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Abstract The data explosion problem continues to escalate requiring novel and ingenious solutions. Pattern
inference focusing on repetitive structures in data is a vigorous field of endeavor aimed at shrinking volumes of
data by means of concise descriptions. The Burrows–Wheeler transformation computes a permutation of a string
of letters over an alphabet, and is well-suited to compression-related applications due to its invertability and data
clustering properties. For space efficiency the input to the transform can be preprocessed into Lyndon factors. Rather
than this classic deterministic approach for letter based strings, we consider scenarios with uncertainty regarding
the data: a position in an indeterminate or degenerate string is a set of letters. We first define indeterminate
Lyndon words and establish their associated unique string factorization; then we introduce the novel degenerate
Burrows–Wheeler transformation which may apply the indeterminate Lyndon factorization. A core computation
in Burrows–Wheeler type transforms is the linear sorting of all conjugates of the input string—we achieve this
in the degenerate case with lex-extension ordering. Like the original forms, indeterminate Lyndon factorization
and the degenerate transform and its inverse can all be computed in linear time and space with respect to total
input size of degenerate strings. Regular molecular biological strings yield a wealth of applications of big data—an
important motivation for generalizing to degenerate strings is their extensive use in expressing polymorphism in
DNA sequences.
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1 Introduction

The global explosion of information is progressively escalating during the twenty-first century, not only in terms
of volume but also the form, the complexity, of the data itself. The reality of big data is changing our experience
of the world: business practice, governmental institutions, social interaction, commerce, entertainment, security,
virtual reality, communications, specialized libraries and data banks, image processing, education, public health,
space research, . . . .

The big data problem is creating new challenges for capturing, storing, accessing, aggregating, transmitting,
searching, securing and interpreting these huge volumes of data: many Internet and supercomputing activities
typically involve quantities of data in excess of terabytes; and dynamic stream data may require processing in
blocks depending on the application. Multidisciplinary action has proved fruitful in many areas of big data, for
instance: computer scientists collaborating with mathematicians on information security and cryptography; and
bioinformatics, the interfaceofmolecular biology and information science, researching the computationof biological
strings with possibly billions of data—the impact of advances in bioinformatics extends to human health.

The fundamental form of data is a string, namely a sequence of symbols over an alphabet �. A collection of
related or collated strings is often referred to as text. This paper focuses on strings involving uncertainty—such
strings are known as indeterminate, or equivalently degenerate strings,1 and consist of nonempty subsets of letters
over �. Algorithms for indeterminate strings were introduced in [18]; suitable data structures for these strings
include the prefix table or associated feasible array.

Indeterminate strings can, for instance, model Web interface data entry by specifying a set of common error
letters associated with a position in a word (string). The agrep utility [38] has been virtually one of the few practical
algorithms available for indeterminate pattern-matching.

Computations involving degenerate strings are interesting from the combinatorial point of view. The classic
longest common subsequence problem has been widely applied to problems such as file comparison programs,
screen redisplay applications and computing similarity of two DNA sequences; Iliopoulos et al. [20] describe finite
automata based algorithms on subsequences and supersequences of degenerate strings.

In addition to the theoretical enquiry, motivation for degenerate strings arises from bioinformatics. With degen-
erate biological strings, nucleotide sequences are often written using the five letter alphabet {A, T, G, C, N }, where
N denotes an unspecified nucleotide, that is, sequencing does not allow the identity of a nucleotide at a specific
position to be inferred unambiguously—a sequence with an N is known as degenerate; for instance AN T AG
may correspond to four different interpretations: AAT AG, AT T AG, AGT AG and ACT AG. Hence in general,
a sequence with k unspecified nucleotides N will have 4k different interpretations. Such degenerate strings can
express polymorphisms in DNA/RNA sequences, for instance polymorphism in binding site sequences of a family
of genes; in the computation of the homology of two biological sequences it is important to take into account a
common, either specific or assumed, structure [37]. Pattern matching techniques honed to degenerate DNA/RNA
sequences are designed in [19].

Our interest here is to apply indeterminacy and techniques from combinatorics on words to data clustering—
rearranging data so as to group together, or cluster, identical forms which in turn renders the data more suitable for
compression, a vital activity in big data, with specific applications in bioinformatics.

