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Abstract In this paper we will show how the boundedness condition for the weighted
composition operators on a class of spaces of analytic functions on the open right
complex half-plane called Zen spaces (which include the Hardy spaces and weighted
Bergman spaces) can be stated in terms of Carleson measures and Bergman kernels.
In Hilbertian setting we will also show how the norms of causal weighted compo-
sition operators on these spaces are related to each other and use it to show that an
(unweighted) composition operator Cϕ is bounded on a Zen space if and only if ϕ has
a finite angular derivative at infinity. Finally, we will show that there is no compact
composition operator on Zen spaces.
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1 Introduction

Let L be a linear space of complex-valued functions defined on a domain � ⊆ C, let
ϕ be a self map of �, and let h : � → C. The weighted composition operator, Wh,ϕ ,
on L (corresponding to symbols ϕ and h) is defined to be the linear map
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Wh,ϕ f := h · ( f ◦ ϕ), f ∈ L.

If h ≡ 1, then we writeW1, ϕ := Cϕ to denote the (unweighted) composition operator
onL. The composition operators are usually studied in the context of spaces of analytic
functions (we then require that both ϕ and h are also analytic functions). The book
[5] is an excellent source in that instance. In fact, the particular case of weighted
and unweighted composition operators on spaces of analytic functions defined on

� = D
defn= {z ∈ C : |z| < 1}, the open unit disk of the complex plane, have been

studied very extensively. It follows from the Littlewood subordination principle (see
[6]) that all unweighted composition operators are bounded on all Hardy spaces and
weighted Bergman spaces (see [5]).

In this article we shall consider the domain

C+ := {z ∈ C : Re(z) > 0} ,

the open right complex half-plane. Unlike the case of Hardy or weighted Bergman
spaces onD, not every analytic composition operator is bounded onHardy or weighted
Bergman spaces on C+. This was proved in [8] by S. Elliott and M. T. Jury (for the
Hardy spaces) and by S. Elliott and A. Wynn in [7] (for weighted Bergman spaces).
In particular, they have found the expression for the norm of composition operators
for these spaces and shown that the composition operators must never be compact in
this context. Some further results concerning so-called Zen spaces (a generalisation of
weighted Bergman spaces) and weighted composition operators have been obtained
in [3] and we aim to extend it in this article.

In Sect. 2 of this paper we will introduce the Zen spaces. In Hilbertian setting, we
will state their connection with weighted L2 spaces on (0, ∞) and give the formula
for their reproducing kernels. In Sect. 3 we will define the notion of a Carleson mea-
sure and show how it is related to boundedness of weighted composition operators.
We will also use this relation to give a boundedness criterion in terms of Bergman
kernels. In Sect. 4 we will define the concept of causality and show how bounded-
ness of weighted and unweighted composition operators on one space can imply the
boundedness on the whole class of spaces. In particular, we will use it to show that an
unweighted composition operator Cϕ is bounded on a Zen space A2

ν if and only if ϕ

has a finite angular derivative at infinity. We will also estimate the norms of bounded
composition operators in this case. Finally, in Sect. 5 we will show that there is no
compact composition operator on a Zen space A2

ν .
Throughout this paper h is always defined to be a holomorphic map on C+ and ϕ

a holomorphic self-map on C+.

2 Preliminaries

The classical Hardy and weighted Bergman spaces defined on the open unit disk of
the complex plane and the open right complex half-plane may be viewed as discrete
and continuous counterparts (this is discussed for example in [13] and [15]). The
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continuous case is sometimes more appropriate when we consider applications of
these spaces (see [10,11,14]).

Let ν̃ be a positive regular Borel measure on [0, ∞) satisfying the so-called �2-
condition:

R := sup
r>0

ν̃[0, 2r)
ν̃[0, r) < ∞, (�2)

and let λ denote the Lebesgue measure on iR. We define ν := ν̃ ⊗ λ to be a positive
regular Borel measure on the closed right complex half-plane C+ := [0, ∞) × iR.
For this measure and 1 ≤ p < ∞, a Zen space (see [10]) is defined to be:

Ap
ν :=

{
F : C+ −→ C analytic : ‖F‖p

Ap
ν

:= sup
ε>0

∫
C+

|F(z + ε)|p dν < ∞
}

.

The Zen spaces may be viewed as an extension of the class of weighted Bergman
spaces or the weighted Hardy spaces H2(β) (these are discussed in [5]) if p = 2 (see
[3]).

