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Abstract Our consideration is focused on determining properties of generalized
Chebyshev polynomials of the first and second kind, sparking interest in constructing
a theory similar to the classical one. This studies highlight some important results and
connections between this two types. The paper is also concerned with the connection
between orthogonal polynomials and typically real function, both strictly related to
the Koebe function.

Keywords Orthogonal polynomials · Chebyshev polynomials · Bernstein type
inequalities · Holomorphic functions · Typically real functions

1 Introduction

The classical Chebyshev polynomials of the first and second kind have been known
since the late eighteenth century, when was defined using de Moivre’s formula by
Chebyshev [5]. In the study of differential equations they arise as the solution to the
Chebyshev differential equations

(1 − x2)y′′ − xy′ + n2y = 0,
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and

(1 − x2)y′′ − 3xy′ + n(n + 2)y = 0,

for the polynomials of the first and second kind, respectively. They are the special cases
of the SturmLiouville differential equation. Two properties of Chebyshev polynomials
make them exceptionally suitable for approximations: monic Chebyshev polynomials
minimize all norms among monic polynomials of a given degre, and satisfy discrete
orthogonality relation. Based on these properties they are widely used inmany areas of
numerical analysis; uniform approximation, least-squares approximation, numerical
solution of ordinary and partial differential equations, and so on. Therefore several
its extensions occur, see Akhiezer [1,2], and Akhiezer and Tomčuk [3], Tomčuk
[32], Ismail [14], Peherstorfer [24] and many others. The Chebyshev polynomials
are orthogonal not only as polynomials in real variable but also as polynomials in
a complex variable z on elliptical contours and domains of the complex plane (the
foci of the ellipses being ±1). This property is exploited in fields that rely on com-
plex variable techniques. Later on polynomials which are not fully in agreement with
orthogonal polynomials, hence called the (generalized) Chebyshev type polynomials
appeared, see for example Peherstorfer [24]. The Chebyshev type polynomials satisfy
similar extremal properties to the classical Chebyshev polynomials on [−1, 1]. The
extremal polynomials also have the property that they are orthogonal with respect to
some weight function. For other generalization the reader is referred to [6]. Some
of generalized Chebyshev type polynomials are associated with generalized Koebe
function, as was observed in [17].

In this paper, we will explore the sequences of polynomials of the general-
ized Chebyshev polynomial of the second kind Un(p, q; eiθ ) and of the first kind
Tn(p, q; eiθ ). Each of these sequences is useful in applications for a particular reason.
The Chebyshev polynomials of second kind are defined by the fact its connections
with the generalized typically real functions; similarly as was in the classical case. The
coefficient problem for generalized typically real functions provides one motivation
to study properties of Chebyshev polynomials. This work highlights the connections
between this two types of orthogonal polynomials.

2 Basic Definition

The impact of the work Russian mathematician P. L. Chebyshev (1821–1894) and his
studen Markov has already been describe by Krein [20]. A few particular orthogonal
polynomials were known before Chebyschev. It was Chebyshev who saw the pos-
siblity of a general theory and its applications. His work arose out of the theory of
least squares approximation and probability. He discovered the discrete analogue of
the Jacobi polynomials but their importance was not recognized until twentieth cen-
tury. They were rediscovered by Hahn and named after him upon their rediscovered.
Nowadays the notion of Chebyshev polynomials is well known [7,31]. The sequence
of polynomials {Tn(x)}∞n=0 appearing in approximation theory [25], geometry [11],
combinatorics [29], number theory [8], statistics, numerical integration [9,22], and
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differential equations (Rivlin [26] gives numerous examples). Several generalizations
have been found and investigated, see e.g. [30,33].

For easy reference, let us first state the definitions and basic properties of Chebyshev
polynomials.

Definition 1 The fundamental Chebyshev polynomials of the first kind are defined
by the following recurrence relation

T0(x) = 1,

T1(x) = x, (2.1)

Tn(x) = 2xTn−1(x) − Tn−2(x), −1 ≤ x ≤ 1, n ≥ 2.

Definition 2 The Chebyshev polynomials of the second kind are defined by the recur-
rence relation

U0(x) = 1,

U1(x) = 2x, (2.2)

Un(x) = 2xUn−1(x) −Un−2(x), −1 ≤ x ≤ 1, n ≥ 2.