In combinatorics on words, a Lyndon word is defined as a (generally) finite word which is strictly minimal for
the lexicographic order of its conjugacy class; the set of Lyndon words permits the unique maximal factorization of
any given string [8,27]. Introduced originally by Lyndon in 1954 as standard lexicographic sequences [29], Lyndon
words have been studied extensively and are steadilyfinding an increasing range of applications: string combinatorics
and algorithmics [15,36], constructing bases in free Lie algebras [34], succinct suffix–prefix matching of highly

1 Terminology: indeterminate is common in theoretical computer science; degenerate is used in molecular biology.
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periodic strings [32], constructing de Bruijn sequences [16], musicology [7], computing the lexicographically
smallest or largest substring in a string [3], string matching [5,11], and in relation to cryptanalysis [33]. We will be
applying the Lyndon factorization to a text transformation scheme for degenerate strings.

In 1994, Burrows and Wheeler [6] introduced a transformation for textual data demonstrating, not only data
clustering properties, but also suitability for block sorting. The Burrows–Wheeler transform (BWT) operates by
permuting the letters of a text to obtain a modified text which may be more suitable for compression—the transform
is therefore used by many text compression or compression-related applications, and some self-indexing data
structures [1]. Space saving techniques with the BWT can be achieved by first factoring the input text or string
into Lyndon words. Compression of data is thus usually implemented via a cascade of efficient preprocessing,
transformation and coding algorithms: preprocessing by the Lyndon factorization & the BWT → Move-to-Front
transform → Run-Length Encoding → statistical compressor (Arithmetic or Huffman coding).

The Burrows–Wheeler transformation, possibly with the use of Lyndon words, arises in bioinformatics in the
context of next-generation sequencing (NGS) techniques. In NGS, large unknown DNA sequences are fragmented
into small segments (a few dozen to several hundreds of base pairs long). This process generates masses of data,
typically several million “short reads”. In order to reconstruct the original DNA sequence, alignment programs
attempt to align or match these reads to a reference genome. Alignment programs initially applied hashing or the
suffix tree/array data structures—subsequently, efficiency in memory requirement was achieved by using the BWT.
So in a bioinformatics context, the input to the BWT is a reference genome, comprising in the case of the human
genome of about 3 billion DNA base pairs from the alphabet {A, T, G, C}. Software implementations based on
the BWT include: SOAP2 [26], BWA [25], and Bowtie [24]. Further, word-level parallelism has been applied to
preprocess the genomic sequence in massive exact unique pattern matching in genomes [2].

Motivated by the degeneracy arising from genome sequencing, we introduce here a simple modification of the
classic BWT transform, the degenerate Burrows–Wheeler transform, which is suitable for degenerate strings—for
strings containing subsets of letters, we compute both the transform and its inverse in time linear in total string
size. In turn, this BWT variant proposed a modification from classic Lyndon words to words containing subsets of
letters, which motivated the concepts of indeterminate conjugacy and indeterminate Lyndon words.

The original BWT computation requires the fast lexicographic sorting of all conjugates (rotations) of the input
text, which can be achieved using efficient suffix-sorting techniques. We indicate how to modify the linear-time
suffix array construction of Ko and Aluru [22] from regular to indeterminate strings by using lex-extension ordering.

The remainder of the paper is organized as follows. In Sect. 2we introduce the required basic definitions. In Sect. 3
we discuss the classic Burrows–Wheeler transform. The combinatorics of indeterminate Lyndon words is given in
Sect. 4. In Sect. 5 we present the degenerate Burrows–Wheeler transform along with a required indeterminate suffix
array technique. Finally, we conclude and suggest some future directions in Sect. 6.

2 Definitions and Preliminaries

Consider a finite totally ordered alphabet � of size |�| = σ which consists of a set of characters (or letters,
symbols). A string (word) is a sequence of zero or more characters over �. The set of all non-empty strings over
� is denoted by �+. The empty string is the null sequence of characters (hence zero length) and is denoted by ε;
furthermore, �∗ = �+ ∪ ε. Note we write strings in mathbold such as w, x.

A string s of length |s| = n is represented by s[1 . . . n], where s[i] ∈ � for 1 ≤ i ≤ n. The i-th symbol of a
string s is denoted by s[i], or simply si . We denote by s[i . . . j] the substring of s that starts at position i and ends
at position j , equivalently si · · · sj .