In [10] (Proposition 2.3) it is shown that the Laplace transform (L) defines an
isometric map

L : L2
w(0, ∞) −→ A2

ν,

where

L2
w(0,∞) :=

{
f : (0, ∞) −→ C : ‖ f ‖L2

w(0,∞) :=
√∫ ∞

0
| f (t)|2w(t) dt < ∞

}
,

and

w(t) := 2π
∫ ∞

0
e−2r t d ν̃(r) (∀t > 0). (1)

If the Laplace transform is surjective, then A2
ν is a reproducing kernel Hilbert space,

and its kernels are given by

k
A2

ν
z (ζ ) :=

∫ ∞

0

e−t (ζ+z)

w(t)
dt ((z, ζ ) ∈ C

2+) (2)

(see [13]).

3 Carleson Measures and Boundedness

In [4] M. D. Contreras and A. G. Hernández-Díaz gave a necessary and sufficient
condition for a weighted composition operator Wh,ϕ to be bounded on H p, the Hardy
spaces on the unit disk, in terms of so-called Carleson measures. In Lemma 1 and
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Theorem 1 we shall state these results for the Zen spaces, omitting the proofs, as they
are conceptually the same as proofs of Lemma 2.1 and Theorem 2.2 from [4].

Definition 1 Let μ be a positive Borel measure on C+. If there exists C(μ) > 0,
such that

∫
C+

|F |p dμ ≤ C(μ)‖F‖p
Ap

ν
(∀F ∈ Ap

ν ),

then we say that μ is a Carleson measure for Ap
ν .

The notion of a Carleson measure has been introduced by Lennart Carleson in
[2] to solve the corona problem, and since then it has found many other applications
(for example, in the context of spaces of analytic functions on the half-plane, it is
used to describe the admissibility criterion for control and observation operators, see
[10,11,14,15]).

Lemma 1 Let ν be a positive Borel measure on C+ and let g be a non-negative
measurable function on C+. Then

∫
C+

g dμν,h,ϕ,p =
∫
C+

|h|p(g ◦ ϕ) dν, (3)

where μν,h,ϕ,p is given by

μν,h,ϕ,p(E) =
∫

ϕ−1(E)

|h|p dν,

for each Borel set E ⊆ C+.

Theorem 1 The weighted composition operator Wh,ϕ is bounded on a Zen space Ap
ν

if and only if μν,h,ϕ,p is a Carleson measure for Ap
ν .

The Carleson measures for Zen spaces are characterised in [10]. Verifying the
boundedness of a weighted composition operator using Carleson measures only can
be very difficult in practice however.We shall therefore present amore useful approach.

Definition 2 Let 1 ≤ p < ∞. A weighted Bergman space B p
α (C+) is defined to be

B p
α (C+) :=

{
F : C+ −→ C analytic : ‖F‖p

Bp
α

:=
∫
C+

(Re(z))α|F(z)|p dz

π
< ∞

}
,

for α > −1, and

Bp
−1(C+) :=

{
F : C+ −→ C analytic : ‖F‖pBp

−1
:= sup

x>0

∫ ∞
−∞

|F(x + iy)|2 dy

2π
< ∞

}
,

that is B p
−1(C+)

defn= H p(C+), the Hardy space on the open right complex half-plane.
It is easy to see that if α > −1 and d ν̃(r) = rα dr/π , or α = −1 and ν̃ = δ0/2π
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(δ0 is the Dirac delta measure in 0), then B p
α (C+) = Ap

ν . If p = 2, then the weighted
Bergman spaces are reproducing kernel Hilbert spaces, with kernels given by

k
B2

α(C+)
z (ζ )

(2)= 2α(1 + α)

(z + ζ )2+α
(z, ζ ∈ C+, α > −1)

and

k
B2−1(C+)
z (ζ )

defn= kH
2(C+)

z (ζ )
(2)= 1

z + ζ
(z, ζ ∈ C+).

