block generates a repetition of period
p. Then as described in case 2 of the proof of Lemma 4 it is sufficient to suffix sort the string αβ1+�b/p�γ as
defined above to obtain the order of the suffixes in the current block. This block has length O(b), so its LCP array
can be computed in time O(b) and stored in space O(b log b) bits. We first remove the values corresponding to
suffixes outside the block as we did for the non propagating case. Then the LCP value at index j > 1 is correct if
LCP[j] < min{i + b−A[j − 1], i + b−A[j]}, i.e. if the LCP between the two corresponding suffixes is too short
to reach the next block for at least one of the two. Otherwise both suffixes are equal at least until the comparison
of the two has extended to the next block. Then the stored LCP value will be too small and thus incorrect. We can
however easily correct these values using the precomputed repetition propagation information. We can compute in
time O(b) at which offset from the start of the next block the propagated repetition first breaks. Let o denote this
offset. Then we obtain the correct LCP value for index j > 0 as LCP[j] = (i + b − max{A[j − 1],A[j]}) + o.
If we store this value explicitly, then the LCP array will take space O(b log n) bits. As we can however detect and
correct the incorrect LCP values in constant time given the suffix array and number o we can leave the LCP array as
is taking space O(b log b) and still have constant time access to the correct values by computing them as required.

��
Using the suffix and LCP array the time for a forward search of a pattern of length m in a block of size b reduces

from O(m log b) to O(m + log b) (see [19]).

6 Merging Pairs of Adjacent Blocks

In our modified algorithm we replace the completely skewed binary merge tree used in [8] by a balanced binary
merge tree. Consequently we will need to be able to merge blocks with a block size in
(n). For merging two
adjacent blocks we need the following components:

1. The BWT of the left and right block. These can be compressed and in external memory as they will be scanned
sequentially.

2. An internal memory index of the left block suitable for backward search in O(1) time per step. An FM type
index using space bl Hk + o(n log σ) bits can be used where bl is the length of the left block and Hk denotes
the k’th order entropy of the left block (see [21]).

3. The gt bit vectors for the left and right block. Scanned sequentially and thus can be read streaming from external
memory.

4. The number of circular suffixes in the left block smaller than the rightmost suffix of the right block. Used as the
start point for the backward search.

5. The gap array G.

The first three are equivalent to those used in [8]. The rank of the rightmost suffix in the right block relative to
the suffixes of the left block can be obtained by employing forward search on one or more text blocks. If the left
block is a single block which was produced by explicit suffix sorting using the method of Sect. 5, then the rank can
be obtained using classical forward search in the suffix array while using the adjoined LCP array. This takes time
O(n + log b) in the worst case (on average this can be expected to be O(log n + log b), see [25]). If the left block
was already obtained by merging c blocks together, then the desired rank can be obtained as the sum of the ranks
of the suffix relative to all single blocks composing the left block in time O(c(n + log b)). Assuming the blocks
are merged together in a balanced binary merge tree the total time used for forward searches is O(nb log

n
b n) in the

worst case and O(nb log
n
b log n) on average. If we choose b ∈ O(n

log n) then this becomes O(n log n log log n). The
memory required for the index of the left block in internal memory will be bl�log σ� + o(bl log σ) bits for a left
block size of bl assuming that the entropy compression is ineffective. This leaves us with the space required for

166 G. Tischler

the gap array. In the original algorithm this is a conventional array in internal memory taking space O(b log n) bits
for a left block size of b. As we want to be able to merge blocks with size in
(n) this space requirement is too
high. Using Elias γ code (cf. [7]) we can store the gap array for merging a left and right block of length bl and br
respectively in O(bl + br) bits of space as we show in the following lemma.

Lemma 6 Let G denote an array of length � such that G[i] ∈ N for 0 ≤ i < � and
∑l−1

i=0 G[i] = s for some s ∈ N.
Then the γ code for G takes O(� + s) bits.

Proof Elias γ code stores the number z > 0 as the bit sequence 0�log z	bin(z) of length 1 + 2�log z	 where bin(z)
denotes the binary representation of z (most significant to least significant bit left to right). The γ code for G thus
requires

� + 2
�−1∑
i=0

�log(G[i] + 1)	

bits. As γ code is unable to represent the number zero but zero is a valid entry inG we add 1 to each element.We have

bl−1∑
i=0

�log(G[i] + 1)	 ≤
bl−1∑
i=0

log(G[i] + 1) = log
bl−1∏
i=0

(G[i] + 1) .

and the last product is maximal for G[0] = G[1] = · · · = G[� − 1] ≈ s
�
(conceptually due to the fact that x(1− x)

has its maximum at x = (1 − x) = 1
2 , i.e. a product of two positive real numbers of constant sum is maximal if

both are chosen as half the sum). Thus the maximum space used for the gap array in γ code is bounded by

� + 2
�−1∑
i=0

�logG[i] + 1	 ≤ �
(
1 + 2 log

(s
�

+ 1
))

For s ≤ � the argument of the logarithm is between 1 and 2 thus the space usage is bounded by 3�. For s > � let
s = 2r l for some r ∈ R, r > 0. Then we have

�
(
1 + 2 log

(s
l

+ 1
))

≤ �
(
1 + 2 + 2 log

s

l

)
≤ s

2r
(3 + 2r) = s

3 + 2r

2r
≤ s

(
3 + 1

loge 2

)
≤ 5s

which is in O(s). Thus in both cases the space is in O(� + s) bits. ��
Elias γ code however is not suitable for efficient updating as we would need it for computing the gap array.