First generalization of Chebyshev polynomials of first kind we met in [17], where
it was proposed to study the polynomials with one parameter, namely

Tn(q; eiθ ) = 1

2
(einθ + qne−inθ ), q ∈ [−1, 1].

Next in [23] some properties of the generalized Chebyshev polynomialsUn(p, q; eiθ )
of the second kind was studied. These polynomials were defined by the generating
function.

Definition 3 Let θ ∈ [0, 2π ],−1 ≤ p, q ≤ 1. The generalized Chebyshev polyno-
mials of the second kind Un(p, q; eiθ ) are defined by

�(p,q)(eiθ ; z) = 1

(1 − pzeiθ )(1 − qze−iθ )

=
∞∑

n=0

Un(p, q; eiθ )zn (z ∈ D), (2.3)

where θ ∈ [0, 2π ],−1 ≤ p, q ≤ 1, or by an explicit formulas

U0(p, q; eiθ ) = 1,

U1(p, q; eiθ ) = peiθ + qe−iθ ,

Un(p, q; eiθ ) = pn+1ei(n+1)θ − qn+1e−i(n+1)θ

peiθ − qe−iθ
(n ≥ 2).

(2.4)
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In [23] it was also proposed to study some generalization of the Chebyshev poly-
nomials of the first kind, namely.

Definition 4 Let θ ∈ [0, 2π ],−1 ≤ p, q ≤ 1. The generalized Chebyshev polyno-
mials of the first kind are defined by

Tn(p, q; eiθ ) = 1

2
(pneinθ + qne−inθ ) (n = 0, 1, . . .), (2.5)

where θ ∈ [0, 2π ], −1 ≤ p, q ≤ 1.

3 The Main Properties of Polynomials Tn( p, q; eiθ ) and Un( p, q; eiθ )
In this section we present the main properties of the introduced polynomials (2.5).

Theorem 1 Let θ ∈ [−π, π ], (p, q) ∈ � = {(p, q) : −1 ≤ q ≤ p ≤ 1}. Then the
following relations hold.

(a) The trigonometric polynomials Tn(p, q; eiθ ) satisfy the three-term recurrence
relation

T0(p, q; eiθ ) = 1,

T1(p, q; eiθ ) = 1

2
(peiθ + qe−iθ ),

Tn+2(p, q; eiθ ) = (peiθ + qe−iθ )Tn+1(p, q; eiθ ) − pqTn(p, q; eiθ )
n = 0, 1, . . .

(3.1)

(b) The function y(θ) = Tn(p, q; eiθ ), satisfies the following differential equation of
the second order

y′′(θ) + n2y(θ) = 0. (3.2)

(c) The trigonometric polynomials Tn(p, q; eiθ ) satisfy the following orthogonality
relation

∫ π

−π

Tn(p, q; eiθ )Tm(p, q; eiθ )dθ =
⎧
⎨

⎩

0 i f m �= n,
π
2 (p2n + q2n) i f m = n �= 0,
2π i f m = n = 0.

(3.3)

(d) The generating function of {Tn(p, q; eiθ )}n≥0 has the form

∞∑

n=0

Tn(p, q; eiθ )zn = 1 − (peiθ+qe−iθ )
2 z

(1 − peiθ z)(1 − qe−iθ z)
, (3.4)

where z ∈ D.
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(e)

max−π≤θ≤π
|Tn(p, q; eiθ )| = 1

2

√
p2n + q2n + 2(pq)n . (3.5)

Proof (a) Setting n = 0 and n = 1 in (2.5) we get the first two equalities of (a).
Now we put

2Tn(p, q; eiθ ) = pneinθ + qne−inθ . (3.6)

Therefore
2Tn+1(p, q; eiθ ) = pn+1ei(n+1)θ + qn+1e−i(n+1)θ , (3.7)

and

2Tn+2(p, q; eiθ ) = pn+2ei(n+2)θ + qn+2e−i(n+2)θ .

First we multiplying (3.6) by pq and (3.7) by peiθ + qe−iθ . Afterwards
we get the desired formula by substracting pqTn(p, q; eiθ ) from (peiθ +
qe−iθ )Tn+1(p, q; eiθ ).

(b) Using the explicit formula (2.5), after double differentiation we obtain the desired
result.