Theorem 2 The weighted composition operator Wh,ϕ is bounded on a Zen space Ap
ν

if and only if there exists α ≥ −1 such that

(α) := sup
z∈C+

∥∥∥∥h ·
(
k
B2

α(C+)
z ◦ ϕ

)∥∥∥∥
Ap

ν∥∥∥kB2
α(C+)

z

∥∥∥
Ap

ν

< ∞. (4)

Proof By the proof of Theorem 2.1 from [10] we get that there exists N ∈ N such that

∥∥∥∥ 1

(z + ζ )N

∥∥∥∥
p

Ap
ν

≤ ν
(
Q(z)

) (
2

Re(z)

)Np ∞∑
k=0

(21−NpR)k, (5)

where R ≥ 1 is the same quantity as in (�2). Theorem 2.1 from [10] defines N to be a
large natural number, but it is easy to see that this requirement is unnecessarily strict.
In fact, it suffices to choose any real N > (1 + log2(R))/p to make the above sum

converge. Therefore, if α > max{−1, (1 + log2(R))/p − 2}, we have that kB2
α(C+)

z
is in Ap

ν , for all z ∈ C+. So if the weighted composition operator is bounded on Ap
ν ,

then (α) must be finite. Conversely, if (α) is finite for some α ≥ −1, then

∫
C+

∣∣∣∣kB
2
α(C+)

z

∣∣∣∣
p

dμν,h,ϕ,p
(3)=

∫
C+

∣∣∣∣h ·
(
k
B2

α(C+)
z ◦ ϕ

)∣∣∣∣
p

dν
(4)≤ 

p
p

∫
C+

∣∣∣∣kB
2
α(C+)

z

∣∣∣∣
p

dν,

so, againbyTheorem2.1 from[10], the canonical embedding Ap
ν ↪→ L p(C+, μν,h,ϕ,p)

is bounded, and hence, by Theorem 1, Wh,ϕ is bounded on Ap
ν . �

Remark 1 If p > 1 and Ap
ν = B p

α (C+) for some α ≥ −1, then we can use this α,
setting N = α + 2, to make the sum in (5) converge. In this case we have that Wh,ϕ

is bounded on B p
α (C+) if and only if

sup
z∈C+

∥∥∥∥h ·
(
k
B2

α(C+)
z ◦ ϕ

)∥∥∥∥Bp
α (C+)∥∥∥kB2

α(C+)
z

∥∥∥Bp
α (C+)

< ∞. (6)
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In particular, if p = 2, (6) is equivalent to

sup
z∈C+

|h(z)|
(

Re(z)

Re(ϕ(z))

)α+2

< ∞,

since W ∗
h,ϕk

B2
α(C+)

z = h(z)k
B2

α(C+)

ϕ(z) .

Definition 3 A sequence of points zn = xn + iyn ∈ C+ is said to approach ∞ non-
tangentially if limn→∞ xn = ∞ and supn∈N |yn|/xn < ∞. We also say that ϕ fixes
infinity non-tangentially if ϕ(zn) → ∞ whenever zn → ∞ non-tangentially, and
write ϕ(∞) = ∞. If it is the case and also the non-tangential limit

lim
z→∞

z

ϕ(z)
(7)

exists and is finite, then we say that ϕ has a finite angular derivative at infinity and
denote the above limit by ϕ′(∞).

Proposition 1 (Julia–Carathéodory Theorem inC+—Proposition 2.2 in [8]) Let ϕ be
an analytic self-map on C+. The following are equivalent:

1. ϕ(∞) and ϕ′(∞) exist;
2. supz∈C+ = Re(z)

Re(ϕ(z)) < ∞;

3. lim supz−→∞ = Re(z)
Re(ϕ(z)) < ∞.

Moreover, the quantities in 2. and 3. are both equal to ϕ′(∞).

Corollary 1 A composition operator Cϕ is bounded on B2
α(C+) if and only if ϕ has

a finite angular derivative at infinity.

Proof It follows from the above proposition and Remark 1. �
This was proved (although using different approach) in [8] (for the Hardy spaces

H p(C+)) and in [7] (for weighted Bergman spaces B2
α(C+)). In the next section we

shall prove that it also holds for all Zen spaces.

4 Causality

Definition 4 Let w be a positive measurable function on (0, ∞). We say that A :
L2

w(0,∞) → L2
w(0, ∞) is a causal operator (or a lower-triangular operator), if for

each T > 0 the closed subspace L2
w(T, ∞) is invariant for A. If there exists α > 0

such AL2
w(T, ∞) ⊆ L2

w(T + α, ∞), for all T > 0, then we say that A is strictly
causal.

The following lemma was proved in [3] (Theorem 3.2) for unweighted L2 spaces
and we shall modify the proof to extend the result to weighted L2 spaces.
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Lemma 2 Let w ∈ L1
loc(0, ∞) be positive and non-increasing. Suppose that A :

L2
w(0,∞) → L2

w(0,∞) is a causal operator and D is the operator of multiplication
by a strictly positive, monotonically increasing function d. Then

∥∥∥D−1AD
∥∥∥
L2

w(0,∞)
≤ ‖A‖L2

w(0,∞) . (8)

Proof Suppose first that A is strictly causal for some α > 0. For Re(z) ≥ 0 define
�(z) = D−z ADz , where Dz is the operator of multiplication by the complex function
dz . For each N ∈ N such that N ≥ log2 α let

XN := span
{
ek := χ(k/2N , (k+1)/2N ) : 1 ≤ k ≤ 22N

}
.