During the computation of a gap array each step of the backward search leads to an increment of exactly one position
in the gap array. In particular the sum over the elements of the array after s steps is s. The γ code representation of
the gap array does not allow efficient updating of single elements. We overcome this problem by producing partial
sparse gap arrays, which we write to external memory. We accumulate an amount c of indices for incrementing in
internal memory before we write a sparse variant to external memory, which implies that the sum over the sparse
array written will be c. Whenever we have produced two sparse gap arrays in external memory featuring the same
element sum, then we merge the two together into a sparse array of twice that sum. At the end of the process we
need to merge the remaining set of arrays into a single final gap array. Let G denote a gap array of length � such
that

∑�−1
i=0 G[i] = s for some s > 0 with k > 0 non-zero values. Let i0, i1, . . . , ik−1 denote the sequence of indices

of non-zero values in G in increasing order. We store two γ coded bit streams for representing G. In the first we
store the sequence i0 + 1, i1 − i0, i2 − i1, . . . , ik−1 − ik−2 and in the second we store the subsequence of non-zero
values in G. Note that the elements of both sequences are strictly positive integers, so we do not need to add 1 for
the γ code. The maximum space usage for the first sequence is bounded by k(1 + 2 log �

k) and for the second by
k(1+ 2 log s

k) which sums up to 2k(1+ log s�
k2

)) (see the proof for Lemma 6 for details on obtaining these bounds).

For fixed s, � this function has a maximum for k =
√
2s�
e with value 4

√
2s�

e loge 2
where e denotes the base of the natural

Faster Average Case Low Memory Semi-external Construction 167

logarithm. As we by definition have k ≤ min{�, s} this maximum can only be observed for s ≥ 2�
e2

≈ .2706� (and

equally � ≥ 2s
e2
). For s < 2�

e2
we obtain themaximum space usage for k = s and this spacemaximum is then bounded

by 2s(1 + log �
s). While computing a complete gap array we may at an intermediate stage have no more than two

arrays with a sum of c2i for i = 0, 1, . . . , �log s
c 	 when the arrays of the smallest sum we produce have sum c for

a constant c ≥ 1. We will never have two arrays for more then two of the sizes while merging and only a single one
for all other sizes, but for the sake of simplicity in obtaining a bound on the size of the sum of the arrays we will
assume that two for each size are possible. For those arrays with a sum of at most �

4 we can bound the space used by

2
∑�log l

4c 	
i=0

2(2i c)

(
1 + log

�

2i c

)
≤ 4c

∑�log l
4c 	

i=0
2i

(
1 + log

�

2i c

)

≤ 4c
∑�log �

4c 	
i=0

2i
(
1 + log

�

2i

)

≤ 8c
∑�log �

4c 	
i=0

2i
(
log

�

2i

)

≤ 8c
∑�log �

4c 	
i=0

2i (log � − i)

≤ 8c
∑�log ��

i=0
2i (�log �� − i)

≤ 2�log ��+3c
∑�log ��

i=0

i

2i

≤ 2�log ��+4c

≤ 32c�
Thus the space for these arrays is O(�) bits as c is a constant. For partial arrays with a sum of more than �

4 we can
resort to dense arrays. We may have a constant number of arrays with a sum between �

4 and �. These take space
O(�) (see the proof for Lemma 6). Finally we can have a logarithmic number of arrays with a sum larger then �.
Analogously to the arrays with a sum of at most �

4 we can deduce that the space for these arrays is O(s) bits. In total
all partial gap arrays together take space O(s+�) bits. Two sparse partial gap arrays can be merged in time linear in
the number of their respective non-zero elements which is bounded by the sum over the elements. Two of the dense
partial gap arrays we use can also be merged in time linear in the sum over their elements, as these arrays are only
used if the sum over their elements reaches a quarter of there length. Merging two partial gap arrays is in both cases
a streaming operation and requires virtually no internal memory. If the merging process starts with partial arrays for
sum 1, the final array has length � and the sum over its elements is s then the total merging time can be bounded by∑�log s�

i=0 min{s, �}. For merging two blocks of size bl and br respectively this is in O(min{bl , br } logmax{bl , br })
which becomesO(bl log bl) if bl ∈ �(br) as it holds for balanced binarymerge trees. Ifwe accumulate br

log2 br
indices

for incrementing in an array in internal memory we can reduce the time used for merging without asymptotically
increasing the total memory footprint of the algorithm. The space used for the array in internal memory is O(br

log br
)

bits and thus asymptotically negligible compared with the (uncompressed) text. When the internal memory array is
full, then we first need to sort it so we can write the partial gap array representation. This can be performed in time
linear in the length of the array by using a two phase radix sort with a number of buckets in O(

√
br), which require

additional internal memory of O(
√
br) words or O(

√
br log br) bits. For both run-time and space usage the radix

sort does not asymptotically increase the resources required for the merging. Starting with partial gap arrays of sum
br

log2 br
implies the total number of such arrays is O(log2 br). Consequently the binary merge tree for obtaining the

final gap array has a depth in O(log log2 br) = O(log log br) and it can be processed in time O(br log log br).
The gt array for the merged block can be composed by concatenating the gt array for the left block and an array

storing the respective information for the right block computed while performing the backward search for filling
the gap array. For this purpose we need to know the rank of the leftmost suffix in the left block. This can either be
computed using forward search on the suffix arrays of the basic blocks or extracted from a sampled inverse suffix
array which can be computed along the way. The sampled inverse suffix arrays of two blocks can just like the BWTs

168 G. Tischler

of the two blocks be merged using the gap array. This is also an operation based on stream accesses, so it can be
done in external memory in time O(bl + br) when merging two blocks of size bl and br .

7 BWT Computation by Balanced Tree Block Merging

Using the building blocks described above we can now describe the complete algorithm for computing the BWT
of t by merging basic blocks according to a balanced binary tree.