(c) The scalar product of Tn(p, q; eiθ ) and Tm(p, q; eiθ ) equals

〈Tn, Tm〉 =
∫ π

−π

Tn(p, q; eiθ )Tm(p, q; eiθ )dθ

= 1

4

∫ π

−π

(pn+mei(n−m)θ + pnqmei(n+m)θ + qn pme−i(n+m)θ

+qn+me−i(n−m)θ )dθ.

Since

∫ π

−π

eimθ =
{
0 i f m �= 0,
2π i f m = 0,

then we easily see that 〈Tm, Tn〉 is expressed by (3.3).
(d) By (2.5) we have

∞∑

n=0

Tn(p, q; eiθ )zn = 1

2

∞∑

n=0

(pneinθ + qne−inθ )zn

= 1

2

∞∑

n=0

(peiθ z)n + 1

2

∞∑

n=0

(qe−iθ z)n

= 1

2

1

1 − peiθ z
+ 1

2

1

1 − qe−iθ z

= 1 − (peiθ+qe−iθ )
2 z

(1 − peiθ z)(1 − qe−iθ z)
.
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(e) Straightford calculation of (2.5) gives

|Tn(p, q; eiθ )| =
√
1

4
(pn + qn)2 cos2 nθ + 1

4
(pn − qn)2 sin2 nθ

= 1

2

√
p2n + q2n + 2pnqn cos 2nθ.

From which we get the desired result.

�

Note that the norm of {Tn(p, q; eiθ } is given by

||Tn(p, q; eiθ )||2 =
∫ π

−π

Tn(p, q; eiθ )Tn(p, q; eiθ )dθ = π
(
p2n + q2n

)

2
,

and

||T0(p, q; eiθ )||2 = 2π.

The system {Tn(p, q; eiθ )} is therefore not ortonormal. By introducing the respective
weight we find the ortonormal system:

{
T0(p, q; eiθ )√

2π
,

(√
2

π(p2n + q2n)
Tn(p, q; eiθ ), n = 1, 2, . . .

)}
.

It is well known that the classical Chebyshev polynomials Un(x) and Tn(x) are
connected by several relations (see [4]). We observe that similar relations between
Un(p, q; eiθ ) and Tn(p, q; eiθ ) also holds.
Proposition 1 For polynomials Un(p, q; eiθ ) and Tn(p, q; eiθ ), where θ ∈ [−π, π ],
(p, q) ∈ �, we have

Tn(p, q; eiθ )Tm(p, q; eiθ ) = 1

2
Tn+m(p, q; eiθ ) + 1

2
(pq)mTn−m(p, q; eiθ )

= 1

2
Tn+m(p, q; eiθ ) + 1

2
(pq)nTm−n(p, q; eiθ ).

Um−1(Tn) = 2pmT2n(p, q; eiθ ) + 2pn+mqn − qm

2Tn(p, q; eiθ )(peiθ + qe−iθ )
.

Remark 1 The trigonometric polynomialsUn(p, q; eiθ ) and Tn(p, q; eiθ ), where θ ∈
[−π, π ], (p, q) ∈ �, have the following representation:

Un(p, q; eiθ ) =
[n/2]∑

k=0

(−pq)k
(n − k)!

(n − 2k)!k! (pe
iθ + qe−iθ )n−2k,

Tn(p, q; eiθ ) = n

2

[n/2]∑

k=0

(−pq)k
(n − k − 1)!
(n − 2k)!k! (peiθ + qe−iθ )n−2k .
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Remark 2 One can show that

Tn(p, q;−eiθ ) = (−1)nTn(p, q; eiθ )

or in other words, the even degree Chebyshev polynomials are even functions and the
odd Chebyshev polynomials are odd functions.

Remark 3 Putting the value z√
pq ,withpq �= 0 instead of z in the generating function

(3.4) and comparing the result with the generating function for Tn(x) we conclude
that

Tn(p, q; eiθ ) = (
√
pq)nTn

(
peiθ + qe−iθ

2
√
pq

)
, pq �= 0. (3.8)

Observe that, if θ ∈ [−π, π ], then ω = ω(θ) given by

ω(θ) = peiθ + qe−iθ

2
√
pq

describes the ellipse E with semi-axes: a =
∣∣∣ (p+q)
2
√
pq

∣∣∣ and b =
∣∣∣ (p−q)
2
√
pq

∣∣∣.