Let PN : L2
w(0, ∞) −→ XN denote the orthogonal projection and define

�N (z) = �(z)PN , which maps each ek to d−z Adzek and

∥∥d−z Adzek
∥∥ ≤ ‖A‖‖ek‖,

since d is increasing and A is strictly causal. XN is finite dimensional, so �N (z)
is bounded independently of z, because ‖�N (z)‖ ≤ ‖�(z)|XN ‖. By the maximum
principle we also have that

‖�N (1)‖ ≤ sup
Re(z)≥0

‖�N (z)‖ ≤ sup
Re(z)=0

‖�(z)‖ = ‖A‖,

and the result holds on L2
w(0, ∞), since

⋃
N≥log2 α XN is a dense set therein.

If A is not strictly causal, then let Sα denote the right shift by α. In this case the
operator SαA is strictly causal and, by the above, we have

‖D−1SαAD‖ ≤ ‖SαA‖ = ‖A‖.

Let dα(t) = d(α + t). Then for each f ∈ L2
w(0, ∞) we have ‖D−1Sα f ‖ = ‖d−1

α f ‖,
and |d−1

α f
√

w| increases to |d−1 f
√

w| almost everywhere as α → 0, because the
monotonically decreasing function d−1 is continuous almost everywhere, and hence
the result follows from Lebesgue’s monotone convergence theorem. �

We will say that an operator B : A2
ν −→ A2

ν is causal if the the corresponding
isometric operator L−1BL : L2

w(0, ∞) −→ L2
w(0, ∞) is causal on L2

w(0, ∞)

L2
w(0, ∞)

L−1BL

L

L2
w(0, ∞)

A2
ν B

A2
ν

L−1
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L2
w(0, ∞)

−1B
L2

w(0, ∞)

A2
ν B

A2
ν

−1

From now on we will assume that the Laplace transform L : L2
w(0, ∞) → A2

ν

(where w is as given in (1)) is surjective. The surjectivity of L in this context is
discussed in [9].

Theorem 3 Suppose that the weighted composition operator Wh,ϕ is bounded and
causal on A2

ν . Then there exists α′ ≥ 0 such that for each α ≥ α′ Wh,ϕ is bounded on
the weighted Bergman space B2

α(C+), and

∥∥Wh,ϕ

∥∥B2
α(C+)

≤ ∥∥Wh,ϕ

∥∥
A2

ν
. (9)

Proof Let L2
w(0,∞), L2

vα
(0,∞) be the spaces corresponding to A2

ν and B2
α(C+)

respectively (that is vα(t) = 2−α�(α + 1)t−α−1). We want to show that√
w(t)/vα(t) is an increasing function, that is, we must have

w′(t)vα(t) ≥ w(t)v′
α(t)

− 2π
∫ ∞

0
2re−2r t d ν̃(r) · �(α + 1)

2αtα+1

≥ −2π
∫ ∞

0
e−2r t d ν̃(r) · �(α + 2)

2αtα+2

∫ ∞

0
e−2r t

(
r − α + 1

2t

)
d ν̃(r) ≤ 0.

Consider the graph:

r

g(r)

g(r) = e−2rt r − α+1
2t

−α+1
2t

α+1
2t

α+2
2t

e−(α+2)

2t
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We clearly need to have

−
∫ α+1

2t

0
e−2r t

(
r − α + 1

2t

)
d ν̃(r) ≥

∫ ∞
α+1
2t

e−2r t
(
r − α + 1

2t

)
d ν̃(r).