1. Choose a target block size b′ ∈ O(n
log n) and deduce a block size b = � n

� n
b′ �

� such that the number of blocks c

satisfies c = � n
b � = � n

b′ � and n can be split into blocks of size b and b − 1 only. Split t such that the blocks of
size b appear before those of size b′. This step takes constant space and time.

2. Compute which blocks in t propagate repetitions of period at most b and for each block which is followed by a
block propagating a repetition whether it is generating this repetition. This takes time O(n) in total and space
O(b log σ) = O(

n log σ
log n) ⊆ O(n) bits. The result data can be stored in external memory.

3. Compute a balanced merge tree for the blocks. Start with a root representing all blocks. If a node containing
a single block is considered produce a leaf and stop. Otherwise for an inner node representing k > 1 blocks
produce a left subtree from the � k

2� leftmost blocks and a right subtree from � k
2	 rightmost blocks in t . The tree

has O(log n) nodes. Each node stores at most two (start and end) block indices taking O(log log n) bits and two
node pointers also taking space O(log log n) bits. So the total tree takes space O(log n log log n) bits. It can be
computed in time O(log n).

4. Sort the blocks and store the resulting BWT, gt and sampled inverse suffix arrays in external memory. Using
the suffix and LCP arrays of the basic blocks also compute the start ranks necessary for the backward searches
when merging the blocks together. This takes time O(n log n log log n) in the worst case and O(n) on average
and space O(b log b) = O(n

log n log
n

log n) = O(n) bits of internal memory.
5. Process the merge tree. Mark all leafs as finished and all inner nodes as unfinished. While there are unfinished

nodes choose any unfinished node with only finished children, merge the respective blocks and mark the node
as finished. There are O(log n) leafs and the tree is balanced, so it has O(log log n) levels. Each single level
can be processed in time O(n log log n). So the total run time for the tree merging phase is O(n log2 log n). The
maximum internal memory space usage appears when performing the merge operation at the root of the tree.
Here we need space bl Hk + o(bl log σ) bits where bl denotes the sum of the length of the blocks in the left
subtree which is O(n) and Hk denotes the k’th order entropy of the text comprising those text blocks.

Summing over all steps the run-time of the algorithm is O(n log n log log n) in the worst case and O(n log2 log n)

on average. In practice this means we can compute the BWT of a text as long as we are able to hold the text (more
precisely the text for the left subtree of the merge tree) in internal memory. If we can hold a fixed fraction of the text
in main memory, then we can still compute the BWT of the text in the same run-time by resorting to the original
iterative merging scheme from [8]. We decompose the text into blocks of size b′ such that b′ ≤ n log σ

c log n where 1
c is

the fixed fraction of the text we can hold in internal memory and compute a partial BWT for each of these blocks
where the suffixes sorted are considered as coming from the whole text, i.e. suffix comparisons are still over t̃ and
not limited to a single of the blocks. Then we merge these blocks along a totally skewed merge tree such that the
left block always has size about b′. The size of the set of partial sparse gap arrays required at any time remains
bounded by O(n) bits. As the number of blocks is fixed, the total asymptotical run-time of the algorithm remains
O(n log n log log n) in the worst case and O(n log2 log n) on average.

8 Parallelisation

Many of the steps of our algorithm are parallelisable. As building blocks wewill need representations of the required
data structures in external memory which allow accessing parts without performing a complete sequential scan and
we will require parallel versions of

Faster Average Case Low Memory Semi-external Construction 169

• the construction of rank indexes,
• the computation of gap arrays,
• the merging of BWT blocks,
• the merging of sampled inverse suffix arrays and
• the sorting of single blocks.

As the merging of sampled (inverse) suffix arrays is basically a simplified version of the merging of BWT blocks
(the difference is not all values are present), we will only describe the merging of BWT blocks and leave the sub
sampled merging variant as an exercise for the reader. In this paper we consider shared memory parallelisation only,
i.e. a setting where all processors involved have access to the same internal memory. Some of the algorithms may
be modified for distributed memory settings.

8.1 Data Structures in External Memory

We are using the following data structures in external memory:

• The gt bit vectors
• Burrows–Wheeler transforms of blocks
• Dense γ coded gap arrays
• Sparse γ coded gap arrays

Arbitrary positions in the gt bit vectors can be accessed without further information, so no additional information
is necessary to support scanning starting from a given position.

For the Burrows–Wheeler transform sequences we choose the following representation. For a given string
B = b0 . . . bm−1 over � and a given block size d ∈ O(log2 n) we partition B into blocks of size d such that all
but the last block have size d. Each block factor is stored using run-length, Huffman and γ code. We first compute
a run length representation of the block which gives us a sequence of pairs comprised of symbols and number of
consecutive occurrences. As an example the factor aabbbcaaa would be transformed to (a, 2), (b, 3), (c, 1), (a, 3).
This sequence of pairs is stored using Huffman code for the symbols and Elias γ code for the run lengths. As we
assume a constant alphabet size, the dictionary for the Huffman code takes constant space per block. The space used
by the Huffman coded sequence of symbols is bounded by d�log σ�. According to our considerations about γ code
above the maximum amount of space required for storing any sequence of run lengths for a block of length d is
d(1+ 2�log(1+ 1)�) = 3d. So in the worst case the representation of the block BWT in this code is in O(d log σ)

bits. In consequence each block can be addressed using a fixed size pointer of length in O(log(m log σ)). As we
have d ∈ O(log2 n) and are only storing BWTs of length m ≤ n we are storing at most O(m

log2 n
) pointers. In total

these require space O(m
log n) bits. When the BWT is coded in this way we can start decoding it at any index which is

a multiple of the block size d ∈ O(log2 n). The setup procedure takes O(1) time and we can decode each following
symbol in time O(1) when performing a sequential scan (see [15,20] for constant time encoding and decoding of
Huffman/minimum redundancy code. The code lengths of the γ code can be decoded using a lookup table taking
o(n) bits).

