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Abstract. We consider Hamiltonian autonomous systems with n degrees
of freedom near a singular point. In the case of absence of resonances
of order less than or equal to 4 we present a direct computation of the
Birkhoff normal form. In the case of two degrees of freedom, we study
1-parameter deformations of the 0 : 1, 1 : 1 and 2 : 1 resonant singulari-
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1. Introduction

Probably the most spectacular application of the Kolmogorov–Arnold–Moser
(KAM) theory is in the restricted three-body problem (see [AKN, Mos, SiMo,
Mar]). There one has a completely integrable Hamiltonian system with two
degrees of freedom, which corresponds to fourth-degree Birkhoff normal form
of the total energy near a Lagrangian libration point, and a perturbation,
which corresponds to higher order terms. The invariant KAM tori, which fill
a set of positive measure, guarantee the Lyapunov stability of this libration
point. However, in order to use the KAM theorem, one has to check whether
some determinant det does not vanish; this is the so-called isoenergetic non-
degeneracy condition (see [Arn2]). This requires careful calculation of the
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Birkhoff normal form and application of it to the restricted three-body prob-
lem. Recall also that the problem contains one parameter ζ defined by the
ratio of masses of the heavy bodies.

The formula for the coefficients in the Birkhoff normal form was ob-
tained in explicit form by Leontovich [Leo], but in the three-body case he
was able only to show that the quantity det is not identically zero as a func-
tion of the parameter ζ. The complete formula for det(ζ) was given by Deprit
and Deprit-Bartholomé in [DDB] (see equation (4.9) below) and is cited in
all sources about the subject. In practice, only few three-body systems are
considered: Sun–Jupiter–Asteroid or Earth–Moon–Asteroid. However, more
such situations in the celestial mechanics exist (with different values of ζ).
Therefore, the formula for det(ζ) is potentially useful.

It is rather hard to repeat the Deprits’ derivation of their formula, be-
cause the paper [DDB] does not contain clear ideas about it. We tried to
reprove the result of [DDB], but in [BaZo] we succeeded only to obtain the
Leontovich formula and to apply it for some special values of the parameter ζ.
Our calculations disagreed with the Deprits formula (see Remark 3 below).
But later, at a conference in Siedlce (Poland), we have learned from Markeev
and Prokopenya that they have checked the calculations (also using some
computer programs) and obtained the same result as in [DDB].

Therefore, the principal reason for writing this paper was to fix our
mistakes and eventually to find a direct derivation of the Deprits formula
(with an explanation of its amazing simplicity). The idea was to show that
det(ζ), which is an algebraic function of ζ, is in fact a rational function of ζ2

with possible poles corresponding to resonances of order 1, 2 and 3 and to
ζ2 = ∞. We prove it in Section 4.2. The next step is to analyze the situation
near the distinguished values of ζ2.

In the case ζ2 ≈ ∞, the eigenvalues of the corresponding linearization
of the Hamiltonian system are not all imaginary, so a corresponding version
of the Birkhoff normal form is needed. We do it in the next section. We do
it in full generality, i.e., in the complex situation and with many degrees of
freedom. Moreover, the derivation of the corresponding generalization of the
Leontovich formula does not use iteration of the Birkhoff transformation. It
is direct in the sense that it is reduced to a series of elementary substitutions.
As a corollary, in Section 4.3 we find that the limit of det(ζ) as ζ → ∞ is
finite.

The case of 0 : 1 resonance, ζ2 = ζ20 , corresponds to the situation
when a pair of eigenvalues is zero and a 2-dimensional Jordan cell arises. We
obtain an analogue of the Birkhoff normal form for the vector field and for
its 1-parameter perturbation corresponding to variation of one of the small
eigenvalues. A general theory is described in Section 3.1, where we show that
the order of the pole of det(ζ) at ζ20 is at most 2. In Section 4.4 we prove that
in the three-body case det(ζ) is regular here (no pole).

Analogous analysis is done near the two situations which correspond to
the resonances of the type 1 : 1 (ζ2 = ζ21 ) and 2 : 1 (ζ2 = ζ22 ). The latter
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case is simple and is shortly discussed in Section 3.3. In the case of 1 : 1
resonance we have two 2-dimensional Jordan cells and the analysis is slightly
more involved, but here we need only to show that the corresponding pole is
simple. We do it in Section 3.2.

Section 4 is devoted to the restricted three-body problem. The func-
tion det(ζ) is a ratio P (ζ2)/Q(ζ2) of two quadratic polynomials, where Q =
(ζ2 − ζ21 )(ζ

2 − ζ22 ) defines the resonances of order 2 and 3. We easily find (in
Section 4.6) the value of the residuum of det(ζ) at ζ22 . By a direct calculation
(in Section 4.7) of det(ζ) at two special values of the parameter we find the
three coefficients of P . In fact, we calculate det(ζ) for three values of ζ.

2. Birkhoff normal form

Consider a linear autonomous Hamiltonian system in C
2n,

dxj

dt
=

{
xj , G

(2)
}
=

∑
ajkxk, j = 1, . . . , 2n, (2.1)

with respect to some linear symplectic structure on C
2n defined by a Poisson

structure {·, ·}. Assuming that the matrix A = (ajk) has pairwise different
and nonzero eigenvalues, which appear in pairs λj ,−λj ,

1 we can diagonalize
this system:

dzj
dt

= λjzj ,
dz̃j
dt

= −λj z̃j , j = 1, . . . , n; (2.2)

here the functions (variables) z = {zj , z̃j : j = 1, . . . , n} are related with the
variables x = (x1, . . . , x2n) by means of a matrix B, i.e., x = Bz, such
that the columns of B are the eigenvectors of A. The variables z satisfy the
relations {zj , zk} = {z̃j , z̃k} = {zj , z̃k} = 0 for j �= k, but the constants
{zj , z̃j} are not determined because the very variables zj and z̃j are defined

up to multiplicative constants. Therefore, the quadratic Hamiltonian G(2)

from (2.1) can be written in the form

H(2)(z) = G(2)(Bz) = λ1
z1z̃1

{z1, z̃1} + · · ·+ λn
znz̃n

{zn, z̃n} . (2.3)

Generally, with the Hamilton function (2.3) we can associate the gen-
eralized actions Jk ∈ C and generalized angles φk ∈ C as follows:

Jk =
zkz̃k

{zk, z̃k} , φk =
1

2
log

(
zk
z̃k

)
. (2.4)

Note that each function Jk is of rather special type: its zero locus consists of
two transversal hyperplanes, but it has degenerate singularity at the origin
(with infinite Milnor number).

