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Abstract The paper is devoted to sharp weak type (0o, 00) estimates for HT and HE,
the Hilbert transforms on the circle and real line, respectively. Specifically, it is proved
that

A

| :
|77 5]y = 11

and

|l

IA

W 1 f Nl Loy,

where W (T) and W (R) stand for the weak-L°° spaces introduced by Bennett, DeVore
and Sharpley. In both estimates, the constant 1 on the right is shown to be the best
possible.

Keywords Hilbert transform - Weak type inequality - Best constants

Mathematics Subject Classification Primary 42A50; Secondary 31B05

Communicated by Tao Qian.

B Adam Osgkowski
ados@mimuw.edu.pl

1 Department of Mathematics, Informatics and Mechanics, University of Warsaw,

Banacha 2, 02-097 Warsaw, Poland

® Birkhiuser


http://crossmark.crossref.org/dialog/?doi=10.1007/s11785-015-0454-y&domain=pdf

1134 A. Osgkowski

1 Introduction

Our motivation comes from a very basic question about the Hilbert transform H™ on
the unit circle T ~ (—m, 7] equipped with a normalized uniform measure m. Recall
that this operator is given by the singular integral

X —1

HT £(x) = p.v. ' £(t) cot m(dt), xeT,

when f € L!(T). A classical result of Riesz [13] states that for any 1 < p < oo there
is a finite universal constant C), such that

i

<C p LP(T). 1.1
o S Collf sy, f € LP(D) (L.1)

For p = 1 the above estimate does not hold with any C; < oo, but, as Kolmogorov
showed in [11], there is an absolute ¢; < oo such that

4

.— sup [,\m ({x eT: HTf(x)| = ,\}) } <allflipm, (12)

Ll.OO(T) >0

whenever f € L'(T). The optimal values of the constants C p and ¢ were determined

in 1970s: Pichorides [12] and Cole (unpublished: see Gamelin [9]) proved that the

best constant in (1.1) equals cot 57, where p* = max{p, p/(p — 1)}, and Davis [6]
. . P . .

showed that the optimal choice for the constant ¢ in (1.2) is
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1 |§1og|t||dt _1+3i2+5i2+7l2+-~-_1347
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7

The above results are of fundamental importance to harmonic analysis. Furthermore,
the methods developed by Riesz [13] have had a profound influence on the shape
of the contemporary mathematics. For numerous extensions and applications of the
above statements, consult e.g. the works of Burkholder [3], Calderén and Zygmund
[5], Essén [8], Gohberg and Krupnik [10], Stein [14] and Zygmund [15], and many
more.

We will continue the research in this direction. We will be interested in a “dual”
version of Kolmogorov’s result, i.e., in a weak-L°° estimate for HT. To explain what
the weak-L°° space is, we need more notation. For a given measurable function f :
T — R, we define f*, the decreasing rearrangement of f, by

ffOO=inf{A>0:m{xeT:|f(x)]>Ar}) <t}

Then f**: (0, 1] — [0, 00), the maximal function of f*, is given by the formula

t
f**(r):%/ f*(s)ds, 1€ (0,1].
0
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One easily verifies that f** can alternatively be defined by

f**(t):%sup[/ |fldm : ECT, m(E):t].
E

We are ready to introduce the weak-L > space. Following Bennett, DeVore and Sharp-
ley [1], we let