Dense γ coded gap arrays can be stored very similar to our BWT storage scheme for allowing the start of a
decoding run from any position in the array with very little overhead. As shown above an array G of length l such
that

∑l−1
i=0 G[i] = s can be stored using O(s + l) bits, which means the start index for the code of any position

can be stored in O(log(s + l)) bits. We decompose the array into non-overlapping blocks of length e ∈ O(log2 n)

elements and store a pointer to the start of each block. These pointers take space O(s+l
log n) bits in total and we can

start the decoding from any index on G after a setup time in O(log2 n). Subsequently each following element can
be sequentially decoded in constant time per element.

For the sparse γ coded gap files we have already described the code itself above. Let us assumewe are considering
a gap arrayG of length � such that the sum over the elements ofG is s andG contains k non-zero values. To facilitate

170 G. Tischler

the start of a decoding run at a given index on G we keep the γ code as is, where we assume that the two γ coded
sequences (distance between non-zero values in the array and non-zero values) are stored interleaved. As the array
is sparse we possibly would be adding excessive amounts of space by adding pointers marking the next non-zero
value for equidistant indices on G. Instead we store information for every j = �log n�2’th instance of a non-zero
value on G for i = 0, 1, � k

j 	. For each such instance of a non-zero value we store the bit position of the code pair in
the γ code and the absolute index on G. The γ code itself requires O(k(1 + log s�

k2
)) bits as shown above, so each

pointer into the code takes O(log(k log n)) bits and there are O(k
log2 n

) such pointers, so the space used for pointers

is O
(
k log(k log n)

log2 n

)
bits which is bounded by the space used for the sparse array itself. Storing the selected absolute

values of non-zero indices on G takes space O(k
log n). Using this index on the external memory representation for

G we can start decoding the array from any index on i on G by first employing a binary search on the absolute
value of the largest indexed non-zero value element in G with an index not greater than i . This element may be
O(log2 n) non-zero elements away from our desired target which need to be skipped before we reach the relevant
portion of G. Thus the setup time is O(log2 n). After the setup we can decode either the sequence of non-zero
values starting from i or the sequence of all values starting from i in constant time for each such value. Decoding
non-zero values is required for merging two sparse arrays while decoding all values is required for merging two
BWTs.

For parallel encoding of these data structures we note that all of them are easily writable in any given number
of parts to a set of files such that a simple combination of these files represents the respective complete struc-
ture. Thus encoding the data structures does not need be performed sequentially. If we write data to multiple
files, then we need a simple additional layer of indexing meta data designating the length of the corresponding
sequence in each file. For gt bit vector, Burrows–Wheeler transform and dense γ coded gap files this additional
data stores the number of bits, symbols and gap array entries respectively in the form of a prefix sum array. This
array allows us to find the correct starting file and offset in this file given the offset in the complete sequence
in logarithmic time in the number of files. The number of files for any one such sequence is bounded by the
number of processors, so the space for the prefix sum array is not a concern as long as the number of proces-
sors p is O(n

log n). For sparse γ coded gap files the situation is slightly more involved, as we want to be able
to start processing from a given index i on the gap file to process the entry at index i and all gap file entries
following i or given some j skip j non-zero values from the front of the file and process all following non-
zero elements. For this purpose we store two index sequences in addition. The first is a prefix sum sequence
over the number of gap array elements represented by each file. Here the number stored in a file is obtained
as

• the length of the gap array if there is only one file or
• otherwise, if there is more than one file

– the index of the last non-zero gap array value represented in the file plus one for the first file,
– the index of the last non-zero gap array value represented in the current file minus the index of the
last non-zero gap array value represented in the previous file if the file is neither the first nor the last
and

– the length of the full gap array minus the index of the last non-zero gap array value represented in the
penultimate file for the last file.

The second is the prefix sum sequence over the sequence of non-zero values stored in each file. Both addi-
tional index sequences store O(p) values. Again the space for these can be neglected when p ∈ O(n

log n).
Searching the file level indexes for the correct file and in file offset for a given global offset in each case
takes time O(log p) and is thus not critical in comparison with the in file access times for BWT and
gap files. We will thus without loss of generality below discuss a situation were the respective streams
are assumed to be given as a single file instead of a set of files for the sake of simplicity of exposi-
tion.

Faster Average Case Low Memory Semi-external Construction 171

8.2 Parallel Construction of Rank Indexes

There are several data structures which allow constant time rank queries on sequences over a finite alphabet. In this
paperwewill consider thewavelet tree (see [10]). A prefix free code g for an alphabet� is a function g : � �→ {0, 1}∗
such that for all pairs of symbols (a, b) ∈ �2 such that a
= b the code g(a) is not a prefix of g(b). In the following
we in addition assume that each prefix free code considered is such that each binary string c either has a prefix
which is a code of some symbol or c is a prefix of at least one code produced by the code. This condition implies
that there are no unused binary code words. In consequence the longest code assigned to any symbol is bounded by
the size of the input alphabet. For any prefix free code g : � �→ {0, 1}∗ where |�| > 1 let gi : �i �→ {0, 1}∗ denote
the sub code obtained from g by choosing �i = {a ∈ � | g(a)[0] = i} and gi (a) = g(a)[1, |g(a)− 1|]. Informally
gi is defined for all symbols in � for which the first bit of the code assigned by g is i and this first bit is stripped
off when transforming g to gi . Let fi : �∗ �→ �∗

i be the function given by the homomorphism defined by mapping
each symbol in �i to itself and all other symbols to the empty word, i.e. the function removing all symbols which
are not in �i . Let h : � �→ {0, 1}∗ denote a prefix free code. Then the wavelet tree concerning h for a text s ∈ �∗
is obtained in the following recursive way.