1Recall that this follows from the invariance of the symplectic 2-form ω2 under the Hamil-
tonian phase flow: ω2(etAu, etAv) = ω2(u, v) or ω2(Au, v) + ω2(u,Av) = 0. Taking u
and v as eigenvectors with the corresponding eigenvalues λ and μ, we get the identity
(λ+ μ)ω2(u, v) = 0.
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Assume now that we have a holomorphic Hamiltonian system with n de-
grees of freedom and with a singular point at the origin of the type considered
above. Therefore, we have

H(z) =
n∑

j=1

λj
‖zj‖2
κj

+
∑

|m|>2

hmzm, (2.5)

where
z = (z1, z̃1; . . . ; zn, z̃n),

‖zj‖2 = zj z̃j , κj = {zj , z̃j} ,
m = (m1, m̃1; . . . ;mn, m̃n) ,

zm = zm1
1 z̃m̃1

1 · · · zmn
n z̃m̃n

n ,

|mj | = mj + m̃j , |m| = |m1|+ · · ·+ |mn| .
We have

dzj
dt

= {zj , H} =
∂H

∂z̃j
{zj , z̃j} = λjzj + κj

∑ m̃jhmzm

z̃j
,

dz̃j
dt

= −λj z̃j − κj

∑ mjhmzm

zj
.

We will use also the following notations:

m̃ = (m̃1,m1; . . . ; m̃n,mn) , h̃m = hm̃,

‖hm‖2 = ‖hm̃‖2 = hmh̃m,

RE(hmhn) =
1

2

(
hmhn + h̃mh̃n

)
,

[m,λ] = (m1 − m̃1)λ1 + · · ·+ (mn − m̃n)λn.

Additionally we assume the following:∑
kjλj �= 0 for kj ∈ Z,

∑
|kj | = 1, 2, 3, 4, (2.6)

i.e., the absence of resonances of order 1, 2, 3 and 4. (Here the case
∑ |kj | = 1

would correspond to a situation with a pair of zero eigenvalues and the case∑ |kj | = 2 would correspond to a situation with two equal eigenvalues.)

Example 1. If G is real and the eigenvalues are imaginary, λk = −√−1ωk =
−iωk, ωk > 0, (i.e., when the origin is the so-called elliptic singular point),
then there are natural symplectic variables {(qk, pk)} such that zk = qk+ ipk,
z̃k = qk − ipk and {zk, z̄k} = −2i or zk = qk − ipk, z̃k = z̄k = qk + ipk
and {zk, z̄k} = 2i. In this case there exist so-called action-angle variables
Ik = (p2k + q2k)/2 = |zk|2/2 and ϕk = arg zk. Then Jk = iIk and H(2) =
±ω1I1±· · ·±ωnIn. Note that using representation (2.3) we avoid the problem
of signs before ωjIj .

If G is real and some eigenvalue λk is real, then one can choose zk =
qk + pk, z̃k = qk − pk with {zk, z̃k} = −2 (or zk = qk − pk, z̃k = qk + pk with
{zk, z̃k} = 2). Here the analogue of the corresponding action-angle variables
Jk = (q2k − p2k)/2, φk are such that zk =

√
2Ike

φk , z̃k =
√
2Ike

−φk .
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If n = 2, G is real and we have nonreal and nonimaginary eigenvalues
λ = λ1 = ν + iω, −λ, λ2 = λ̄ = ν − iω and −λ̄, then we can choose
z1 = q1 + iq2, z̃1 = p1 − ip2, z2 = z̄1, z̃2 = (z̃) (thus {z1, z̃1} = {z2, z̃2} = 2).
Then J1 = J = 1

2z1z̃1 and J2 = J̄1 are nonreal and H(2) = 2Re(λJ). (Here
the notation Re has the standard meaning, the real part, in contrary to the
notation RE.)

The fourth order Birkhoff normal form [Bir] in the above situation is a
symplectic change of variables

Zj = zj + · · · , Z̃j = z̃j + · · · (2.7)

such that

H(z, z̃) = HBir(Z, Z̃) + · · · =
∑

λjJj +
∑

DjkJjJk + · · · , (2.8)

where

Jk =
ZkZ̃k{
Zk, Z̃k

} =
‖Zk‖2
κk

. (2.9)

The symplecticity of this change of coordinates implies preservation of the
Poisson brackets: {Zk, Z̃k} = {zk, z̃k} = κk and the other brackets vanish.

The main result of this section is the following theorem which generalizes
a result by Leontovich [Leo].

Theorem 1. The coefficients in equation (2.8) are the following:

Djj = κ2
jh

j
22 − 3κ3

j

∥∥hj
30

∥∥2 + ∥∥hj
21

∥∥2
λj

− κ2
j

∑
l �=j

κl

{∥∥hjl
11;10

∥∥2
λl

+

∥∥hjl
20;10

∥∥2
λl + 2λj

+

∥∥hjl
02;10

∥∥2
λl − 2λj

}
,

Djk = κjκkh
jk
11;11 − 4κ2

jκk

{
2RE

(
hjk
21;00h

jk
01;11

)
2λj

+

∥∥hjk
20;10

∥∥2
2λj + λk

+

∥∥hjk
20;01

∥∥2
2λj − λk

}

− 4κjκ
2
k

{
2RE

(
hjk
00;21h

jk
11;01

)
2λk

+

∥∥hjk
10;20

∥∥2
2λk + λj

+

∥∥hjk
10;02

∥∥2
2λk − λj

}

− κjκk

∑
l �=j,k

κl

{ ∥∥hjkl
10;10;10

∥∥2
λl + λj + λk

+

∥∥hjkl
01;10;10

∥∥2
λl − λj + λk

+

∥∥hjkl
10;01;10

∥∥2
λl + λj − λk

+

∥∥hjkl
01;01;10

∥∥2
λl − λj − λk

}

for j �= k. Here hj
ρσ (resp., hjk

ρσ;ςτ or hjkl
ρσ;ςτ ;υφ) denotes hm with (mj , m̃j) =

(ρ, σ) (resp., with given distinguished indices) and with zero other indices.
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The proof we give below is essentially new and does not use generating
function for the symplectic change; the standard (rather involved) proof for
n = 2 can be found in [BaZo].