Remark 4 Note that for θ = 0 and (p, q) ∈ �, p �= q, n ≥ 1 in (2.4) and (2.5) we
have

Un−1(p, q; 1) = pn − qn

p − q
,

Tn(p, q; 1) = pn + qn

2
.

(3.9)

From (3.9) we immediately have relation between Tn(p, q; 1) and Un(p, q; 1).

2Tn(p, q; 1) = pn + qn = pn−1 − qn−1

p − q
+ pn+1 − qn+1

p − q
= Un−2(p, q; 1) +Un(p, q; 1),

2Tn(p, q; 1) = pn + qn =
p2n−q2n

p−q
pn−qn

p−q

= U2n−1(p, q; 1)
Un−1(p, q; 1) .

4 The Products, Integrals and Derivatives of Generalized Chebyshev
Polynomials

It is well known that the classical Chebyshev polynomials satisfy several equalities,
that involve factor x or 1 − x2 (where x = cos θ see, for instance [21]). Also the
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product of both polynomials Tn(x) and Un(x) where considered [21]. Let us remain
the well know relation for Tn(x),Un(x) below.

xTn(x) = 1

2
(Tn+1(x) + T|n−1|(x)),

xUn(x) = 1

2
(Un+1(x) +U|n−1|(x)),

(1 − x2)Tn(x) = −1

4
Tn+2(x) + 1

2
Tn(x) − 1

4
T|n−2|(x),

(1 − x2)Un(x) = −1

4
Un+2(x) + 1

2
Un(x) − 1

4
U|n−2|(x),

∫
Tn(x)dx =

⎧
⎪⎨

⎪⎩

1

2

(
Tn+1(x)

n + 1
− T|n−1|

n − 1

)
, n �= 1,

1

4
T2(x), n = 1,

∫
Un(x)dx = 1

n + 1
Tn+1(x) + Const,

d

dx
Tn(x) = n

2

Tn−1(x) − Tn+1(x)

1 − x2
,

d

dx
Un(x) = (n + 2)Un−1(x) − nUn+1(x)

2(1 − x2)
.

In this section we formulate similar properties for generalized Chebyshev polynomials
Tn(p, q; eiθ ) and Un(p, q; eiθ ), below.

Proposition 2 Let Tn(p, q; eiθ ) andUn(p, q; eiθ ) be defined by (2.4) and (3.4). Then

cos θTn(p, q; eiθ )
= Tn(p, q; 1)

(
ReTn+1(p, q; eiθ )
Tn+1(p, q; 1) + ReT|n−1|(p, q; eiθ )

T|n−1|(p, q; 1)
)

+U|n−1|(p, q; 1)
(
i ImTn+1(p, q; eiθ )

Un(p, q; 1) + i ImT|n−1|(p, q; eiθ )
U|n−2|(p, q; 1)

)
. (4.1)

(
1 − cos2 θ

)
Tn(p, q; eiθ ) = 1

2
Tn(p, q; eiθ ) − 1

4
Tn(p, q; 1)

×
(
ReTn+2(p, q; eiθ )
Tn+2(p, q; 1) + ReT|n−2|(p, q; eiθ )

T|n−2|(p, q; 1)
)

−1

4
U|n−1|(p, q; 1)

(
i ImTn+2(p, q; eiθ )

Un+1(p, q; 1) + i ImT|n−2|(p, q; eiθ )
U|n−3|(p, q; 1)

)
. (4.2)
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Proof In order to proof (4.1) consider its left hand side and apply (2.5). Then we have

cos θTn(p, q; eiθ )
= cos θ

(
1

2
(pn + qn) cos nθ + 1

2
i(pn − qn) sin nθ

)

= 1

2
(pn + qn) cos (n + 1)θ + 1

2
(pn + qn) cos (n − 1)θ

+1

2
i(pn − qn) sin (n + 1)θ + 1

2
i(pn − qn) sin (n − 1)θ

= (pn + qn)

(
ReTn+1(p, q; eiθ )

pn+1 + qn+1 + ReT|n−1|(p, q; eiθ )
pn−1 + qn−1

)

+(pn − qn)

(
i ImTn+1(p, q; eiθ )

pn+1 − qn+1 + i ImT|n−1|(p, q; eiθ )
pn−1 − qn−1

)

= Tn(p, q; 1)
(
ReTn+1(p, q; eiθ )
Tn+1(p, q; 1) + ReT|n−1|(p, q; eiθ )

T|n−1|(p, q; 1)
)

+U|n−1|(p, q; 1)
(
i ImTn+1(p, q; eiθ )

Un(p, q; 1) + i ImT|n−1|(p, q; eiθ )
U|n−2|(p, q; 1)

)
.