• If |�| = 1 then produce a leaf.
• Otherwise store the bit sequence h(s0)[0]h(s1)[0] . . . h(s|s|−1)[0] in an inner node. Attach a left and right child

to this inner node where the left child is the wavelet tree for f0(s) concerning the code h0 and the right child is
the wavelet tree for f1(s) concerning the code h1.

When this procedure is complete, then we assign a binary code to each inner node, where we assign ε to the root,
c0 to each inner node which is a left child of a parent with code c and c1 to each inner node which is a right child
of a parent with code c. For the parallel construction of a wavelet tree based on a prefix free code h from an input
string observe that each interval of indices on the input string corresponds to a unique interval of indices in the bit
vector stored in any inner node of the wavelet tree. For constructing a wavelet tree in parallel from an input string
s of length m over � using p processors we use the following steps.

1. Choose a block size d = �m+p−1
p 	.

2. Assign index block Ii = [di,min(di + d,m)) to processor i .
3. Each processor computes a symbol histogram Hi : � �→ N for its interval such that Hi [a] = |{ j | j ∈

Ii and s[j] = a}|.
4. Compute the prefix sum arrays Ĥi defined by Ĥi [a] = ∑i−1

j=0 Hi [a] for all a ∈ �. This can be parallelised
along the alphabet �.

5. LetC(h) = {h(a) | a ∈ �} and let Ĉ(h) = {c′ | c′ = c[0, i] for some c ∈ C(h) and −1 ≤ i < |c|−1} (the set
of all proper prefixes of codes produced by h). Let Pi : Ĉ �→ N be defined by Pi (j) = ∑

k| j prefix of h(k) Ĥ(k).
Processor i computes table Pi . Note that P may be understood as a function from integers to integers instead
of binary strings to integers, as the elements of Ĉ may be interpreted as the numerical value represented by the
respective binary strings. Pi denotes the bit offset of the input interval for input block i for each inner node of
the constructed wavelet tree.

6. Processor i produces the wavelet tree for interval Ii while instead of starting at the beginning of the bit vector
of a node starting at the bit position designated by the array Pi .

7. For each node of the wavelet tree the p processors compute the necessary prefix sums for the binary rank
dictionaries of each node in parallel.

This approach can be used to obtain a rank dictionary for the input string s of lengthm over � in time O
(
m
p

)
using

p processors. This applies for block type as well as Huffman code.

172 G. Tischler

8.3 Parallel Computation of Gap Arrays

When we compute a gap array we are generally merging two adjacent text blocks. Let the left and right block sizes
be bl and br respectively and let the indices of the left block on t̃ start at index i . In the serial version we start with
the suffix at index i+bl +br −1 and perform br −1 steps of backward search using the index for the left block. This
can be parallelised by performing several backward searches in parallel starting from several indices within the right
block. If p ≤ br processors are available, then we can choose the starting positions x j = i +bl +br −1− j� br

p � for
j = 0, 1, . . . , p − 1 and perform � j = x j+1 − x j steps for j = 0, 1, p − 2 and � j = br − x j steps for j = p − 1.
As the backward search is based an suffix ranks in the left block we need to find the ranks of these p suffixes in the
left block using forward search on one or more suffix arrays just as we did above for the single suffix at the end of
the right block in serial mode. As we have p processors and need to find p ranks, the run-time stays the same as in
the serial version for both average and worst case. In the average case the forward searches are not a time critical
factor as long as p is O(n

log2 n log log n
), so in practice we can expect the forward searches to be of no concern for the

execution time. When we perform p backward searches in parallel, then we also need to be prepared to perform
the corresponding increment operations on the gap array in parallel. This is no problem if the gap array can be kept
in internal memory as modern processors have specialised operations for atomic, lock free modifications of single
memory cells. If we use sparse gap arrays in external memory, then the situation is somewhat more complicated. In
the serial version we first accumulate a number of indices in the gap array whose value is to be incremented in a list
of length k ∈ O(br

log2 br
) in internal memory. If this list runs full, then it needs to be sorted and written to external

memory as a sparse γ coded gap array. Whenever there are two sparse gap arrays of the same sum, then the two
need to be merged to obtain a single sparse array of twice that sum (as the number of non-zero elements in the files
approaches the size of the left block we switch to dense arrays as described above. Generating and merging dense
γ coded gap arrays are however simplified versions of the equivalent problems in sparse arrays, so we will not
explicitly discuss this below as the algorithms are easily deduced from the sparse case). In the parallel case we keep
the concept of a single array accumulating indices in internal memory. All p processors are appending values to
this array until it runs full. This can be implemented by using a fill pointer which is modified by atomic increments
while elements are inserted at the array index designated by the fill pointer before the increment. A process stalls
backward search when the pointer exceeds a given threshold signalling that the array is full. When all processes
have detected that the array is full, then we can perform a parallel radix sort on the array. As in the serial case this
is performed in two stages, i.e. using e ∈ O(

√
n) buckets. Like for histogram computation in the parallel wavelet

tree construction we partition the array into p non overlapping intervals and compute a separate histogram for each

interval. This takes space O(p
√
n log n) bits which is negligible as long as p ∈ o(

√
n

log n) which is not an issue in
practice. Prefix sums are computed based on these bucket histograms to obtain the starting index for the elements
for each bucket originating from each processor input interval. The elements for bucket i appear ahead of those for
buckets with index larger than i and within each bucket the elements originating from processor interval j appear
before those for intervals with higher indices. These prefix sums can be computed in parallel by first accumulating
all element counts over � e

p � buckets and then based on these offsets filling in the final prefix sums in parallel. Using
the computed prefix sums the numbers can be sorted into their buckets in parallel while keeping the stable order
necessary for a correct radix sort. Using this radix sort method we can sort a set of the k numbers from [0, bl] in
time O