I llwer) = Sulg(f**(t) — (1)
=

and define W(T) = {f : T — R : || fllw) < oo}. Some words explaining the
meaning of this space are in order. For each 1 < p < oo, the usual weak space
LP-*° properly contains L?, but for p = oo, the two spaces coincide. Thus, there is
no Marcinkiewicz interpolation theorem between L' and L for operators which are
unbounded on L°°. The reason for introducing the space W was to fill this gap. It can
be verified that this space contains L°°, can be understood as an appropriate limit of
LP-*° as p — o0, and enjoys the required interpolation property: if 7 is bounded as
an operator from L' to L'"* and from L to W, then it has an extension which is
bounded on L” spaces, 1 < p < oo. See [1] for details. There is a further evidence,
again rooted in the interpolation theory, that the space W can serve as a substitute for
weak-L . Namely, the Peetre K -functional for the pair (L', L) (cf. [4, p. 184]) is
explicitly given by

t
K (f, r L L°°) — / FEs)ds = tf** (1), 1€ (0, 1].
0
Thus, the weak-L' norm can be expressed in terms of the K -functional by

d
il = sup 1f*(0) = swp 1K (£ L L%). (1)
1e(0,1] re0.1] dt

Now if we reverse the roles of L! and L, and make use of the identity
K(f,t; L™, LY = tK(f,t~'; L', L), we see that the expression on the right of
(1.3) is precisely sup, ¢, 1j[f**(t) — f*(#)]. Hence this number can be understood as
a substitute for the norm in the weak-L°°. For more on this interplay, the connections
between W and BM O, as well as other interesting properties of W, we refer the reader
to [1] and the monograph [2] by Bennett and Sharpley.

One of our main results is the identification of the norm of HT as an operator acting
from L°°(T) to W(T). Here is the precise statement.

Theorem 1.1 Forany f € L°°(T) we have

77| < ey (1)

Ww(T)

The inequality is sharp: for any ¢ < 1 there is a function f € L°(T) such that
IH fllwer > ellfllLm)
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We will also study an analogue of the above result in the nonperiodic case. Recall
that the Hilbert transform HX on the real line is defined by the principal value integral

HR F(x) = lp.v./ mdr, x € R,
T RX—t

when f € L'(R). The above strong and weak-type inequalities (1.1), (1.2) can be
extended to analogous statements for H® and the optimal constants remain unchanged
(see e.g. [13,15]). It is natural to ask about a sharp weak-type (0o, co) inequality in
this setting. To study this problem, define the weak space W (R) in the same manner
as above:

WR) = [fiR—> R ||f||W(R):=Sug [Fm) - 0] < OO],
>

where, as previously, f* denotes the decreasing rearrangement of f and f** stands for
the maximal function of f*. Here is the nonperiodic version of Theorem 1.1. It is well
known that some technical problems arise when one defines the action of the Hilbert
transform on L*°(RR); to avoid these, we impose a slightly stronger integrability on
functions.

Theorem 1.2 If f belongs to L*°(R) N L?(R) for some 1 < p < 0o, then we have
the sharp bound

ps]| <l 15)

W(R)

The paper is organized as follows. In the next section we establish Theorem 1.1. In
the proof of (1.4) we make use of Bellman function method: the estimate is deduced
from the existence of a certain special superharmonic function. In the final part of
the paper we present the proof of Theorem 1.2, which follows from Theorem 1.1 by
certain transference-type arguments.

2 Periodic Case

For any ¢ > 0, define the function V) : [—1, 1] x [0, 00) = Rby VO (x, y) = (y —
¢) X{y>o} (here and below, x4 denotes the indicator function of a set A). Furthermore,
let U : (=1, 1) x (0,00) — R be given by the formula

© 2c e Y/2 X
U“x,y)=y—c+ —arctan | ——— —tan —
T cos(wx/2) 2
n 2c . eTTY/2 Lt X
—arctan { —————— +tan — | .
T cos(mx/2) 2

It is easy to check that U® is a harmonic function. Actually, it can be regarded as a
harmonic lift of V(©), in the sense explained in the first part of the lemma below.
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Lemma 2.1 The function U©) has the following properties.

L. IfY > 0, then limy y)— 1.7y U9 (x,y) = VOELY); if X € (=1, 1), then
lim(y,y)—x,00 U9 (x, y) = VO(X,0).
2. Forany x € (—1, 1), we have

lim U© (x, y)/ —1—c(cos”—x)_l
le ’y y - 2 .