A string w is a substring of s if s = uwv, where u, v ∈ �∗; specifically a string w = w1 · · · wm is a substring of
s = s1 · · · sn if w1 · · ·wm = si · · · si+m−1 for some i . Words s[1 . . . i] are called prefixes of s, and words s[i . . . n]
are called suffixes of s. The prefix u (respectively suffix v) is a proper prefix (suffix) of a word s if s �= u, v. Words
that are both prefixes and suffixes of s are called borders of s. By border(s) we denote the length of the longest
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border of s that is shorter than s; if border(s) = 0 then s is border-free. A string s is said to be primitive if it cannot
be written as wk with w ∈ �+ and k ≥ 2, i.e., it is not a power of another string.

A string y = y[1 . . . n] is a conjugate (cyclic shift or rotation) of x = x[1 . . . n] if y[1 . . . n] =
x[i . . . n]x[1 . . . i − 1] for some 1 ≤ i ≤ n (for i = 1, y = x).

An indeterminate string x = x[1 . . . m]on an alphabet� is a sequence of nonempty subsets of�; x is equivalently
known as a degenerate string. Specifically, an indeterminate string x has the form x = x1x2 · · · xm, where each xi
is a set of letters over �, and while |x| = m, computationally we will be accounting for the total size of the string,

that is ||x|| = n =
∑m

i=1
|xi |; if some |xi | = 1 then this is the usual case of a single letter in a string denoted

as xi . So a typical instance of a degenerate string may have the form u = u1u2u3u4u5 · · · um−1um ; in a regular
string all sets are unit size. Moreover, with degeneracy we can allow the xi to be multisets. We also write the sets
in degenerate strings in mathbold (unless they are known to be unit size) - there is no ambiguity as regular and
degenerate strings are used in different contexts here.

3 The Burrows–Wheeler Transform

The Burrows–Wheeler text transformation scheme was invented by Michael Burrows and David Wheeler in 1994
[6], although it is based on a previously unpublished transformation discovered by Wheeler in 1983. Interest in the
transform has persisted for two decades leading to an increasing range of theoretical insights, practical applications,
and software implementations [1].

The basic BWT algorithm permutes an input string T (text) of n characters into a transform in three concep-
tual stages: first the n rotations (cyclic rotations or conjugates) of T are formed; these rotations are then sorted
lexicographically giving the n × n BWT matrix M ; finally the last (right-most) character of each of the rotations,
that is the last column of the matrix M , is extracted into a string L (last)—specifically, the i th character of L is
the last character of the i th sorted rotation. In addition to L , the algorithm computes the index i of the occurrence
of the original text T in the sorted list of rotations. The pair (L , i) is known as the transform, that is BWT(T )
= (L , i). Furthermore, the BWT can be constructed efficiently since the heart of the computation is sorting the
rotations which, by applying a fast suffix-sorting technique such as [22], can be achieved in linear time. It is the
data clustering properties of this transform, usually exhibiting long runs of identical characters, together with the
fact that it is invertible, that has sparked so much interest.

Given only L and the index i , the original text T can be reconstructed in linear time [6]. For this, observe that
every row and every column of M , and hence also the transformed text L , is a permutation of T . In particular, the first
column F of M , can be obtained by lexicographically sorting the characters of L (or, equally, the characters of T ).
By constructing a Hamiltonian cycle of L and F , the Last-First Mapping, we can recover the input—commencing
with L[i], if L[i] is the kth occurrence of L[i] in L , then we map to F[ j] the kth occurrence of L[i] in F , and
then to L[ j]; and repeat until we get back to L[i]. Hence, importantly, the original text can be recovered losslessly;
therefore, following transformation, the data is primed for lossless compression methodologies.

A simple observation shows that, since by definition a Lyndon word is the strictly least amongst its conjugates,
if the input text forms a Lyndon word, then the index i will be 1 and therefore redundant, thus offering a space
saving of O(log n) bits. Accordingly, BWT variants have been considered: Scott followed by Kufleitner introduced
the bijective multi-word BWT; Schindler and later Kufleitner proposed the bijective sort transform—these variants
are based on the Lyndon factorization of the input [17,23].