(
max{√bl ,k}

p

)
using p processors. After the array is sorted we again partition it into p index intervals. In

each interval in parallel we transform the now sorted sequence into run length encoding, i.e. pairs of numbers and
the number of occurrences of the number in the interval. This representation does not asymptotically need more
space than the sorted number sequence. The computation of the run length encoding in intervals produces a correct
run length encoding of the complete sequence except for the borders of the intervals. Here the last run length in
one interval may be for the same number as the first run length in the next interval. This however can be corrected
in time O(log p) using p processors, where we assign the complete run-length to the leftmost occurrence of the
number and mark the other occurrences as invalid. After this we can produce a compact version without space
between the intervals of the run length encoded array in internal memory in time O(kp) by counting the number of

Faster Average Case Low Memory Semi-external Construction 173

runs per interval, computing the prefix sums over this number sequence and copying the sequence to another array

in compact form. Finally we decompose this compact run length array into at most p intervals of length � � k
p �
e �e

where e ∈ O(log2 n) is a positive integer and write the resulting decomposition to p sparse γ coded gap arrays
such that the concatenation of the files represents the complete sparse gap array. As each interval size but the last
is a multiple of e each file starts on an index of the sequence of run length pairs which is also a multiple of e. This
file production also takes time O(kp). Finally we can also produce the block pointers required for accessing the file
without performing a linear scan in the same time complexity. Summarising we can transform the array of length
k accumulating indices for incrementing in the gap array to a sparse γ coded representation in external memory in

time O(
k+√

br
p) using p processors. Now assume we have two sparse γ coded gap arrays with ka and kb non-zero

values respectively which are to be merged. We want to perform this merging using p processors, where in the
optimal case each processor is assigned the same amount of work. Both files store e ∈ O(log2 n) non-zero values
per block. Using a binary search on these values we can determine the smallest i such that at least � ka+kb

p � blocks
are stored in the two files for values smaller than i . The first processor merges the values of the two input sequences
from the beginning up to value i . The same scheme is used to split the remaining data into a work package for the
second processor and the rest for the remaining processors etc. The splitting operations take time O(p log3 n). We
are computing p splitting points, each such splitting point is computed using a binary search on O(n) sorted values
and accessing each such value takes time O(log2 n). After the splitting the merging is easily done in parallel in time
O(

ka+kb
p) so the run time of the method is O(p log3 n + ka+kb

p). This is a convenient procedure when the number
of processors is low compared to the size of the input. If the number of processors should not be neglectable in
comparison to the input size, i.e. if O(p log3 n) would be large, then we could employ a different splitting method
where we would decompose the merging work along an optimally balanced binary tree and thus reduce the work for
finding the splitting points to O(log p log3 n). We would still be computing O(p) splitting points, but the splitting
point search within each level of the tree of depth O(log p) could be performed in parallel in time O(log3 n).

8.4 Merging Burrows–Wheeler Transforms

For merging two BWT sequences of length bl and br respectively let us assume we have the two sequences in
external memory and the gap array in internal or external memory. For parallel merging of the two sequences we
first compute the sum over the gap array for each interval of integer length e ∈ O(log2 n) starting at index ie on the
gap array G for i = 0, 1, . . . , bl

e using p processors in parallel in time O(
bl
p). These can be produced sequentially

and in external memory and take space o(bl) bits. Then we compute the prefix sums over this sequence in parallel in
time O(

bl
p) and also store it in external memory. Using these prefix sums we can assign approximately equal work

loads to each processor. Using a binary search on the prefix sums we can search for the smallest j < bl +1 such that
s = ∑ j

i=0(G[i] + 1) ≥ � bl+br
p � and then increase j and update the sum s accordingly until � s

e �e − s ≤ G[j + 1]
or j = bl + 1 if no such j exists (remember that G has length bl + 1). The binary search gives us a work package
which is approximately 1

p of the total length. The subsequent increasing of j is for allowing us to produce a file with
a length which is a multiple of the block size by just considering the next gap array value G[j + 1]. The case where
there is no such j can only occur for very sparse arrays with high run length values. The first processor merges the
front parts of the two BWTs by in turn taking G[i] symbols from the second BWT stream and one symbol from the
first one for i = 0, 1, . . . , j and finally � s

e �e− s from the second BWT stream to obtain a multiple of the block size
e. The rest of the two BWT streams is merged by the other processors. The further splitting of the remaining data
into blocks is performed just like the splitting of the data into the part for the first processor and the rest. The only
difference consists in the fact that a fraction of G[j + 1] is already handled by the first processor and thus needs to
be excluded from the remaining process. As for merging sparse γ coded gap arrays the finding of the splitting points
in this manner takes time O(p log3 n) following a similar argumentation. The actual merging is then performed in
time O(

bl+br
p) using p processors. In practice it may be desirable to perform the merging directly using the run

length encoding instead of symbol per symbol. In the asymptotical worst case there is however no difference in the

174 G. Tischler

run time. Like in the case of merging sparse γ coded gap files we can speed up the computation of the splitting
points to O(log p log3 n) if necessary. The approach of parallelisation of BWT merging can be extended to multi
way instead of two way merging as described in [12]. The concepts remain the same, but the searching of split
points is over all of the involved prefix sum arrays of gap files instead of just one. The merging within the single
merge packets remains the same as in the serial version.