Lemma 1. The Birkhoff transformation is of the following form:

Zj = zj

(
1 +

∑
akj ‖zk‖2

)
+

∑
|m|=3

αj
m

zm

z̃j
+ · · · ,

Z̃j = z̃j

(
1 +

∑
ãkj ‖zk‖2

)
+

∑
|m|=3

α̃j
m

zm

zj
+ · · · ,

where

αj
m = − κjm̃j

[m,λ]
hm, α̃j

m =
κjmj

[m,λ]
hm, (2.10)

the akj , ã
k
j are constants (calculated below) and the dots denote inessential

terms (of degree greater than or equal to 3).

The above form for the quadratic terms follows from the Poincaré–
Dulac theorem and is unique (see [Arn1]). The distinguished cubic terms,

like ajkzj‖zk‖2, are resonant in the Poincaré–Dulac sense. Therefore, they are
not determined here.2

Lemma 2. The action parts of the action-angle variables

Jj =
ZjZ̃j{
Zj , Z̃j

} =
‖Zj‖2
κj

take the form

Jj =
1

κj
‖zj‖2 +

∑
|m|=3

mj − m̃j

[m,λ]
hmzm

+
1

κj

{
Aj‖zj‖4 +

∑
k �=j

Bk
j ‖zj‖2‖zk‖2 +

∑
k,l �=j

Ckl
j ‖zk‖2‖zl‖2

} (2.11)

(plus inessential quartic and higher order terms) where

Aj =
∑

|mj |=3

∥∥αj
m

∥∥2 + (
ajj + ãjj

)
,

Bk
j =

∑
|mj |=2,|mk|=1

∥∥αj
m

∥∥2 + 2RE
(
αj;jk
12;00 α̃

j;jk
10;11

)
+
(
akj + ãkj

)
,

Ckk
j =

∑
|mj |=1,|mk|=2

∥∥αj
m

∥∥2, Ckl
j =

∑
|mj |=|mk|=|ml|=1

∥∥αj
m

∥∥2
(2.12)

2The Poincaré–Dulac theorem says that a system ẋ1 = λ1x1 +
∑

a1kx
k, . . . , ẋn =

λnxn +
∑

ankx
k can be reduced to the so-called Poincaré–Dulac normal form ẏ1 =

λ1y1 +
∑

b1ky
k, . . . , ẏn = λnyn +

∑
bnky

k, where only resonant terms bjky
k (for which

λj �= λ1k1 + · · ·+ λnkn) in the jth equation remain.
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(for k �= l) and

∥∥αj
m

∥∥2 = αj
mα̃j

m̃ =

(
κjm̃j

[m,λ]

)2

hmhm̃ =

(
κjm̃j

[m,λ]

)2

‖hm‖2 ,

2RE(αj
mα̃j

n) = αj
mα̃j

n + αj
ñα̃

j
m̃.

From this we arrive at the following lemma.

Lemma 3. We have

Djj = κ2
jh

j
22 − λjκjAj −

∑
l �=j

λl

(
κ2
j

κl

)
Cjj

l ,

Djk = κjκkh
jk
11;11 − λjκkB

k
j − λkκjB

j
k −

∑
l �=j,k

λl

(
κjκk

κl

)
Cjk

l .

(2.13)

Indeed, from (2.11) we find

H =
∑

λj

{
Jj −

(
Aj

κj

)
‖zj‖4 −

∑(
Bk

j

κj

)
‖zj‖2‖zk‖2

−
∑(

Ckl
j

κj

)
‖zk‖2‖zl‖2

}

+
∑

hj
22‖zj‖4 +

∑
j<k

hjk
11;11‖zj‖2‖zk‖2 + · · ·

because the cubic terms contribute completely to
∑

λjJj . But this equals

∑
λjJj +

∑
j≤k

Djk

(
‖zj‖2
κj

)(
‖zk‖2
κk

)
+ · · · .

Next, we replace ‖zj‖2/κj with Jj + · · · .
Let us pass to the determination of the coefficients akj and ãkj . Since the

change from Lemma 1 must be symplectic, the sums akj + ãkj , . . . follow from
the following formula:{

Zj , Z̃j

}
{zj , z̃j} = 1 + 2

(
ajj + ãjj

) ‖zj‖2 +∑
k �=j

(
akj + ãkj

) ‖zk‖2

+
1

κj

∑∥∥αj
m

∥∥2{zm

z̃j
,
zm̃

zj

}
.

(The complete calculation of all the coefficients uses other Poisson brackets,
but we skip it.)
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Lemma 4. We have

ajj + ãjj = 2
∥∥αj;j

03

∥∥2 − 2
∥∥αj;j

21

∥∥2 + 1

2

∑
k �=j

κk

κj

(∥∥αj;jk
02;01

∥∥2 − ∥∥αj;jk
02;10

∥∥2) ,

akj + ãkj =
∥∥αj;jk

02;01

∥∥2 + ∥∥αj;jk
02;10

∥∥2 − 2
∥∥αj;jk

11;10

∥∥2
+ 4

κk

κj

(∥∥αj;jk
01;02

∥∥2 − ∥∥αj;jk
01;20

∥∥2)
−

∑
l �=j,k

κl

κj

(∥∥αj;jkl
01;10;10

∥∥2 + ∥∥αj;jkl
01;01;10

∥∥2
− ∥∥αj;jkl

01;10;01

∥∥2 − ∥∥αj;jkl
01;01;01

∥∥2),
where αj;j

ρσ = αj
m for mj = ρ, m̃j = σ and zero other indices. Similarly, αj;jk

ρσ;ςτ

(resp., αj;jkl
ρσ;ςτ ;υφ) denotes αj

m with distinguished indices at the jth and kth

places (resp., at the jth, kth and lth places).