In practice, bzip2 is an open source file compressor that uses the BWT: bzip2 compresses data in blocks of
size between 100 and 900 kilobytes by first applying the BWT followed by the Move-to-Front transform and then
Huffman coding (originally Arithmetic coding).

The BWT has also been implemented in bioinformatics due to the repetitions inherent in biological sequences. In
an effort to reduce thememory requirement with hashing-based sequence alignment, several alignment utilities were
developed that use the BWT: SOAP2 [26], BWA [25], and Bowtie [24]. Furthermore, NGS sequencing technologies
have resulted in collections of hundreds of millions of DNA sequences. Knowing the longest common prefix array
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(LCP) of such a collection would facilitate the rapid computation of biologically meaningful information such as:
maximal exact matches, shortest unique substrings and shortest absent words. Although CPU-efficient algorithms
for computing the LCP of a string exist, they require the presence in RAM of large data structures, hence clearly
infeasible for NGS datasets. In [4] the first lightweight method is proposed that simultaneously computes, via
sequential scans, the LCP and BWT of very large collections of sequences. Computational results on collections as
large as 800 million 100-mers demonstrated that their algorithm scales to the vast sequence collections encountered
in human whole genome sequencing experiments.

Common usage with text files involves taking a file T and modifying it. Previously, a major bottleneck with this
scenario was the fact that the BWT(T ) had to be entirely reconstructed from scratch whenever T was modified. In
[35], a four-stage algorithm is presented that updates the BWT(T ) when the text T is modified into T ′ according to
standard edit operations—insertion, deletion, and substitution of a character or a factor. Along with the algorithm
that directly converts BWT(T ) into BWT(T

′
), they also sketch a method for converting the suffix array of T into the

suffix array of T
′
. Although theworst-case time complexity is O(|T | log |T |(1+log σ/ log log |T |)), experimentally

their algorithm is shown to be competitive in practice.
Other notable contributions to the BWT research arena include: the BWT is shown to be a special case of

the Gessel and Reutenauer transformation [9]; a generalization of the BWT suitable for a multiset of words and
applied to the problem of the whole mitochondrial genome phylogeny is given in [31]; slashing the time for the
BWT inversion is presented in [21]; and a constant-space comparison-based algorithm for computing the BWT is
proposed in [10].

4 Indeterminate Lyndon Words

Lyndon words were introduced by Roger Lyndon in 1954 under the name of standard lexicographic sequences in
order to describe a basis of free Lie algebras [28–30,34]. A Lyndon word is a primitive and border-free word which
is strictly minimal for the lexicographical order of its conjugacy class—let L denote the set of Lyndon words over
the finite totally ordered alphabet � (although an unbounded alphabet can also be considered). These patterned
words exhibit many interesting properties [27], including:

Proposition 1 [15] A word w ∈ �+ is a Lyndon word if and only if it is lexicographically less than each of its
proper suffixes.

Proposition 2 [15] A word w ∈ �+ is a Lyndon word if and only if either w ∈ � or w = uv with u, v ∈ L, u < v.

Importantly, the set L of Lyndon words permits the unique maximal factorization of any given string, unpinning
the wealth of applications.

Theorem 1 [8] Any word w ∈ �+ can be written uniquely as a non-increasing product w = u1u2 · · · uk of Lyndon
words.

This unique decomposition of any word into Lyndon words u1 ≥ u2 ≥ · · · ≥ uk facilitates divide and conquer
techniques for stringology applications, for instance with variants of the BWT—see Sects. 1 and 3.

For a non-letter Lyndon word w (w /∈ �), the pair (u, v) of Lyndon words such that w = uv with v of
maximal length is called the standard factorization of w. In 1983, Duval [15] developed an algorithm for Lyndon
decomposition that runs in �(n) time and constant additional space—the algorithm cleverly iterates over a string
detecting the current longest Lyndon word; when it finds one, it adds it to the results list and proceeds to search in
the remaining part of the string.