8.5 Parallel Sorting of Single Blocks

We need to suffix sort single blocks and produce the respective block BWTs before we can merge these structures to
obtain the final BWT of the complete text. To our best knowledge there is currently no parallel in place suffix sorting
algorithm. The external memory algorithmic variants described in [14] either distribute a total work of
(n log n)

over p processors or work in some randomised model of computation. As the problem of parallel suffix sorting
in place is still open, we resort to using our parallel block merging scheme to achieve some parallelism for the
average case. In the highly unlikely worst case this will again not bring any improvement over the serial version.
The block size b in the serial version is chosen to allow the suffix sorting of a single block in internal memory.
For the parallel case we deduce a reduced block size bp = � b

p � which allows us to perform the suffix sorting of
p such blocks at the same time in internal memory. After these blocks have been handled we merge the resulting
BWTs until we obtain the BWTs for block size b using our parallel merging approach described above. Note that
this does not require us to store gap arrays in external memory, as we have sufficient space in internal memory to
perform the merging. In the unlikely worst case we will spend time
(n log n log p) for finding the start ranks of
our backward searches during gap array construction. On average the run time is O(

b log p
p) in all practically relevant

cases (i.e. when p log p ∈ O(n
log4 n

)).

8.6 Parallelisation of the Complete Algorithm

Using the building blocks described above we can now present the parallel version of our algorithm for p processors.
The steps are:

1. Choose a target block size b′′ ∈ O(n
log n) as in the serial version. Transform this block size b′′ to b′ = � b′′

p �, a
target block size for parallel computing and finally deduce a block size b = � n

� n
b′ �

�. Split the text t into blocks

of size b and b − 1 only such that all the blocks of length b appear before the ones for b − 1. This step takes
constant time and space.

2. Compute which blocks in t̃ propagate repetitions of a period at most b and for each block which is followed
by a block propagating a repetition whether it is generating this repetition. We can handle p blocks in parallel
during the propagation as well as the generation checking phase as each block can be handled independently
and we have sufficient space in internal memory due to the reduced block size compared to the serial version.
This step consequently takes time O(np) in total and space O(p n log σ

log np) = O(
n log σ
log n) ⊆ o(n) bits. The result can

be stored in external memory.
3. Compute a balanced merge tree for the blocks in serial like for the serial cases. This takes time O(log n) and

space o(n) bits.
4. Sort the blocks and store the resulting BWT, gt and sampled inverse suffix arrays in external memory while

processing p blocks at a time. Using the suffix and LCP arrays of the basic blocks also compute the start ranks
necessary for the backward searches when merging blocks together. This step takes time O(n log n(log log n +
log p)) in the worst case and O(np) on average and space O(b′ log b′) = O(n) bits of internal memory.

5. Process the merge tree. Mark all leafs as finished and all inner nodes as unfinished. While there are unfinished
nodes choose any unfinished node with only finished children, merge the respective blocks and mark the node
as finished. When merging blocks use an internal memory gap array if the node has a distance of at most �log p�

Faster Average Case Low Memory Semi-external Construction 175

from any leaf in the underlying sub tree and sparse γ coded gap arrays in external memory otherwise. Use the
parallel versions of gap array computation, merging of γ coded gap array files, merging of BWT streams and
merging sampled inverse suffix array files. The log log n levels closest to the root can be processed in total time

O(
n log log n

p) per level or O(
n log2 log n

p) in total. The log p other (lowest) levels of the tree can be processed in time

O(
n log p

p). The total run-time for the merging stage is thus O(np max{log2 log n, log p}). The space requirement

in internal memory remains asymptotically the same as in the serial version as long as p ∈ o
(√

n
log n

)
as described

above.

The total run-time of the parallel algorithm using p processors is thus O(np max{log2 log n, log p}) on average and
with high probability and O(n log n(log log n + log p)) in the worst case. As in the serial case we can resort to the
original skewed merging approach on top of the balanced merging if there is not sufficient internal memory to hold
the index for the left half of the text in memory but sufficient to keep an index for a fixed fraction of the text while
keeping the same run-time and space bounds.

9 Conclusion

We have presented a new semi external algorithm for computing the Burrows–Wheeler transform designed for the
case where we can keep a fixed fraction of the input text in internal memory. On average our new algorithm runs in
time O(n log2 log n) and is faster then the algorithm of Ferragina et al. [8] while in the worst case it is only slower
by a factor of O(log log n). In comparison with the algorithm by Beller et al. [1] our algorithm can be applied
for the case when less than 8 bits per symbol of internal memory are available. We have also presented a parallel
version of our algorithm which on average and with high probability runs in time O(np (log2 log n + log p)) on p
processors and should achieve this run time in all practically relevant applications. In the worst case the run time of
the parallel algorithm is O(n log n(log log n+ log p)) and thus, depending on the number of processors p, possibly
even slower than the serial version. However this worst case is highly unlikely in practice.

The practically interested reader can find a partial implementation of the algorithms presented in this paper at
https://github.com/gt1/bwtb3m. The current version of the code does not implement the repetition reduction as
described in Sect. 5 but uses a simplified approach computing the length of the longest common prefix of all suffixes
in a block with the first suffix of the following block for determining how far a block needs to be extended to obtain
a correct sorting order. On average this extension is by O(log n) characters. For texts featuring long repetitions of
short periods (shorter than the block size) however the method would be problematic.

One major open problem in our approach is the worst case run time. While it is not as extreme as the worst case
of some other algorithms for suffix sorting or BWT construction showing good average case behaviour (cf. [24]),
it still leaves room for improvement. This is particularly true for the case of the parallel variant of the algorithm.
The increased worst case run-time over the average case stems solely from the forward searches on block suffix
arrays to obtain the starting points for the backwards searches during gap array construction. In the serial version a
string needs to feature a very large LCP value in
(

n log log n
log n) between two of its suffixes to trigger the worst case

behaviour, in the parallel case using p processors a LCP value in
(
n log log n
p log n) is sufficient. So an efficient method

for detecting such high LCP values using small space would be necessary to alleviate the effects of the problem.
Note that these high LCP values are not necessarily caused by runs (cf. [18]) as the positions of the suffixes in the
string sharing a long common prefix may be too far apart to allow the common strings to connect, i.e. build a square.