Similarly we proof the equality (4.2):

(1 − cos2 θ)Tn(p, q; eiθ ) = sin2 θ

(
1

2
(pn + qn) cos nθ + 1

2
i(pn − qn) sin nθ

)

= 1

2
(1 − cos 2θ)Tn(p, q; eiθ )

= 1

2
Tn(p, q; eiθ ) − 1

4
(pn + qn)

(
ReTn+2(p, q; eiθ )

pn+2 + qn+2 + ReT|n−2|(p, q; eiθ )
pn−2 + qn−2

)

−1

4
(pn − qn)

(
i ImTn+2(p, q; eiθ )

pn+2 − qn+2 + i ImT|n−2|(p, q; eiθ )
pn−2 − qn−2

)

= 1

2
Tn(p, q; eiθ ) − 1

4
Tn(p, q; 1)

(
ReTn+2(p, q; eiθ )
Tn+2(p, q; 1) + ReT|n−2|(p, q; eiθ )

T|n−2|(p, q; 1)
)

−1

4
U|n−1|(p, q; 1)

(
i ImTn+2(p, q; eiθ )

Un+1(p, q; 1) + i ImT|n−2|(p, q; eiθ )
U|n−3|(p, q; 1)

)
.


�
Proposition 3 Let Tn(p, q; eiθ ) be defined by (2.5). Then the indefinite integral of
Tn(x) can be expressed in terms of Chebyshev polynomials as follows.

∫
Tn(p, q; eiθ )dx

= Tn(p, q; 1)
(

ReTn+1(p, q; eiθ )
Tn+1(p, q; 1)(n + 1)

− ReT|n−1|(p, q; eiθ )
T|n−1|(p, q; 1)|n − 1|

)
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−Un−1(p, q; 1)i
(
ImTn+1(p, q; eiθ )
Un(p, q; 1)(n + 1)

− ImT|n−1|(p, q; eiθ )
U|n−2|(p, q; 1)|n − 1|

)
, n �= 1

∫
T1(p, q; eiθ )dx = −iT1(p, q; eiθ ).

Proof Applying the formula (2.5) by integration we obtain:

∫
Tn(p, q; eiθ )dx

= −
∫

1

2
(pn + qn) cos nθ sin θdθ − i

∫
1

2
(pn − qn) sin nθ sin θdθ

= 1

2
(pn + qn)

cos (n + 1)θ

n + 1
− 1

2
(pn + qn)

cos |n − 1|θ
|n − 1|

−i
1

2
(pn − qn)

sin (n + 1)θ

n + 1
+ 1

2
i(pn − qn)

sin |n − 1|θ
|n − 1|

= (pn + qn)

(
ReTn+1(p, q; eiθ )

(pn+1 + qn+1)(n + 1)
− ReT|n−1|(p, q; eiθ )

(pn−1 + qn−1)|n − 1|
)

−(pn − qn)i

(
ImTn+1(p, q; eiθ )

(pn+1 − qn+1)(n + 1)
− ImT|n−1|(p, q; eiθ )

(pn−1 − qn−1)|n − 1|
)

= Tn(p, q; 1)
(

ReTn+1(p, q; eiθ )
Tn+1(p, q; 1)(n + 1)

− ReT|n−1|(p, q; eiθ )
T|n−1|(p, q; 1)|n − 1|

)

−Un−1(p, q; 1)i
(
ImTn+1(p, q; eiθ )
Un(p, q; 1)(n + 1)

− ImT|n−1|(p, q; eiθ )
U|n−2|(p, q; 1)|n − 1|

)

(where the first term in the bracket is to be omitted in the case n = 1). 
�

Proposition 4 Let Tn(p, q; eiθ ) be defined by (2.5), then we have

d

dθ
Tn(p, q; eiθ ) = Tn(p, q; 1)

sin2 θ

(
nReT|n−1|(p, q; eiθ )
2T|n−1|(p, q; 1) − ReTn+1(p, q; eiθ )

Tn+1(p, q; 1)
)

−U|n−1|(p, q; 1)
sin2 θ

i

(
nImT|n−1|(p, q; eiθ )
2U|n−2|(p, q; 1) − ImTn+1(p, q; eiθ )

Un(p, q; 1)
)

.