Observe that for α ≥ 0 we have

α + 2

4t
≤ α + 1

2t
. (10)

Let R be defined as in (�2). Then we have

−
∫ α+1

2t

0
e−2r t

(
r − α + 1

2t

)
d ν̃(r) ≥ ν̃

[
0,

α + 2

4t

)
α
e− α+2

2

2t

(�2)≥ ν̃
[
0, α+2

2t

)
2Rt

αe− α+2
2 ,

∫ α+2
2t

α+1
2t

e−2r t
(
r − α + 1

2t

)
d ν̃(r) ≤ ν̃

[
α + 1

2t
,
α + 2

2t

)
e−(α+2)

2t

=
(

ν̃

[
0,

α + 2

2t

)
− ν̃

[
0,

α + 1

2t

))
e−(α+2)

2t

≤ ν̃
[
0, α+2

2t

)
2Rt

(R − 1)e−(α+2),

because

−ν̃

[
0,

α + 1

2t

)
(10)≤ −ν̃

[
0,

α + 2

4t

) (�2)≤ − ν̃
[
0, α+2

2t

)
R

,

and
∫ ∞

α+2
2t

e−2r t
(
r − α + 1

2t

)
d ν̃(r)

≤
∞∑
n=0

ν̃

[
2n

α + 2

2t
, 2n+1α + 2

2t

)
e−2n(α+2) 2

n(α + 2) − α − 1

2t

(�2)≤ ν̃
[
0, α+2

2t

)
2t

(R − 1)(α + 2)e−(α+2)
∞∑
n=0

(
2Re−(α+2)

)n

= ν̃
[
0, α+2

2t

)
2t

(R − 1)e−(α+2) α + 2

1 − 2Re−(α+2)
.

Collecting these inequalities we get

e− α+2
2

R − 1

α

(
1 + R(α + 2)

1 − 2Re−(α+2)

)
≤ 1,
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which is true for all α ≥ α′, for some α′ sufficiently large. Now, let A be an operator on
L2

vα
(0,∞) induced byWh,ϕ acting onB2

α(C+) and let D be the isometric operator from
L2

w(0,∞) to L2
vα

(0,∞) of multiplication by
√

w(t)/vα(t). Consider the following
commutative diagram:

L2
w(0,∞)

D

D−1AD

L2
vα

(0,∞)

A

L2
w(0,∞) L2

vα
(0,∞)

D−1

By Lemma 2 we therefore have

∥∥Wh,ϕ

∥∥B2
α(C+)

= ‖A‖L2
vα

(0,∞) =
∥∥∥D−1AD

∥∥∥
L2

w(0,∞)

(8)≤ ‖A‖L2
w(0,∞) = ∥∥Wh,ϕ

∥∥
A2

ν
,

as required. �
In the remaining part of this section we will use the Nevanlinna representation of

a holomorphic function ϕ : C+ −→ C+:

ϕ(z) = az + ib +
∫
R

(
1

i t + z
+ i t

1 + t2

)
dμ(t) = az + ib +

∫
R

1 + i t z

i t + z

dμ(t)

1 + t2
,

(11)

where a ≥ 0, b ∈ R and μ is a non-negative Borel measure measure on R satisfying
the following growth condition:

∫
R

dμ(t)

1 + t2
< ∞

(see [12]). Clearly

a = lim
Re(z)→∞

ϕ(Re(z))

Re(z)
.

Theorem 4 (Theorem 3.1 in [8] and Theorem 3.4 in [7]) The composition operator
Cϕ is bounded on B2

α(C+), α ≥ −1, if and only if ϕ has finite angular derivative
0 < λ < ∞ at infinity, in which case ‖Cϕ‖ = λ(2+α)/2.

Let a > 0. We define a holomorphic map ψa : C+ −→ C+ by ψa(z) = az, for all
z ∈ C+.

Proposition 2 (Corollary 3.4 in [3]) Let a > 0. If Wh,ϕ is bounded on H2(C+), then
it is also bounded on A2

ν and

‖Wh,ϕ‖A2
ν

≤ ‖Cψa‖A2
ν
‖Cψ1/a‖H2(C+)‖Wh,ϕ‖H2(C+). (12)
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Proposition 3 (Proposition 3.5 in [3]) Let a > 0. Then

‖Cψa‖A2
ν

=
√
sup
t>0

w(at)

aw(t)
. (13)

Corollary 2 Let a > 0. If Wh,ϕ is bounded on some Zen space A2
ν , then there exists

α′ > 0 such that for all α ≥ α′, we have

∥∥Wh,ϕ

∥∥B2
α(C+)

≤ a− α+1
2

(
sup
t>0

w(t/a)

w(t)

)1/2 ∥∥Wh,ϕ

∥∥
A2

ν
< ∞.