Proof of Theorem 1. Using equations (2.10)–(2.13) we find contributions aris-
ing from different products hnhm. We begin with D11.

The term

−λ1κ1A1 = −λ1κ1

⎛
⎝ ∑

|m1|=3

∥∥α1
m

∥∥2 + (
a11 + ã11

)⎞⎠
in (2.13) contains the terms

−λ1κ1 (1 + 2)
∥∥α1

03;0...0

∥∥2 = −3λ1κ1

(
κ1

λ1

)2

‖h30;0...0‖2

= −3

(
κ3
1

λ1

)
‖h30;0...0‖2

and

− λ1κ1

[
(1− 2)

∥∥α1
21;0...0

∥∥2 + ∥∥α1
12;0...0

∥∥2]

= λ1κ1

[(
κ1

λ1

)2

−
(
2κ1

λ1

)2
]
‖h21;0...0‖2

= −3

(
κ3
1

λ1

)
‖h21;0...0‖2 .

The term −λ2(κ
2
1/κ2)C

11
2 in (2.13) includes, in particular, the term

−λ2

(
κ2
1

κ2

)∥∥α2
11;01...

∥∥2 = −λ2

(
κ2
1

κ2

)(
κ2

λ2

)2

‖h11;10...‖2

= −
(
κ2
1κ2

λ2

)
‖h11;10...‖2 .
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The sum −λ1κ1A1 − λ2(κ
2
1/κ2)C

11
2 includes also the term

− λ1κ1
1

2

κ2

κ1

∥∥α1
02;01...

∥∥2 − λ2

(
κ2
1

κ2

)∥∥α2
02;01...

∥∥2
= −1

2
λ1κ1

(
2κ1

2λ1 + λ2

)2

‖h20;10...‖2

− λ2

(
κ2
1

κ2

)(
κ2

2λ1 + λ2

)2

‖h20;10...‖2

= −
(

κ2
1κ2

2λ1 + λ2

)
‖h20;10...‖2 ;

similarly we find the contribution to D11 which contains ‖h20;01...‖2.
Other terms in D11 arising from

∥∥h1l
ρσ;01...

∥∥2 are analogous to the terms
with l = 2. The formulas for general Djj are the same as for D11, only with
indices changed.

In a similar way the coefficients Djk are computed. We omit this. �

Remark 1. For given j we can make the change zj 	→ z̃j , z̃j 	→ zj which

implies λj 	→ −λj , κj 	→ −κj and which evidently leaves H(2) invariant. But
it implies the changes h...;mjm̃j ;... 	→ h...;m̃jmj ;... and Jj 	→ −Jj (compare
equation (2.4)). Therefore, we have the following implication:

λj 	−→ −λj =⇒ Djl 	−→ −Djl (l �= j),

Dkl 	−→ Dkl (otherwise).
(2.14)

Analogously, for fixed j �= k, we have the implication

λj ←→ λk =⇒ Djj ←→ Dkk,

Dkl ←→ Djl (l �= j, k),

Dlm ←→ Dlm (otherwise).

(2.15)

These implications should be understood as some monodromy trans-
formations. Namely, we can consider a big space G of germs of holomorphic
Hamiltonian systems in

(
C

2n, 0
)
with the Hamilton function G = G(2) + · · · .

There is a natural projection π : G 	→ G2 onto the space G2 � C
2n+1 of

linear Hamiltonian systems. In G2 we can distinguish a hypersurface Σ (of
codimension 1) consisting of the Hamiltonian systems for which the nonres-
onance condition (2.6) fails. The hypersurface Σ has four components: Σ0

corresponding to a zero eigenvalue (when some λj = 0), Σ1 corresponding to
a 1 : 1 resonance, Σ2 corresponding to a 2 : 1 resonance and Σ3 corresponding
to 3 : 1 resonance (we skip components corresponding to higher order res-
onances). Of course, we have also corresponding bifurcational hypersurfaces
π−1(Σ) and π−1(Σj) in G.

The changes (2.14) and (2.15) describe the change of the Birkhoff nor-
mal form as we move along a small loop around π−1(Σ0) (resp., around
π−1(Σ1)). Such a loop lies at a small disc intersecting transversally π−1(Σ0)
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(resp., π−1(Σ1)) at a point separated from other components of the bifur-
cational hypersurface π−1(Σ) and from its singular locus (which correspond
to multiple vanishing of eigenvalues and to multiple resonances). Therefore,
they are the monodromy transformations corresponding to such loops.

Remark 2. The coefficients Dij are independent of the choice of the diago-

nalization coordinates, i.e., with respect to the action of the torus (C∗)2n:

zj 	−→ μjzj , z̃j 	−→ μ̃j z̃j .

3. Bifurcations near resonant cases

In this section we consider Hamiltonian systems in C
4 (two degrees of free-

dom) near a singular point with a low-degree resonance and their 1-parameter
deformations. We assume that the Hamilton functions depend analytically on
the (complex) coordinates and on a complex parameter. These are deforma-
tions of Hamiltonian systems from the bifurcational hypersurfaces π−1(Σ0),
π−1(Σ1) and π−1(Σ2) defined in Remark 1.

3.1. Jordan cell with zero eigenvalues

Here we consider the situation when n = 2 and

λ2 = 0 and λ1 �= 0,

i.e., the 0 : 1 resonance.
We have two possibilities: (i) the linear part, the matrix A, is diagonal-

izable, or (ii) the matrix A contains a 2-dimensional Jordan cell. Since the
case (i) is rather straightforward and not needed for our aims, we assume the
second possibility.