3. Forany (x,y) € (=1, 1) x (0, 00), we have U'“) (x, y) = V) (x, y).

Proof The properties (1) and (2) are straightforward and left to the reader. The
majorization (3) is also easy: we must show that

—ny/2 X —ny/2 X
t: — — tan — t: —— +tan— ) > 0.
arctan (cos(nx/Z) an 2 )+arc an (cos(nx/Z) +tan 2 ) -

This follows from the estimate

e~ /2 X e TY/2 X
—— —tan — ———— ftan— ) >0
(cos(nx/2) an 2 )+ (cos(rrx/Z) +an 2 ) -

and the fact that the arctangent function is odd and increasing on the real line. O

It will be convenient for us to extend U to the halfstrip [—1, 1] x [0, co) by the
requirement that U ) and V (©) match at the boundary of this set. Then U ‘) becomes a
harmonic majorant of vV (© on the whole [—1, 1] x [0, 00), and it is continuous except
for the points (%1, 0). In addition, part (2) of the above lemma implies that for ¢ > 1,
the one-sided partial derivative Uy(°+) satisfies Uy(fg (x,0) <Oforall x € (—1, 1).

The above function U (© is a “building block” for a larger class of superharmonic

functions. For a fixed parameter A > 0, introduce the functions U/ (C), V)(LC) on the strip
[—1, 1] x R by the formulas

U@, y—a) ify>a,
U (x,y) = U (x, (Iyl = 1)) = {0 if [y] < A,
U, -1 —y) ify <—»x

and Vi (x, y) = VO @, (Iy] = 1)4) = (1] — Dy — cxilyl>a)-

Lemma 2.2 For each A > 0 and ¢ > 1, the function MA(C) is a superharmonic

majorant of Vk(c).

Proof Assume first that ¢ > 1. The inequality Z/{ic) > Vf) follows immediately
from the majorization U (© > y(© egtablished above; hence all we need is the super-
harmonicity of U)EC). Observe that this function is harmonic on each of the domains
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(=1,1) x (=00, —=A), (—1,1) x (—A, A) and (—1, 1) x (A, 0o0). Consequently, it is

enough to check that U)EC) satisfies the mean value property at each point of the form

(x, =X). But this follows at once from the inequality U y(ﬁz (x,0) < 0O (here the strict-

ness is due to ¢ > 1). To get the claim for ¢ = 1, note that U! is a pointwise limit of
U©asc| 1. O

In the next lemma we establish an intermediate result which is of its own interest.

Lemma 2.3 Forany f : T — [—1, 1] and any A > 0, we have
/T(‘HTf‘—/\)ermfm({xe’]I‘: LEISIEE @1

Proof Letu, v denote the harmonic extensions of f and H? f to the unit disc, obtained
via the Poisson kernel. Then u, v satisfy Cauchy-Riemann equations and v(0, 0) =
0 (cf. Riesz [13]). Consequently, the function U)El)(u, v) is superharmonic (being
the composition of a superharmonic /") and the analytic u + iv) and it majorizes
V)El) (u, v). Therefore, by the mean value property,

/Vﬁ"(u,v)dm 5/u§”(u,v)dm
T T
< U w(0,0), v(0,0)) = U w(0,0),0) = 0.

This is precisely (2.1). O
We turn our attention to Theorem 1.1.

Proof of (1.4) By homogeneity, we may and do assume that || f|| () = 1. By the
definition of (HT f)**, we may write

(Hr) @ - (") @
= sup [ﬁ/E HHTf(x)‘ - (HTf)* (t)]m(dx) . ECT, mE) = t].