Proof The operator Cψ 1
a
Wh,ϕ is causal for each a > 0, so by Theorem 3 we have

∥∥Wh,ϕ

∥∥B2
α(C+)

(9)≤ ∥∥Cψa

∥∥B2
α(C+)

∥∥∥Cψ 1
a

∥∥∥
A2

ν

∥∥Wh,ϕ

∥∥
A2

ν
,

and the result follows from Theorem 4 and Proposition 3. �
Theorem 5 The composition operator Cϕ is bounded on A2

ν if and only if ϕ has a
finite angular derivative 0 < λ < ∞ at infinity. If Cϕ is bounded, then

λ inf
t>0

w(t)

w(λt)
≤ ∥∥Cϕ

∥∥2
A2

ν
≤ λ sup

t>0

w(t/λ)

w(t)
,

Proof Suppose, for contradiction, that Cϕ is bounded on A2
ν , but ϕ does not have a

finite angular derivative at infinity. By Proposition 1 we know that for each n ≥ 1
there must exist zn ∈ C+ such that

Re(zn)

Re(φ(zn))
> n. (14)

Now,

‖C∗
ϕ‖2 ≥

∥∥∥∥kA
2
ν

ϕ(zn)

∥∥∥∥
2

∥∥∥kA2
ν

zn

∥∥∥2
(2)=

∫ ∞
0

e−2t Re(ϕ(zn ))

w(t) dt∫ ∞
0

e−2t Re(zn )

w(t) dt

(14)≥
∫ ∞
0

e−2t Re(zn )/n

w(t) dt∫ ∞
0

e−2t Re(zn )

w(t) dt
. (15)

Since w, by definition, is non-increasing, we have that w(nt) ≤ w(t), for all n ≥ 1,
and consequently

‖C∗
ϕ‖2 (15)≥

∫ ∞
0

e−2t Re(zn )

w(nt) n dt∫ ∞
0

e−2t Re(zn )

w(t) dt
≥ n

∫ ∞
0

e−2t Re(zn )

w(t) dt∫ ∞
0

e−2t Re(zn )

w(t) dt
= n,

for all n ≥ 1, which is absurd, as it contradicts the boundedness of Cϕ . So, if Cϕ is
bounded, then ϕ has a finite angular derivative 0 < λ < ∞ at infinity and
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λ
defn= lim

z−→∞
nontangentially

z

ϕ(z)
= lim

Re(z)→∞
Re(z)

ϕ(Re(z))
= a−1,

where 0 < a < ∞ is defined as in (11). Conversely, if ϕ has a finite angular derivative
λ at infinity, then, by Theorem 4, Cϕ is bounded on the Hardy space H2(C+), and, by
Proposition 2, we get that it is also bounded on A2

ν with

‖Cϕ‖A2
ν

≤ ‖Cψa‖A2
ν
‖Cψ1/a‖H2(C+)‖Cϕ‖H2(C+).

We can evaluate the RHS of this inequality using Theorem 4 and Proposition 3 to get

‖Cϕ‖2A2
ν

≤ sup
t>0

w(at)

aw(t)
· a · λ = λ sup

t>0

w(t/λ)

w(t)
.

By Corollary 2 we also know that if Cϕ is bounded on A2
ν , then there exists α > 0

such that

‖Cϕ‖A2
ν

≥ ‖Cϕ‖B2
α(C+)a

(α+1)/2
(
sup
t>0

w(t/a)

w(t)

)−1/2

.

Again, we can evaluate the RHS of this inequality using Theorem 4 and Proposition 3
to get

‖Cϕ‖2A2
ν

≥ λα+2aα+1 inf
t>0

w(t)

w(λt)
= λ inf

t>0

w(t)

w(λt)
.

�

5 Compactness

In [7] S. J. Elliott and A. Wynn have proved that there exists no compact composition
operator on any weighted Bergman space (Theorem 3.6). We shall extend this result
to all Zen spaces. But first we need to prove two technical lemmata.

Lemma 3 Let w be as given in (1). There exists c ≥ 2 such that

w

(
t

2

)
≤ cw(t) (∀t > 0). (16)

Proof This result follows from the (�2)-condition, and the proof uses essentially the
same strategy as the proof of Theorem 3. We want to show that there exists c ≥ 2 such
that

∫ ∞

0
e−r t d ν̃(r) ≤ c

∫ ∞

0
e−2r t d ν̃(r) (∀t > 0)
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or equivalently

∫ ∞

0
e−r t (1 − ce−r t ) d ν̃(r) ≤ 0 (∀t > 0).

Again, consider the graph

r

g(r)

g(r) := e−rt (1 − ce−rt)

1 − c

ln c
t

ln 2c
t

1
4c

We need to have

−
∫ ln c

t

0
e−r t (1 − ce−r t) d ν̃(r) ≥

∫ ∞
ln c
t

e−r t (1 − ce−r t) d ν̃(r).