From [Arn2, Appendix 6] we learn that the quadratic part of the Hamil-
ton function can be reduced to

H(2)(z, z̃, x, y) =
μ

κ
‖z‖2 − 1

2
x2, (3.1)

where μ = λ1, z = z1, z̃ = z̃1, κ = {z, z̃} (as before) and x, y are coordi-
nates with {x, y} = 1. Indeed, such a Hamiltonian is a limit of a family of
generic Hamiltonians such that the 2-dimensional subspaces corresponding
to two pairs of eigenvalues ±λ1 → ±μ and ±λ2 → 0 are symplectic and
skew orthogonal. Therefore, the (x, y)-plane which supports the Jordan cell
is symplectic and skew orthogonal to the z-plane. (In the real case the sign
before 1

2x
2 is invariant with respect to real linear symplectic changes which

preserve the form (3.1), but here we can put −1.)
Assume the following expansion of the Hamiltonian:

H = H(2) +A1y
3 +A2y ‖z‖2 +A3y

4 +A4y
2 ‖z‖2 +A5 ‖z‖4

+
(
ax3 + bx2y + cxy2 + dx ‖z‖2

)
+ zP + z̃P̃ + z2Q+ z̃2Q̃+R+ · · · ,

(3.2)

where P = p20x
2+ p11xy+ p02y

2, P̃ = p̃20x
2+ p̃11xy+ p̃02y

2, Q = q1x+ q2y,
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Q̃ = q̃1x+ q̃2y, R =
∑

j+k=3 rjkz
j z̃k and the dots denote inessential quartic

and higher order terms.
We apply the following symplectic change:

x = X + aX2 + bXY + cY 2 + d ‖Z‖2 + · · · ,

y = Y − 2aXY − b

2
Y 2 + · · · ,

z = Z
(
1 + γ ‖Z‖2

)
− κ

μ
P̃ − κ

μ
Z̃Q̃− S(Z,Z) + · · · ,

z̃ = Z̃
(
1 + γ̃ ‖Z‖2

)
− κ

μ
P − κ

μ
ZQ− S̃(Z,Z) + · · · ,

(3.3)

where γ, γ̃, S, S̃ are analogous like in Lemma 1 for n = 1. Note that the
change (X,Y ) 	→ (x, y) is a time 1 flow map g1F generated by the Hamiltonian

F = aX2Y +
b

2
XY 2 +

c

3
Y 3 + dY ‖Z‖2 + · · ·

(with the parameter ‖Z‖2) and the map (Z, Z̃) 	→ (z, z̃) is an analogous map
g1G generated by the Hamiltonian

G = − 1

μ

(
2RE(ZP ) + RE(Z2Q)

)
+G0(Z, Z̃).

After this change we arrive at the following analogue of the Birkhoff
normal form:

HNor =
μ

κ
‖Z‖2 − 1

2
X2 +B1Y

3 +B2Y ‖Z‖2 +B3Y
4

+B4Y
2 ‖Z‖2 +B5 ‖Z‖4 + · · · ,

(3.4)

where3

B1 = A1, B2 = A2,

B3 = A3 +
1

2
c2 − κ

μ
‖p02‖2 − 3

2
A1b− 2A2 RE p02,

B4 = A4 + cd− 3
κ

μ
‖q2‖2 − 1

2
A2b− 4

κ

μ
RE r21p02,

B5 = A5 +
1

2
d2 − 3

κ

μ

(
‖r03‖2 + ‖r21‖2

)
(3.5)

and we adopt the same notations for ‖ · ‖ and RE as in the previous section.
Here the last term in B5 comes from Theorem 1 for n = 1.

Consider now a deformation Hε, ε ∈ (C, 0), of the Hamiltonian (3.2)
such that the origin x = y = z = z̃ = 0 is critical4 and for ε �= 0 the corre-
sponding matrix Aε is nondegenerate. The natural deformation of the Jordan

3Baider and Sanders [BaSa] proved that the unique normal form of a Hamiltonian with one
degree of freedom and with nilpotent linear part of the corresponding differential system
is H = ± 1

2
x2+aky

k+
∑

aly
l, where ak �= 0 and the sum runs over l > k such that l �= −1

(mod k).
4This assumption is restrictive, because it is possible to deform H in a way that the critical
point splits into two (or more) singular points. But it is what we need in Section 4.
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cell is
(

0 ε−1 0

)
; this is achieved by some genericity assumption ( d

dε detAε|ε=0 �=
0) and eventual change of the parameter. In this case we can apply a sym-
plectic change of the form (3.3) where the coefficients depend on ε and the
terms of degree greater than or equal to 3 can be reduced to the form (3.4).
Thus we arrive at the following proposition.

Proposition 1. The family Hε can be reduced to the following normal form:

HNor
ε =

μ

κ
‖Z‖2 − 1

2

(
X2 + εY 2

)
+B1Y

3 +B2Y ‖Z‖2

+B3Y
4 +B4Y

2 ‖Z‖2 +B5 ‖Z‖4 + · · · ,
where the coefficients μ = μ(ε), κ = κ(ε), Bj = Bj(ε) depend analytically on
the parameter and Bj(0) are given in equations (3.5).

Assume ε �= 0. Let

Z2 = X + i
√
ε Y, Z̃2 = Z̃2 = X − i

√
ε Y.

Thus we have

Y =
Z2 + Z̃2

2i
√
ε

, (3.6)

λ2 = i
√
ε, κ2 = −2i

√
ε. (3.7)

The quadratic part of the Hamiltonian HNor
ε equals

μ

κ
‖Z‖2 + λ2

κ2
‖Z2‖2 =

λ1

κ1
‖Z1‖2 + λ2

κ2
‖Z2‖2 = λ1J1 + λ2J2.

The cubic and quartic terms come from the substitution of (3.7) to HNor
ε .

After applying Theorem 1 we arrive at the Birkhoff normal form (2.8)
with

D11 = κ2

(
−B2

2

2ε
+B5

)
,

D12 =
iκ (−3B1B2/ε+B4)√

ε
,

D22 =
15B2

1

4ε2
− 3B3

2ε
.

(3.8)

These formulas imply the monodromy transformation (2.14): the loop in the
parameter space is {ε = ε0e

iτ , τ ∈ [0, 2π]} for some small ε0 > 0.

3.2. Pair of Jordan cells with nonzero eigenvalues

Here we assume
λ1 = λ2 = μ �= 0

and that the matrix A is not diagonalizable. (The case with diagonal A is
the same as in Section 2.)