Proof Differentiation of (2.5) we have:

d

dθ
Tn(p, q; eiθ ) = d

dθ

1

2
(pn + qn) cos nθ

/
d

dθ
cos θ

+ d

dθ
i
1

2
(pn − qn) sin nθ

/
d

dθ
cos θ

= 1

2
(pn + qn)

n sin nθ

sin θ
− 1

2
i(pn − qn)

n cos nθ

sin θ
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= 1

2
(pn + qn)

1
2n(cos (n − 1)θ − cos (n + 1)θ)

sin2 θ

−1

2
i(pn − qn)

1
2n(sin (n − 1)θ − sin (n + 1)θ)

sin2 θ

= pn + qn

sin2 θ

(
nReT|n−1|(p, q; eiθ )
2(pn−1 + qn−1)

− ReTn+1(p, q; eiθ )
pn+1 + qn+1

)

− pn − qn

sin2 θ
i

(
nImT|n−1|(p, q; eiθ )
2(pn−1 − qn−1)

− ImTn+1(p, q; eiθ )
pn+1 − qn+1

)

= Tn(p, q; 1)
sin2 θ

(
nReT|n−1|(p, q; eiθ )
2T|n−1|(p, q; 1) − ReTn+1(p, q; eiθ )

Tn+1(p, q; 1)
)

−U|n−1|(p, q; 1)
sin2 θ

i

(
nImT|n−1|(p, q; eiθ )
2U|n−2|(p, q; 1) − ImTn+1(p, q; eiθ )

Un(p, q; 1)
)

.


�
Various similar formulae are readily obtained forUn(p, q; eiθ ). For instance, we get:
Proposition 5 Let Un(p, q; eiθ ) be defined by (2.3), then we have
(1)

cos θUn−1(p, q; eiθ ) = 1

2
Un−1(p, q; 1)

(
ReUn(p, q; eiθ )
Un(p, q; 1) + ReUn−2(p, q; eiθ )

Un−2(p, q; 1)
)

+1

2
iTn(p, q; 1)

(
ImUn(p, q; eiθ )
Tn+1(p, q; 1) + ImUn−2(p, q; eiθ )

Tn−1(p, q; 1)
)

,

(2)

(1 − cos2 θ)Un−1(p, q; eiθ ) = 1

2
Un−1(p, q; eiθ )

−1

4
Un−1(p, q; 1)

(
ReUn+1(p, q; eiθ )
Un+1(p, q; 1) + ReUn−3(p, q; eiθ )

Un−3(p, q; 1)
)

−1

4
iTn(p, q; 1)

(
ImUn+1(p, q; eiθ )

Tn+2(p, q; 1) + ImUn−3(p, q; eiθ )
Tn−2(p, q; 1)

)
,

(3)

cosmθTn(p, q; eiθ ) = 1

2
Tn(p, q; 1)

(
ReTn+m(p, q; eiθ )
Tn+m(p, q; 1) + ReT|n−m|(p, q; eiθ )

T|n−m|(p, q; 1)
)

+1

2
iUn(p, q; 1)

(
ImTn+m(p, q; eiθ )
Un+m−1(p, q; 1) + ImT|n−m|(p, q; eiθ )

Un−m−1(p, q; 1)
)

,
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(4)

cosmθUn−1(p, q; eiθ )
= 1

2
Un−1(p, q; 1)

(
ReUn+m−1(p, q; eiθ )
Un+m−1(p, q; 1) + ReUn−m−1(p, q; eiθ )

Un−m−1(p, q; 1)
)

+1

2
iTn(p, q; 1)

(
ImUn+m−1(p, q; eiθ )

Tn+m(p, q; 1) + ImUn−m−1(p, q; eiθ )
Tn−m(p, q; 1)

)
,

(5)

dUn−1(p, q; eiθ )
dθ

= i
(n − 1)Un(p, q; eiθ ) − pq(n + 1)Un+1(p, q; eiθ )

peiθ − qe−iθ
.

5 Application

The generalized Chebyshev polynomials of first kind occurs first in [17], where it was
proposed to study the polynomials with one parameter, namely

Tn(q; eiθ ) = 1

2
(einθ + qne−inθ ) (q ∈ [−1, 1]).