It is clear that when computing this supremum, we may restrict ourselves to those E,
which satisfy

[xe']I‘:"HTf(x)‘ >A}§E§[xeT:‘HTf(x)‘z)»}

for some A > 0. Actually, since m(E) = t, this A must be equal to (HTf)*(t). For
such E, it is clear that
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sy 10l 0 o
< ! / HHTf’—A]dmgl,
m ({x € T2 [HTf@)[ > 4}) Sy 1)

where the latter bound is due to (2.1). This establishes (1.4). O

Sharpness Let ¢ € (0,1) and fix an arbitrary A € (0, ¢/2). Consider the region
C =[—1, 1] x[—A, 0c0) and let F be the conformal mapping which sends the unit disc
D onto C and (0,0) € D to (0,0) € C. Then F transports m, the harmonic measure
on T with respect to (0, 0), to u, the harmonic measure on dC with respect to (0, 0).
Finally, put # = Re F and v = Im F’; clearly, the restrictions f = u|r and g = v|T
satisfy the relation g = HT f. The function (x, y) — U (x, y + A) is harmonic in
the interior of C, so by the mean-value property,

U0, 1) = / U (x,y+1dulx, y)
aC
=/ U© u, v+ 2)dm
T
= /]T(U + A — ) Xp+a=0ydm
< /(v + A=) X{v—r>0ydm
T
= /THTfX{HTfM}dm —(c—Mm ({x eT: HTf(x) > A}) .

However, if A is sufficiently close to 0, then U © (0, 1) > 0: this follows from Lemma
2.1 (2). Hence, for such A,

1
m({xeT:HTf(x)>Ar})

/ ‘HTf(x)’m(dx) >c—
{HT f>1}
Now take 7 = m({x € T : HT f(x) > A}). The above inequality implies that
T kek

(H f) (1) > c—A. 2.2)
In addition, since HTf > —Aon T, we actually have r = m({x € T : IHTf(x)| >
A}). Hence, from the very definition of the decreasing rearrangement, we infer that
(HT f)*(t) < 1. Combining this with (2.2), we obtain

2 e

It remains to observe that the right-hand side can be made arbitrarily close to 1, by
choosing ¢ appropriately close to 1 and then picking A sufficiently small. This proves
that the constant 1 cannot be replaced in (1.4) by a smaller number. O
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3 The Non-Periodic Case

Proof of (1.5) To deduce the weak-type estimate for the Hilbert transform on the real
line, we use a standard argument known as “blowing up the circle”, which is due to
Zygmund ([15], Chapter XVI, Theorem 3.8). Let f € LP(R) N L°°(R) be a fixed
function. For a given positive integer n and x € R, put

n

1
gn(x) = 2—p.V. f(t)cot
T

X —1
n —an 2n

dr.

As shown in [15], we have g, — HR f almost everywhere as n — oo. On the other
hand, the function

X —1

X = gp(nx) = p.v. " f(nt) cot m(dr)

is precisely the periodic Hilbert transform of the function f, : x — f(nx), |x| < «.
Consequently, by (2.1), we may write

{x € (—mtn, tn] :|gy(x)| > A} =27nm ({x eT: "HTfn(x)‘ > A})
227171/ (‘HTfn(x)‘—k) m(dx)
T +

=/ (Ign()] — A), d.

—TTn

Now we let n — 00; using some routine limiting arguments, we get

Hx eR:HRF(x) > ,\H z/ (‘HRf(x) —A) dx.
R +
It remains to repeat the reasoning from the periodic case to obtain, for any ¢ > 0,

(H51)" 0 - (H*r) @
- 1
T fx e R HE ] > A} J(nep)=a)

HHRf(x)’ - A] dr < 1.

O

Sharpness As we have shown in the previous section, for any ¢ € (0, 1) and A suf-
ficiently close to 0, there is a function ¢ : T — [—1, 1] such that fT odm = 0

and
1

{x e T:[HTo)| > 2} Jymrg)=2)

We will expand this function onto the real line. We will use Davis’ argument from [6].
For the sake of clarity, we have divided the reasoning into three parts.