From [Arn2] (see also [Mar, Dui, vdM]) we learn that, when the real
matrix A has two imaginary eigenvalues ±iω of multiplicity 2 and A is not
diagonalizable, then we can write H(2) = ± 1

2

(
q21 + q22

)
+ ω(q1p2 − q2p1), or
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H(2) = ± 1
2 ‖v1‖2 + ω

2i (v̄1v2 − v1v̄2), where v1 = q1 + iq2, v2 = p1 + ip2 (with
{vj , v̄j} = {v1, v2} = 0 and {v1, v̄2} = 2). (Like in the previous section, in

the real case the sign before 1
2 ‖v1‖2 is invariant under symplectic changes.)

This suggests that we should take

H(2) =
1

2
‖v1‖2 + μ

2
(v1ṽ2 − ṽ1v2), (3.9)

where the variables vj , vk obey the following Poisson brackets:

{vj , ṽj} = {vj , vk} = {ṽj , ṽk} = 0, {v1, ṽ2} = {ṽ1, v2} = 2. (3.10)

Then we get the system

dv1
dt

= μv1,
dv2
dt

= μv2 − v1,
dṽ1
dt

= −μṽ1,
dṽ2
dt

= −μṽ2 − ṽ1, (3.11)

i.e., with two Jordan cells.

To obtain the form (3.9) one should treat this case as a limit of a generic
case Hε, with two distinct pairs ±λ1(ε), ±λ2(ε) such that λ1,2(ε) → μ as
ε → 0. Since the invariant 2-dimensional subspaces corresponding to the
eigenvalues λ1, λ2 and −λ2,−λ2, respectively, are Lagrangian (with vanishing
restricted symplectic form), this holds also for ε = 0. Thus {vj , vk} = 0. Now
the condition

0 =
d

dt
{v1, ṽ2} =

{
dv1
dt

, ṽ2

}
+

{
v1,

dṽ2
dt

}

(due to the Hamiltonian equations) implies {v1, ṽ1} = 0. Thus {v1, ṽ2} �= 0
and {ṽ1, v2} �= 0 (by the nondegeneracy of the symplectic structure). We can
normalize the variables in a way the second pair of equations (3.10) holds.

(Note also that H(2) = I1 + μI2, where I1, I2 are commuting first inte-
grals for the differential system.)

Let us consider the problem of normalizations of higher order terms. We
use the method of generating function (see [Arn2]). The symplectic 2-form
corresponding to the brackets (3.10) is

1

2
dv1 ∧ dṽ2 +

1

2
dṽ1 ∧ dv2 =

1

2
d (v1dṽ2 + ṽ1dv2) .

If the change is (v) 	→ (V ), then the 1-form v1dṽ2 + ṽ1dv2 −V1dṼ2 − Ṽ1dV2 is
closed, hence exact. It follows that there exists a generating function S such
that v1dṽ2 + ṽ1dv2 + Ṽ2dV1 + V2dṼ1 = dS. Here the generating function

S = V1ṽ2 + Ṽ1v2 +
∑

smV m1
1 Ṽ m̃1

1 vm2
2 ṽm̃2

2 = V1ṽ2 + Ṽ1v2 + S1

depends on V1, Ṽ1, v2, ṽ2 and satisfies the equations

v1 =
∂S

∂ṽ2
= V1 +

∑ m̃2smV m1
1 Ṽ m̃1

1 vm2
2 ṽm̃2

2

ṽ2
,

ṽ1 = Ṽ1 +
∂S1

∂v2
, V2 = v2 +

∂S1

∂Ṽ1

, Ṽ2 = ṽ2 +
∂S1

∂V1
.
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By construction this change is symplectic and the corresponding change in
the Hamilton function is the following:

H(v) = H(V )

+
∑

sm

{
1

2

(
m̃2

Ṽ1

Ṽ2

+m2
V1

V2

)
− μ

2
(m1 +m2 − m̃1 − m̃2)

}
V m

plus nonlinear terms with respect to sm’s.

We see that the corresponding (homological) linear operator H : S1 	→
H(V ) − H(v) acting on the space S of homogeneous polynomials of fixed
degree |m| = m1+m̃1+m2+m̃2 is of the form: diagonal with the eigenvalues
−μ

2 (m1 + m2 − m̃1 − m̃2) plus upper triangular (with respect to suitable
ordering of the multi-indices m). It is clear that for d = 3 this operator is
invertible.

For d = 4 the subspace S0 ⊂ S consisting of sm’s with m1 + m2 =
m̃1 + m̃2 = 2 (i.e., with zero eigenvalues of H) is invariant (and on the
complementary to S0 subspace the operator H is invertible). We have

0 	−→ 0 · s00;22,
s00;22 	−→ s01;21 + s10;12,

s01;21 	−→ 1

2
s02;20 + s11;11,

s10;12 	−→ s11;11 +
1

2
s20;02.

These maps describe block operators between some subspaces of S0 with fixed
m2+m̃2 (the sum of these indices decreases by 1). The distinguished operators
are not surjective, because of the dimension counting (other block operators
are surjective). It is easy to see that the subspaces complementary to images

of the distinguished block operators are generated by ‖V2‖4, ‖V2‖2 (V1Ṽ2 −
Ṽ1V2) = ‖V2‖2 I2 and (V1Ṽ2 − Ṽ1V2)

2 = I22 , respectively.

This implies the following normal form:5

HNor = H(2) +A1 ‖V2‖4 +A2
2 ‖V2‖2 I2 +A3I

2
2 + · · · . (3.12)

Because the homological operator H is nondiagonal, the expressions for the
coefficients Aj are quite complicated, so we do not provide corresponding
formulas.

Consider now a 1-parameter deformation Hε, ε ∈ (C, 0), of the above
Hamiltonian. Under some genericity assumption the quadratic part can be
transformed to the following form:

H(2)
ε =

1

2

(
‖v1‖2 − ε ‖v2‖2

)
+

μ

2
(v1ṽ2 − ṽ1v2), (3.13)

5In [BaSa] it was proved that (in the case of imaginary eigenvalues) a unique normal form

is H = H2 + f(I2, ‖V2‖2), where f is a formal power series. In [Mar, Ch. 4, Sect. 4] a
slightly different normal form is given.
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where μ = μ(ε) may depend on the parameter. The genericity condition is
expressed in terms of the characteristic polynomial

det (λI +Aε) = λ4 − 2a2(ε)λ
2 + a4(ε)

such that
d

dε

(
a22 − a4

) |ε=0 �= 0.