Two other open problems are the actual practical space usage of our algorithm in external memory and its I/O
complexity. While the space usage in external memory is asymptotically clear with O(n log σ) bits the involved
constants are important in practice. Punctual observations in our implementation studies suggest that the involved
constants are low, but a systematic analysis is desirable. A very simple analysis in analogy to the space usage
shows that the algorithm uses O(n log2 log n) bits of I/O for merging γ coded gap arrays, O(n log σ log log n)

bits of I/O for merging BWTs and O(n log log n) bits of I/O for writing and reading gt arrays, where I/O is in all

https://github.com/gt1/bwtb3m

176 G. Tischler

cases streaming. As for the space usage in external memory, it would also be interesting to determine the involved
constants in future work.

Acknowledgements Open access funding provided by Max Planck Society.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes
were made.

References

1. Beller, T., Zwerger, M., Gog, S., Ohlebusch, E.: Space-efficient construction of the Burrows–Wheeler transform. In: Kurland, O.,
Lewenstein, M., Porat, E. (eds.) SPIRE. Lecture Notes in Computer Science, vol. 8214, pp. 5–16. Springer, Berlin (2013)

2. Bingmann, T., Fischer, J., Osipov, V.: Inducing suffix and LCP arrays in external memory. In: Sanders, P., Zeh, N. (eds.) ALENEX,
pp. 88–102. SIAM, Philadelphia (2013)

3. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm. Digital Systems Research Center, RR-124 (1994)
4. Crochemore, M., Grossi, R., Kärkkäinen, J., Landau, G.M.: A constant-space comparison-based algorithm for computing the

Burrows–Wheeler transform. In: Fischer, J., Sanders, P. (eds.) CPM. Lecture Notes in Computer Science, vol. 7922, pp. 74–82.
Springer, Berlin (2013)

5. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, Cambridge (2007)
6. Dementiev, R., Kärkkäinen, J.,Mehnert, J., Sanders, P.: Better externalmemory suffix array construction. ACMJ. Exp.Algorithmics

12, 1–24 (2008)
7. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 21(2), 194–203 (1975)
8. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression in external memory. Algorithmica 63(3), 707–730

(2012)
9. Ferragina, P.,Manzini, G.: Opportunistic data structures with applications. In: 41st Annual Symposium on Foundations of Computer

Science, 2000. Proceedings, pp. 390–398. IEEE, New York (2000)
10. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: SODA, pp. 841–850 (2003)
11. Hon,W.-K., Sadakane, K., Sung,W.-K.: Breaking a time-and-space barrier in constructing full-text indices. In: FOCS, pp. 251–260.

IEEE Computer Society, New York (2003)
12. Kärkkäinen, J., Kempa, D.: Engineering a lightweight external memory suffix array construction algorithm. In: Iliopoulos, C.S.,

Langiu, A. (eds.) 2nd International Conference onAlgorithms for BigData (ICABD2014), number 1146 inCEUR-WSProceedings,
pp. 53–60, Aachen (2014)

13. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In: Automata, Languages and Programming, pp. 943–955.
Springer, Berlin (2003)

14. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)
15. Kärkkäinen, J., Tischler, G.: Near in place linear timeminimum redundancy coding. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà,

J., Storer, J.A. (eds.) DCC, pp. 411–420. IEEE, New York (2013)
16. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix computation in suffix arrays and its

applications. In: Amir, A., Landau, G.M. (eds.) CPM. Lecture Notes in Computer Science, vol. 2089, pp. 181–192. Springer, Berlin
(2001)

17. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)
18. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proceedings of the 1999 Symposium on

Foundations of Computer Science (FOCS’99), New York, USA, pp. 596–604, 17–19 October 1999. IEEE Computer Society, New
York (1999)

19. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. SIAM J. Comput. 22(5), 935–948 (1993)
20. Moffat, A., Turpin, A.: On the implementation of minimum redundancy prefix codes. IEEE Trans. Commun. 45(10), 1200–1207

(1997)
21. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. (CSUR) 39(1), 2 (2007)
22. Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time suffix array construction. IEEE Trans. Comput. 60(10),

1471–1484 (2011)
23. Okanohara, D., Sadakane, K.: A linear-time Burrows–Wheeler transform using induced sorting. In: Karlgren, J., Tarhio, J., Hyyrö,

H. (eds.) SPIRE. Lecture Notes in Computer Science, vol. 5721, pp. 90–101. Springer, Berlin (2009)
24. Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 1–31

(2007)
25. Szpankowski, W.: On the height of digital trees and related problems. Algorithmica 6(1–6), 256–277 (1991)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Faster Average Case Low Memory Semi-external Construction of the Burrows–Wheeler Transform
	Abstract
	1 Introduction
	2 Definitions
	3 BWT Construction by Block-Wise Merging
	4 Computing the Minimal Period of the Prefixes of a String
	5 Sorting Single Blocks
	6 Merging Pairs of Adjacent Blocks
	7 BWT Computation by Balanced Tree Block Merging
	8 Parallelisation
	8.1 Data Structures in External Memory
	8.2 Parallel Construction of Rank Indexes
	8.3 Parallel Computation of Gap Arrays
	8.4 Merging Burrows–Wheeler Transforms
	8.5 Parallel Sorting of Single Blocks
	8.6 Parallelisation of the Complete Algorithm

	9 Conclusion
	Acknowledgements
	References