Observe that if c ≥ 2, then we have

ln 2c

2t
≤ ln c

t
(∀t > 0). (17)

Let R be given by (�2). Then we have

−
∫ ln c

t

0
e−r t (1 − ce−r t) d ν̃(r) ≥ ν̃

[
0,

ln 2c

2t

) (
ce− ln 2c − e− ln 2c

2

)

(�2)≥ ν̃
[
0, ln 2c

t

)
R

(
1

2
− 1√

2c

)
,

and

∫ ln 2c
t

ln c
t

e−r t (1 − ce−r t) d ν̃(r) ≤ ν̃

[
ln c

t
,
ln 2c

t

)
e− ln 2c

(
1 − ce− ln 2c

)

= 1

4c

(
ν̃

[
0,

ln 2c

t

)
− ν̃

[
0,

ln c

t

))
1

4c

≤ R − 1

4Rc
ν̃

[
0,

ln 2c

t

)
,
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because

−ν̃

[
0,

ln c

t

)
(17)≤ −ν̃

[
0,

ln 2c

2t

) (�2)≤ − ν̃
[
0, ln 2c

t

)
R

,

and for c > R/2 we have

∫ ∞
ln 2c
t

e−r t (1 − ce−r t) d ν̃(r)

≤
∞∑
k=0

ν̃

[
2k

ln 2c

t
, 2k+1 ln 2c

t

)
e−2k ln 2c

(
1 − ce−2k ln 2c

)

(�2)≤ (R − 1)ν̃

[
0,

ln 2c

t

) ∞∑
k=0

Rk

(2c)2k

(
1 − c

(2c)2k

)

≤ (R − 1)ν̃

[
0,

ln 2c

t

)
1

2c

∞∑
k=0

(
R

2c

)k

= R − 1

2c − R
ν̃

[
0,

ln 2c

t

)
.

Putting these inequalities together, we get

R

(
R − 1

2c − R
+ R − 1

4Rc

)
≤ 1

2
− 1√

2c
,

which holds for sufficiently large c, since the LHS approaches 0 and the RHS
approaches 1/2 as c goes to infinity. �

Lemma 4 The normalised reproducing kernels k
A2

ν
z /

∥∥∥∥kA
2
ν

z

∥∥∥∥ tend to 0 weakly as z

approaches infinity.

Proof If z approaches ∞ unrestrictedly, then either Re(z) −→ ∞ or Re(z) < a, for
some a > 0, and Im(z) −→ ∞. Suppose that Re(z) −→ ∞. Then

lim
Re(z)→∞

∣∣∣∣kA
2
ν

z (ζ )

∣∣∣∣ /
∥∥∥∥kA

2
ν

z

∥∥∥∥ (2)≤ lim
Re(z)→∞

∫ ∞

0

e−t (Re(z)+Re(ζ ))

w(t)
dt/

∥∥∥∥kA
2
ν

z

∥∥∥∥
≤ lim

Re(z)→∞

∫ ∞

0

e−t Re(z)

w(t)
dt/

∥∥∥∥kA
2
ν

z

∥∥∥∥
= 2 lim

Re(z)→∞

∫ ∞

0

e−2t Re(z)

w(2t)
dt/

∥∥∥∥kA
2
ν

z

∥∥∥∥
(16)
� lim

Re(z)→∞

∫ ∞

0

e−2t Re(z)

w(t)
dt/

∥∥∥∥kA
2
ν

z

∥∥∥∥
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(2)= lim
Re(z)→∞

∥∥∥∥kA
2
ν

z

∥∥∥∥
2

/

∥∥∥∥kA
2
ν

z

∥∥∥∥
= lim

Re(z)→∞

∥∥∥∥kA
2
ν

z

∥∥∥∥ = 0.

Otherwise Re(z) ≤ a, for some 0 < a < ∞, and

∥∥∥∥kA
2
ν

z

∥∥∥∥
2
(2)=

∫ ∞

0

e−2t Re(z)

w(t)
dt ≥

∫ ∞

0

e−2at

w(t)
(2)=

∥∥∥∥kA
2
ν

a

∥∥∥∥
2

. (18)

Now,

∫ ∞

0

∣∣∣∣∣
e−tζ

w(t)