(In the normal form (3.13) we have a2 = μ2 + ε and a4 =
(
μ2 − ε

)2
.)

Indeed, then system (3.12) becomes perturbed to

dv1
dt

= μv1−εv2,
dv2
dt

= μv2−v1,
dṽ1
dt

= −μṽ1−εṽ2,
dṽ2
dt

= −μṽ2− ṽ1.

Assume ε �= 0. In the variables

z1 = v1 −
√
ε v2, z̃1 = ṽ1 +

√
ε ṽ2,

z2 = v1 +
√
ε v2, z̃2 = ṽ1 −

√
ε ṽ2,

(3.14)

the latter system is diagonalizable with the corresponding eigenvalues

λ1 = λ1(ε) = μ+
√
ε, −λ1, λ2 = μ−√

ε, −λ2. (3.15)

We note also that

{z1, z2} = {z̃1, z̃2} = {z1, z̃2} = {z̃1, z2} = 0,

{z1, z̃1} = {z2, z̃2} = 2
√
ε.

(3.16)

Like in the previous section, we find that the above reduction of cubic
and quartic terms for ε = 0 can be extended to the case ε �= 0 (but small).
We arrive at the following proposition.

Proposition 2. The family Hε can be reduced to the following normal form:

HNor
ε = H(2)

ε +A1 ‖V2‖4 +A2 ‖V2‖2 I2 +A3I
2
2 + · · · ,

where the constants Aj = Aj(ε) depend analytically on the parameter.

Let us reduce the Hamiltonian from Proposition 2 for ε �= 0 to the
Birkhoff normal form. From equations (3.14) and (3.16) (with capital V and
Z) we find

‖V2‖2 = − 1

4ε
‖Z1 − Z2‖2 , I2 =

1

2
√
ε

(
‖Z1‖2 − ‖Z1‖2

)
.

It follows that

D11 =
A1

4ε
− A2√

ε
+ 4A3,

D12 =
3A1

2ε
− 8A3,

D22 =
A1

4ε
+

A2√
ε
+ 4A3

(3.17)
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in the Birkhoff normal form (2.8). As before these formulas agree with the
monodromy transformation (2.15), where the loop in the parameter space is
{ε = ε0e

iτ , τ ∈ [0, 2π]}.6

3.3. Deformation of the 2 : 1 resonance

Here we assume that for ε = 0 we have

λ1 = 2λ2 = 2μ �= 0.

This case is easy and we formulate only the final result. (More detailed anal-
ysis of this case with examples is given in [BHLV].)

Proposition 3. The family Hε can be reduced to the following normal form:

HNor
ε =

2μ+ ε

κ1
‖Z1‖2 + μ

κ2
‖Z2‖2 +A1Z1Z̃

2
2 +A2Z̃1Z

2
2

+A3 ‖Z1‖4 +A4 ‖Z1‖2 ‖Z2‖2 +A5 ‖Z2‖4 + · · · ,
where the constants Aj = Aj(ε) and κj = κj(ε) depend on the parameter.

For ε �= 0 we can reduce HNor
ε to the Birkhoff normal form with

D11 = κ2
1A3,

D12 =
4κ1κ

2
2A1A2

ε
+ κ1κ2A4,

D22 = −κ1κ
2
2A1A2

ε
+ κ2

2A5.

(3.18)

4. The restricted three-body problem

4.1. The Hamiltonian and the KAM theory

In the restricted three-body problem (see [Mar]) one deals with the Hamil-
tonian (expressed in local coordinates q1, q2 near Lagrangian libration point
and corresponding momenta p1, p2)

G = G(q1, p1, q2, p2; ζ) = G(2) +G(3) + · · · ,
where

G(2) =
1

2
p21 +

1

2
p22 + p1q2 − p2q1 +

1

8
q21 − ζq1q2 − 5

8
q22 ,

G(3) = −7
√
3 ζ

36
q31 +

3
√
3

16
q21q2 +

11
√
3 ζ

12
q1q

2
2 +

3
√
3

16
q32 ,

G(4) =
37

128
q41 +

25ζ

24
q31q2 −

123

64
q21q

2
2 −

15ζ

8
q1q

3
2 −

3

128
q42

(4.1)

6Duistermaat [Dui] also considered monodromy transformations in this situation, but of
different kind. He considered projection π from R4 to R2 corresponding to taking the pair
(S,G) = (iI2, I1 + ε

∥
∥V 2

2

∥
∥+A1 ‖V2‖4). He studied the change of the topology of the fiber

π−1(S,G) as the point (S,G) varies along a loop in the in the base R2.
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and ζ = 3
√
3(1− 2μ)/4 is a parameter (related with the ratio μ/(1 − μ)) of

the masses of heavy bodies, like Jupiter and Sun. The matrix of the linear
part of the differential system equals

A =

⎛
⎜⎜⎝

0 1 1 0
−1/4 0 ζ 1
−1 0 0 1
ζ −1 5/4 0

⎞
⎟⎟⎠ . (4.2)

Its characteristic polynomial and the eigenvalues are the following:

P (λ, ζ) = λ4 + λ2 +
27

16
− ζ2, (4.3)

±λ1,2 = ±
√
−1±√

4ζ2 − 23/4

2
= ±

√
−1±√

Δ

2
. (4.4)

Here equation (4.4), or P (λ, ζ) = 0, defines an algebraic function

C � ζ 	−→ λ(ζ) ∈ C

which has four sheets and four ramification points at

±ζ0 = ±
√
27

4
and ± ζ1 = ±

√
23

4
; (4.5)

they correspond to λ2 = 0 and λ1 = λ2, respectively. Of course, λ depends
only on ζ2. When ζ2 approaches ζ20 , the eigenvalues λ1(ζ) and −λ1(ζ) ap-
proach the value λ = 0 and exchange their positions as ζ2 makes a full turn
around ζ20 . When ζ2 approaches ζ21 , the eigenvalues λ1(ζ) and λ2(ζ) (resp.,