Another example is work of Freund and Fisher [10]. In this paper author is concerned
with a classical inequality due to Bernstein which estimates the norm of polynomials
on any given ellipse in terms of their norm on any smaller ellipse with the same
foci. These Bernstein type inequalities are closely connected with certain constrained
Chebyshev approximation problems on ellipses. The authors introduce an analogy to
the Chebyshev polynomials

Tk+ 1
2
(ϕ) = ak cos

(
k + 1

2

)
ϕ + ibk cos

(
k + 1

2

)
ϕ (ϕ ∈ [−π, π ]),

where

ak = 1

2

(
rk+

1
2 + 1

rk+ 1
2

)
, bk = 1

2

(
rk+

1
2 − 1

rk+ 1
2

)
(r ≥ 1).

Finally Freund and Fischer [10] deals with constrained Chebyshev approximation
problem of the type

min
p∈∏

n :p(c)=1
max
z∈E |P(z)|.

Here
∏

n denotes the set of all complex polynomials of degree at most n, E is any
ellipse in the complex plane, and c ∈ C\E . In this paper it is showed that the extremal
points of P(z) on Er has a form of (2.5).
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Chebyshev polynomials appear in many areas of mathematics. In recent years this
interest has often arisen from outside the subject of orthogonal polynomials, after their
connection with the class of analytic functions.

Let A denote the class of holomorphic functions in the unit disk D. The class of
typically real functions in A is denoted by TR. This class is characterized by the
condition Imz Im f (z) ≥ 0, z ∈ D, and has the integral representation:

TR =
{
f : f (z) =

∫ π

0

z

(1 − zeiθ )(1 − ze−iθ )
dμ(θ), μ ∈ P[0,π ]

}
,

where P[0,π ] denote the set of probability measures on [0, π ], and was studied by
many authors, e.g. [13,18,19,27,28]. We suggest [23] the study of the following class
of functions.

Definition 5 By T p,q we denote the class of generalized typically real functions,
defined as a class of functions of f ∈ A, and having an integral representation

f (z) = 1

2π

2π∫

0

z

(1 − eiθ pz)(1 − e−iθqz)
dμ(θ) (z ∈ D, −1 ≤ p, q ≤ 1), (5.1)

where μ(θ) is the unique probability measure on the segment [0, 2π ].
In many classes of analytic functions (e.g. class of typically real functions) Koebe

function appears as the extremal. One of the generalization of Koebe function was
proposed by Gasper [12]. Namely, he proposed some extension of the Löwner theory
and de Brange’s inequalities, in which the natural extension of Koebe function is

kq(z) = z

(1 − z)(1 − qz)
(z ∈ D),

where−1 ≤ q ≤ 1.We propose an (p, q)-extension which is more symmetric, namely

kp,q(z) = z

(1 − pz)(1 − qz)
, (5.2)

where z ∈ D, −1 ≤ p, q ≤ 1. Due to this context a generalized Chebyshev poly-
nomials is defined for the same range of parameters −1 ≤ p, q ≤ 1. In [16] we
investigate mathematical properties of kp,q function, which is associated to the gen-
eralized Chebyshev polynomials of the second kind (2.4), as well as to the class of
typically real functions that is defined by extended Koebe function (5.1). We approach
the problem fromboth perspectives. By looking for a generating function of orthogonal
polynomials and by using orthogonal polynomials as a tool to describe the properties
of a class of functions. The motivation for this research is that kp,q function have
been found to have many connections with class of T p,q . By considering kp,q func-
tion, we gain further insight the connection between class of univalent functions and
coefficients problems as well as with orthogonal polynomials.
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One of the most interesting questions in a geometric functions theory is to address
the region of variability of the nth Taylor coefficient for functions f that belongs to
some class of analytic functions. Leading example is the Bieberbach conjecture settled
by de Branges in 1985 for the class of normalized and univalent functions S, although
corresponding results for important subclasses of S were established positive much
earlier.