A generalization of Lyndon words to circ-UMFFs has been proposed in [13].We now introduce a particular class,
the set IL of indeterminate Lyndon words—a natural extension to classic Lyndon words defined for indeterminate
strings. Given an indeterminate string x = x1x2 · · · xm, the first step in defining these new Lyndon words is to
assign an order to each of the sets xi (which are not necessarily distinct). So for each 1 ≤ i ≤ m, let xi denote the
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lexicographic ordering of xi (the letters are lined up in the given alphabet order) written as a string. For example, if
xi = {c, a, t, g} then xi = acgt . Hence, under the convention that the order of elements in a set doesn’t matter, we
have a bijective mapping G : xi → xi for 1 ≤ i ≤ m, or simply G : x → x. Furthermore, we can allow multisets
under this mapping. Note that if ||x|| = n, and if we assume the range of letters in the alphabet is O(n), an array
of length |�| suffices to map the given alphabet onto an integer alphabet {1, 2, ..., k}, k ≤ n. Therefore each of the
subsets xi can be sorted in time O(|xi |); hence the total time to compute x is O(n). Note that the extensibility of
lexicographic ordering allows formore complex indeterminate structures, such as nested sets xi of sets or substrings.

We can now state a required definition, lex-extension order, for the lexicographic order of given indeterminate
strings u, v over �.

Definition 1 [12,14] Suppose that according to some factorizationF , two strings u, v ∈ �+ are expressed in terms
of nonempty factors (substrings): u = u1u2 · · · um, v = v1v2 · · · vn . Then u <L E X (F) v if and only if one of the
following holds:

(1) u is a proper prefix of v (that is, ui = vi for 1 ≤ i ≤ m < n); or
(2) for some i ∈ 1..min(m, n), u j = v j for j = 1, 2, ..., i − 1, and ui < vi (in lexicographic order).

In the case of an indeterminate string x = x1x2 · · · xm, the factorization F is given by the subsets x1x2 · · · xm
mapped to x1x2 · · · xm; for brevity wewill write u <L E X v.We can now proceed to clarify the concept of conjugacy
for an indeterminate string.

Definition 2 An indeterminate string y = y1 y2 · · · ym is an indeterminate conjugate (cyclic shift or rotation) of an
indeterminate string x = x1x2 · · · xm if y[1 . . . m] = x[i . . . m]x[1 . . . i−1] for some 1 ≤ i ≤ m (for i = 1, y = x).

Definition 3 An indeterminate string x over � is an indeterminate Lyndon word if it is strictly minimal for the
lex-extension order of its indeterminate conjugacy class under the mapping G : x → x.

For the indeterminate Lyndon word x = aabuv over � = {a < b < · · · < z}, with multisets u = aa and
v = aab, to compare the indeterminate conjugates x = aabuv and y = uvaab in lex-extension order, the first
comparison is a?aa giving a < u and hence x <L E X y; similarly, to compare the conjugates x = aabuv and
z = buvaa in lex-extension order, the first comparison is a?b giving a < b and so x <L E X z. Furthermore,
unlike the string aabuv written as a regular string with individual letters, namely aabaaaab which has border aab,
indeterminate x is border-free.

The simplicity of the definition of an indeterminate Lyndon word means that Duval’s classic linear Lyndon
factorization algorithm [15] extends directly to the indeterminate case: letter comparisons are replaced by those of
the form xi?x j which can each be decided in at most linear time - hence O(n) overall.

Equipped with this definition we can trivially derive results analogous to those for the classic case, basically by
replacing < with <L E X—we give some examples, where IL denotes the set of indeterminate Lyndon words.

Proposition 3 A word w ∈ �+ is an indeterminate Lyndon word if and only if it is less in lex-extension order than
each of its proper suffixes.

Proposition 4 A word w ∈ �+ is an indeterminate Lyndon word if and only if either w is a single set of elements
or w = uv with u, v ∈ IL, u <L E X v.

We conclude this section by establishing that these extended Lyndon words can be applied to uniquely factor
indeterminate strings. A subsetW of �+ is known as a factorization family (FF) if and only if for every nonempty
string x on � there exists a factorization of x over W—note that � ⊆ W . We proceed to show that the set of
indeterminate Lyndon words forms an UMFF (unique maximal factorization family) [12].

Lemma 1 (The xyz Lemma [12]) An FF W is an UMFF if and only if whenever x y, yz ∈ W for some nonempty
y, then x yz ∈ W .