∣∣∣∣∣ dt =
∫ ∞

0

e−2t Re(ζ )/2

w(t)
dt

(2)=
∥∥∥∥kA

2
ν

ζ
2

∥∥∥∥
2

< ∞,

so e−·ζ /w(·) is in L1(0, ∞), for all ζ ∈ C+. Therefore, by the Riemann–Lebesgue
Lemma for the Laplace transform (Theorem 1, p. 3 in [1]), we get

lim
z→∞

∣∣∣∣kA
2
ν

z (ζ )

∣∣∣∣ (2)= lim
z→∞

∣∣∣∣∣L
[
e−·ζ

w(·)

]
(z)

∣∣∣∣∣ = 0 �⇒ lim
Im(z)−→∞
0<Re(z)<a

∣∣∣∣kA
2
ν

z (ζ )

∣∣∣∣ = 0. (19)

And thus

lim
Im(z)−→∞
0<Re(z)<a

∣∣∣∣kA
2
ν

z (ζ )

∣∣∣∣ /
∥∥∥∥kA

2
ν

z

∥∥∥∥ (18)≤
∥∥∥∥kA

2
ν

a

∥∥∥∥
−1

lim
Im(z)−→∞
0<Re(z)<a

∣∣∣∣kA
2
ν

z (ζ )

∣∣∣∣ (19)= 0.

So in either case we have

lim
z→∞

∣∣∣∣kA
2
ν

z (ζ )

∣∣∣∣ /
∥∥∥∥kA

2
ν

z

∥∥∥∥ = 0.

�

Definition 5 The essential norm of an operator, denoted ‖ · ‖e is the distance in the
operator norm from the set of compact operators.

Theorem 6 There is no compact composition operator on A2
ν .

Proof LetCϕ be a bounded operator on A2
ν , and denote its angular derivative at infinity

by λ. For any δ > 0 we can choose a compact operator Q such that ‖Cϕ‖e + δ ≥
‖Cϕ − Q‖. By the previous lemma, the sequence k

A2
ν

z /‖kA2
ν

z ‖ tends to 0 weakly, as z
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approaches infinity, so Q∗
(
k
A2

ν
z /‖kA2

ν
z ‖

)
−→ 0, and consequently

‖Cϕ‖e + δ ≥ ‖Cϕ − Q‖ ≥ lim sup
z−→∞

∥∥∥∥(Cϕ − Q)∗kA
2
ν

z

∥∥∥∥∥∥∥kA2
ν

z

∥∥∥

= lim sup
z−→∞

∥∥∥∥C∗
ϕk

A2
ν

z

∥∥∥∥∥∥∥kA2
ν

z

∥∥∥ = lim sup
z−→∞

∥∥∥∥kA
2
ν

ϕ(z)

∥∥∥∥∥∥∥kA2
ν

z

∥∥∥ .

Suppose, for contradiction, that Cϕ is compact, then the last quantity above must be

equal to 0, and hence the limit of ‖kA2
ν

ϕ(z)‖/‖kA
2
ν

z ‖ exists and is also equal to 0. That is,
for each ε > 0 there exists z0 ∈ C+ such that

∥∥∥∥kA
2
ν

ϕ(z)

∥∥∥∥∥∥∥kA2
ν

z

∥∥∥
(2)=

√√√√
∫ ∞
0

e−2t Re(ϕ(z))

w(t) dt∫ ∞
0

e−2t Re(z)

w(t) dt
< ε, (20)

for all z ∈ C+ with |z| ≥ |z0|. Since Cϕ is bounded and

λ = lim sup
z−→∞

Re(z)

Re(ϕ(z))
,

for any 0 < κ < λ there exists a sequence (z j )∞j=1 with |z j | ≥ |z0|, for all j ≥ 0,
such that

Re(z)

Re(ϕ(z))
> κ

(
∀z ∈ {z j }∞j=1

)
. (21)

Let ψ(z) = κz. If z ∈ {
z j

}∞
j=1, then

‖Cψ‖2 ≥

∥∥∥∥kA
2
ν

ψ(ϕ(z))

∥∥∥∥
2

∥∥∥kA2
ν

ϕ(z)

∥∥∥2
(2)=

∫ ∞
0

e−2tκ Re(ϕ(z))

w(t) dt∫ ∞
0

e−2t Re(ϕ(z))

w(t) dt

(21)≥
∫ ∞
0

e−2Re(z)

w(t) dt∫ ∞
0

e−2t Re(ϕ(z))

w(t) dt

(20)
>

1

ε2
,

which is absurd, because Cψ is bounded on A2
ν by Theorem 5 and ε in the expression

above can be chosen to be arbitrarily large. So ‖Cϕ‖e > 0, and consequently Cϕ is
not compact. �
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