In [15] we prove coefficients bounds of functions from the class T p,q . In the case
when p = q = 1 these results become the well known estimates in the class of
typically real functions TR. Using coefficients relations and estimates that hold in
that class, we also obtain some sharp coefficients bounds for generalized typically real
functions. Orthogonal polynomialsUn−1(p, q; eiθ ) defined by (2.3) have been used to
solve problems related to coefficients bounds in T p,q class. Namely, from the integral
representation (5.1) it follows that the coefficients f ∈ T p,q can be represented as

an = 1

2π

2π∫

0

Un−1(p, q; aiθ )dμ(θ). (5.3)

Therefore, studying the properties of the class T p,q is a natural problem associated
to the general study of orthogonal polynomials defined and considered in this article.
These polynomials are interesting themeselves and are the object of interest from the
possibilities of their use.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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3. Akhiezer, N.I., Tomčuk, J.J.: On the theory of orthogonal polynomials over several intervals. Dokl.

Akad. Nauk USSR 138, 743–746 (1961)
4. Andrews, G., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)
5. Chebyshev, P.L.: Complete Collected Works. Moscov-Leningrad (1947)
6. Chen, Y., Lawrence, N.: A generalization of the Chebyshev polynomials. J. Phys. A 35, 4651–4699

(2002)
7. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)
8. Dickson, L.E.: History of the Theory of Numbers, vol. I, p. 192. Chelsea Publishing Company, New

York (1920)
9. Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis. Oxford University Press, Oxford

(1968)
10. Freund, R., Fisher, B.: On the constrained Chebyshev approximation problem on ellipses. J. Approx.

Theory 62, 297–315 (1990)
11. Garcia, A., Stichtenoth, H.: On Chebyshev polynomials and maximal curves. Acta Math. 90, 301–311

(1999)

http://creativecommons.org/licenses/by/4.0/


An Extension of the Chebyshev Polynomials 1533

12. Gasper, G.: q-Extension of Clausen’s formula and of the inequalities used by de Branges in his proof
of the Bieberbach, Robertson and Milin conjecture. SIAM J. Math. Anal. 20, 1019–1034 (1989)

13. Golusin, G.M.: On typically-real functions. Math. Sb. 27, 201–217 (1950). (in Russian)
14. Ismail, M.E.: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University

Press, Cambridge (2005)
15. Kanas, S., Tatarczak, A.: Constrained coefficients problem for generalized typically real functions.

(Submitted)
16. Kanas, S., Tatarczak, A.: The generalized typically real functions. (Submitted)
17. Kiepiela, K., Klimek, D.: An extension of Chebyshev polynomials. J. Comput. Appl. Math. 17, 305–

312 (2005)
18. Koczan, L., Szapiel, W.: Sur certaines classes des fonctions holomorphes définies par une intègrale de

Stieltjes. Ann. UMCS 28, 39–51 (1974)
19. Koczan, L., Zaprawa, P.: Domains of univalence for typically-real odd functions. Complex Var. 48(2),

1–17 (2003)
20. Krein, M.G.: The ideas of P. L. Chebysheff and A. A. Markov in the theory of limiting values of

integrals and their further development. Am. Math. Soc. Transl. Ser. 2, 1-122 (1959)
21. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC, London (2003)
22. Morris, A.G., Horner, T.S.: Chebyshev polynomials in the numerical solution of differential equations.

Math. Comp. 31, 881–891 (1977)
23. Naraniecka, I., Szynal, J., Tatarczak, A.: An extension of typically-real functions and associated orthog-

onal polynomials. Ann. UMCS Math. 65, 99–112 (2011)
24. Peherstorfer, F.: On Bernstein–Szegö orthogonal polynomials on several intervals II: orthogonal poly-

nomials with periodic recurrence coefficients. J. Approx. Theory 123–161, 64 (1991)
25. Ray, W.D., Pitman, A.E.N.T.: Chebyshev polynomial and other new approximations to Mills’ ratio.

Ann. Math. Stat. 34(3), 892–902 (1963)
26. Rivlin, T.J.: Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory.

Wiley, New York (1990)
27. Robertson, M.S.: On the coefficient of typically-real functions. Bull. Am. Math. Soc. 41, 565–572

(1935)
28. Rogosinski, W.: Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen. Math.

Zeit. 35, 93–121 (1932)
29. Shapiro, W.: A combinatorial proof of a Chebyshev polynomial identity. Discret. Math. 34, 203–206

(1981)
30. Shparlinskii, I.E.: Generalization of Chebyshev polynomials. Sib. Math. J. 31(1), 183–185 (1990)
31. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1975)
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