Lemma 2 The set IL of indeterminate Lyndon words forms an UMFF.
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Proof We apply Lemma 1. Given the indeterminate strings x and y, suppose x y, yz ∈ IL for some nonempty y.
According to Definition 3, we have assumed the mappings G : x → x and G : y → y, so we have x y, yz ∈ IL =
IL for some nonempty y, and we need to show that x yz ∈ IL; assume that x, z �= ε, for otherwise it holds trivially.
Applying lex-extension ordering <L E X and Proposition 3 we have x <L E X x y <L E X y <L E X yz <L E X z.

Applying Proposition 4, if either x or y belong to IL, then x yz ∈ IL. Otherwise, simply applying
x <L E X y <L E X z from above shows that the minimal conjugate is x yz.

Finally, using the bijectivity of G it follows that x yz ∈ IL as required—hence the set IL forms an UMFF. ��
Definition 4 [13] An UMFF W over �+ is a circ-UMFF if and only if it contains exactly one rotation of every
primitive string x ∈ �+.

This definition extends naturally to indeterminate strings x ∈ �+. Given the indeterminateUMFF IL, the chosen
rotation for x ∈ IL is the one that is the strict minimum in lex-extension order (applying the mapping G as usual);
the uniqueness in Definition 3 shows that an indeterminate Lyndon word is primitive. Hence we are introducing
here a new circ-UMFF, namely the set IL of indeterminate Lyndon words. Furthermore, classic properties of these
Lyndon-patterned words such as ordered concatenation, border-freeness and partitioning into sub-words then follow
from Theorem 3.1 in [13].

We comment that other ordering methods, that is ordered alphabets, could be applied to the mapping of the
subsets G : xi → xi in order to arrange the letters as a string. This leads to a class of indeterminate Lyndon-like
words ILω for total orderings ω—here we have considered ILLex (simply IL) namely the set of words depending
on lexicographic order of indeterminate subsets; hence, as defined, each xi is also a Lyndon word.

5 A Degenerate Burrows–Wheeler Transform

Having formalized the concept of an indeterminate Lyndon word, we are now ready to introduce a variant of the
Burrows–Wheeler transform tailored to degenerate strings. The degenerate Burrows–Wheeler transform—denoted
D-BWT — is a very simple extension of the original transformation, which relies only on further use of lexico-
graphic ordering (although as mentioned at the end of Sect. 4 different orderings could be considered). Also for the
analysis below, note that the total string size of x is ||x|| = n—see Sect. 2.

Given a degenerate string x = x[1 . . . m] = x1x2 · · · xm, to construct the D-BWT, we first perform all the
mappingsG : xi → xi specified in Sect. 4 in linear time.As in the original BWT transformation,wewill generate the
sorted rotations—the D-BWT matrix—of the input string, text or reference genome, depending on the application.
To do this we apply a fast suffix-sorting algorithm tweaked to handle subsets rather than individual letters.

5.1 Indeterminate Suffix Array

The well-known suffix array of a string records the lexicographically sorted list of all of its suffixes; this data
structure was originally defined for regular strings of letters whereas our interest is subsets of letters. Among the
many versatile uses of the suffix array it enables the cyclic rotations of a string to be sorted into lexicographic order
in linear time—this technique is typically applied in the computation of the classic transform when constructing
the BWT matrix. Likewise, for the new degenerate D-BWT it is required to sort the rotations of an indeterminate
string efficiently into lex-extension order which we will now describe.

For constructing the indeterminate suffix array we will apply a linear-time and space efficient method such as
that of Ko and Aluru [22] given for the original data structure. Given an indeterminate string x, we first perform
the G mappings from x = x1x2 · · · xm to x = x1 x2 · · · xm with ||x|| = n. Note that an indeterminate suffix of x
has the form xi xi+1 · · · xm, and the indexes in the array will be a subset of {1, 2, . . . , n}.

Clearly, the Ko-Aluru suffix array technique can be carefully modified from < to <L E X so as to construct an
indeterminate suffix array. Alternatively, given x, we first perform a pre-sorting of the substrings x1, x2, · · · , xm
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into lex-extension order, resulting in a re-labelling π1π2 · · · πm of x, where each πi is just a letter or ordinal number.
For example, x = {abc}{e}{ad}{abc}{bce} → ADB AC . This can be achieved using Bucket Sort on the finite
ordered alphabet �, with the buckets labelled by the characters in �. This process is repeated in each bucket where
the length of each xi is O(n) - hence O(n) overall (see details of this kind of linear sorting in [22]).