‘HTgJ(x)’dx >c—ih @B
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1. A conformal mapping and its properties Let H denote the closed upper halfplane
of C and consider the conformal mapping K (z) = —(1 — z)?/4z. This function maps
the halfdisc D N H onto H, and the boundary of D N H onto R. Let L be the inverse
of K. Then L maps [0, 1] onto the halfcircle {eie :0 <6 < m}, and R\[O, 1] onto
(=1, 1). Specifically, for x € [0, 1] we have L(x) = exp(2i arcsin(4/x)), while for

x ¢ [0, 1],
L) 1 —2x —2Vx2—x ifx <0,
X) =
1 —2x +2Vx2—x ifx>1.

We will also need the property
L(z) >0 asz— oo. 3.2)

Next, for a positive integer n, let d,, be the density of L" ([0, 1]) on T with respect to
m,ie forany — 7w <o < B <m,

/ﬁ d, (ei9) m(de) =

Then it is easy to prove that

{re [0,1]: L"(r) € {ei9 <0 <ﬂ}”.

d, — luniformly on T, 3.3)

see Lemma 3 in [6].

2. Expansion of ¢ Let ® denote the holomorphic extension of ¢ + i HT<p to the
unit disc. Then & satisfies ®(0) = 0: indeed, Re ®(0) = 0 is due to the condition
fT ¢dm = 0, while Im ®(0) = O follows from the normalization property of the
periodic Hilbert transform. Combining this with (3.2), we see that the analytic function
F, =®(L"(z)) (n =1, 2, ...), given on the halfplane H, satisfies lim,_,, F},(z) =
0. Put f,(x) = Re F,,(x) for any x € R. This function is bounded in absolute value by
1, since so is ¢. Furthermore, f;, is integrable when n > 2. Indeed, for any x ¢ [—1, 1]
we have

[ fn(x)] =|Re ®(L"(x))| < k1|L"(x)| < k2|x|™",
for some universal constants k1, k2. Thus, we may speak of HR fn. Furthermore, by
the aforementioned property lim;_, », F;,(z) = 0, we have HR fn =1Im F,|R.

3. Computations If x ¢ [0, 1], then L(x) € (—1, 1) and hence L"(x) — 0 as
n — oo. Consequently, we have

Hx ¢10,1]: )HRfy,(x)‘ > A}’ -0
and, by Lebesgue’s dominated convergence theorem,

/ ‘Han(x)‘ dx 222 0.
{x¢[0,1]:|H]an(x)|>)L}
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Next, observe that by (3.3),

Hx c0,1]: ‘Han(x)‘ - ,\H — |{x €0, 1]: [ Imd(L"(x))| > A}]
- Hx €0, 1]: ‘H%(L"(x))‘ - ,\H

n—00

—m ([x eT: ‘HTgo(x)} > X})
and

1% fu )] ax = / ML (o) dx

{xel0,11:| HTp(L" (x))|> 1}

/ ‘HTgo(x)‘ m(dx).
T

/{xe[0,11:|Han(x)|>k}

n—o0

Let us put all the above facts together and combine them with (3.1). We get that for
an arbitrary n < 1 we have

1
{x e R [HE £ > A} Jyne s, 1-0)

72 fu@)] de = (e = ),

provided n is sufficiently large. Now, set = |{x € R : [HR f(x)| > A}|. Arguing as
above, we prove that

Hx ¢ 10, 1] : ’HRf,,(x)‘ . 2,\}’ -0
and

Hx €0, 1]: ‘Han(x)‘ > 2)\}‘ Sm ({x eT: ‘HTw(x)‘ > ZA}) <1
This shows that if n is sufficiently large, then (H]R fn)*(t) < 2A. Hence, for large n,

s

> (125) " 0 - (HE5) @ = nte -1 -2

WR) —

The latter constant can be made arbitrarily close to 1, by choosing appropriate values
for the parameters 7, ¢ and A. This proves that the constant 1 is indeed the best possible
in (1.5). O
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