The indeterminate string x has now been re-labelled as a string of letters π1π2 · · ·πm each according to their
lex-extension order in x. Therefore we can straightforwardly apply an existing linear letter-based suffix-sorting tech-

nique to yield a suffix array for the indexes i ∈ {1 . . . m}. A trivialmapping of each array element i →
∑i−1

j=1
|x j |+1

then gives the required indeterminate suffix array. The overall linear - O(n) - time and space complexities follow
from the original O(m) method (for instance [22]) along with O(n) total string length.

5.2 Multi-word Degenerate Burrows–Wheeler Transform

Given the D-BWTmatrix, as constructed from the tailored suffix array in Sect. 5.1, in the degenerate case the trans-
form is the last right-most column of ordered subsets, specifically a permutation of x = x1x2 · · · xm, together with
the index of the row of the given input text in the matrix. However, using the re-labelling to letters πi , the transform
can be encoded as letters and hence the inverse can be achieved using the classic method - the linear Last-First map-
ping. Finally, the inverse mappings πi → x j → x j reconstruct the original degenerate string, hence overall linear.

For our example, x = {abc}{e}{ad}{abc}{bce}, the D-BWT = (({a, d}{b, c, e}{e}{a, b, c}{a, b, c}), 2), and so
we have clustered occurrences of the set {a, b, c} in the given indeterminate string.

Furthermore, if we assume that the input text has been factored into indeterminate Lyndon words, then this avoids
indexes to the input text. Once factored, and again using the re-labelling to letters xi → π j , the bijective multi-word
BWT described by Kufleitner [23] can be applied directly—form the ordered matrix for each Lyndon factor; sort
all matrices together giving the transform as the last column; the inverse transform is formed from Lyndon seeds
of cyclic words—followed by inverse mappings from the π j to recover the subsets in the indeterminate input text.

6 Conclusion

In this paper we have contributed to the theory of indeterminate strings. We defined indeterminate Lyndon words, a
simple variant of the classic Lyndon word, and showed that the set IL of indeterminate Lyndon words forms a new
circ-UMFF—hence establishing that any indeterminate string can be uniquely factored into indeterminate Lyndon
words.

We further introduced a degenerate variant of the Burrows–Wheeler transformation suitable for indeterminate
strings—the degenerate Burrows–Wheeler transform, D-BWT, which may also apply the linear indeterminate
Lyndon factorization to preprocess the input as a space-saving trick.

The degenerate transform required a slight adaption of the classic suffix array to achieve an indeterminate suffix
array. However, by mapping the degenerate text from subsets to letters, and applying the linear Ko-Aluru suffix
array construction [22], we achieved a linear time and space construction for the indeterminate suffix array. Hence
the degenerate transform can be constructed and inverted in linear time and space.

We briefly mention V -words, analogous structures to Lyndon words—interestingly, they are formed using two
distinct total orderings, namely lexicographic and V -order: strings of substrings are processed in lexicographic
order while the individual substrings are compared pairwise using V -order (for details see [14]). Indeed, V -order
has recently been applied to yield a new transform, the V -BWT [14], which also necessitated modifying the fast
suffix-sorting of Ko and Aluru [22]. Similarly to indeterminate Lyndon words, indeterminate V -words could also be
defined alongwith an associated degenerate V -BWT.However, indications are that such a complex structure (strings
of sets of basic V -words) would be too cumbersome for practical purposes, hence we don’t pursue it currently.

For future research, we note that not only does this simple extension from classic letter-based Lyndon words to
those for sets open possibilities of new Lyndon-related applications involving uncertainty associated with the data,
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but additionally, other combinatorially interesting variations are nowpossible. For instance, different orderings on the
alphabet could be applied tomap the sets xi to xi ; additionally,we could specify conditions so that under themapping
of sets to strings, the new string x satisfies a property, such as being border-free, or exhibiting the V -word pattern,
say. In particular, the mappings xi also allow for selection type problems, such as selecting the i th largest element in
the subset—potentially corresponding to choosing a letter for the unspecified degenerate nucleotide N in biological
strings. This area, along with associated modifications to suffix arrays and transforms, is open to investigation.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes
were made.
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