λ3(ζ) and λ4(ζ)) approach the value λ =
√−1/2 (resp., λ = −√−1/2) and

exchange their positions as ζ2 makes a full turn around ζ21 . We note also that
the 2 : 1 and 3 : 1 resonances correspond respectively to

ζ22 =
611

400
and ζ23 =

639

400
. (4.6)

The corresponding diagonalizing coordinates (z) can be chosen as fol-
lows:

q1 =

2∑
j=1

2RE (ζ + 2λj) zj , p1 =

2∑
j=1

2RE

(
3

4
+ ζλj + λ2

j

)
zj ,

q2 =
2∑

j=1

2RE

(
λ2
j −

3

4

)
zj , p2 =

2∑
j=1

2RE

(
ζ +

5λj

4
+ λ3

j

)
zj ,

κ1 = −
[
2λ1

(
3

4
− λ2

1

)√
Δ

]−1

, κ2 =

[
2λ2

(
3

4
− λ2

2

)√
Δ

]−1

,

(4.7)
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where RE is understood like in the previous section with the agreement that
λ̃j = −λj , ζ̃ = ζ and

√
Δ = λ2

2 − λ2
1.

7

When ζ2 �= ζ2j , j = 0, 1, 2, 3, we can reduce the Hamiltonian G to
the Birkhoff normal form (2.8). In the study of the Lyapunov stability of
the three-body problem, the following isoenergetic degeneracy determinant
is important:8

det =

∣∣∣∣∣∂
2HBir/∂Jj∂Jk ∂HBir/∂Jk

∂HBir/∂Jj 0

∣∣∣∣∣ = −2λ2
2D11 + 2λ1λ2D12 − 2λ2

1D22

(4.8)
evaluated at J1 = J2 = 0.

(When 23/16 < ζ2 < 27/16, the linear part of the system has purely
imaginary eigenvalues ±λ1 = ∓iω1 and ±λ2 = ∓iω2, where ω1,2 > 0, and we
have H0 +H1, where H0 = ω1I1 − ω2I2 −D11I

2
1 +D12I1I2 −D22I

2
2 , H1 is a

perturbation and I1,2 = ∓iJ1,2. Therefore, the corresponding linear system
is Lyapunov stable. In order to prove the genuine Lyapunov stability one
uses the KAM theory (see [Mar]). That theory requires that the frequencies
ω1(I) = ∂H0/∂I1 and −ω2(I) = ∂H0/∂I2 vary regularly at the level hyper-
surfaces {H0 = const} of the unperturbed completely integrable Hamiltonian
H0. This is the nondegeneracy condition det �= 0.)

Theorem 2 (See [DDB]). In the restricted three-body problem we have

det(ζ) =
36− 541λ2

1λ
2
2 + 644λ4

1λ
4
2

−8 (1− 4λ2
1λ

2
2) (4− 25λ2

1λ
2
2)

=
41 216ζ4 − 104 480ζ2 + 61 245

−8 (16ζ2 − 23) (400ζ2 − 611)
.

Our aim is to calculate det = det(ζ) as a function of ζ using only analytic
properties of the Birkhoff normal form and bifurcations near singular points
of the function λ(ζ).

4.2. Symmetries

Due to the formulas from Theorem 1 we see that det(ζ) is an algebraic func-
tion of ζ ∈ C with possible singular points at ±ζ0, ±ζ1, ±ζ2 and at ∞. But
we can say more.

Lemma 5. The function det(ζ) is a rational function which depends only on
ζ2 with possible poles at ζ20 (of order at most 2), ζ21 (of order at most 1), ζ22
(of order at most 1) and at ζ2 = ∞.

7These coordinates are directly related with the change used in [BaZo]. In [Mar, Pro] other

choices are taken: in particular, following [Pro] one can take q1 =
∑

2RE(4λ2
j − 9)zj ,

q2 =
∑

2RE(4ζ− 8λj)zj , p1 =
∑

2RE(4λ3
j −λj − 4ζ)zj , p2 =

∑
2RE(4λ2

j − 4ζλj +9)zj .
8In [DDB] the determinant det(ζ) is denoted by D, in [BaZo] we used the quantity Γ =
det(ζ)/8 whereas in [Mar, Pro] the authors use −det(ζ)/2.



Vol. 13 (2013) Birkhoff  normalization 605

Proof. Firstly, we have to show that the function det(ζ) is single valued
near the points ±ζ0, ±ζ1, ±ζ2; the orders of the corresponding poles follow
from equations (3.8), (3.17) and (3.18). Indeed, then also the monodromy of
det(ζ) generated by a loop around ζ = ∞ must be trivial. Finally, det(ζ) has
a monomial growth (as an algebraic function).

By the results of Section 3.3 only the first two cases are under question.
The family Gζ of Hamiltonians defines a complex curve in the space G

of Hamiltonians defined in Remark 1. This family meets the bifurcational
surfaces π−1(Σ0), π

−1(Σ1) and π−1(Σ2) at the corresponding points ±ζ0, ±ζ1
and ±ζ2.

The monodromy map M0 generated by a loop around ζ0 corresponds
to the change λ1 ↔ λ̃1 = −λ1 and the changes (2.14) in the coefficients Djk.
Of course, det(ζ) is invariant under such change and the same is true in the
case the point −ζ0 is surrounded.

The monodromy M1 generated by a loop around ζ1 corresponds to the
changes λ1 ↔ λ2, λ̃1 ↔ λ̃2 and the changes (2.15). Also here det(ζ) remains
invariant.

To prove that the function det(ζ) is even, we note that the low order
terms (in fact, all terms) of Gζ are invariant under the change

ζ 	−→ −ζ, (q1, p1, q2, p2) 	−→ (−q1, p1, q2,−p2).

The second change corresponds to the composition of changes:

λj ←→ −λj , zj ←→ z̃j (j = 1, 2)

and
zj 	−→ −zj , z̃j 	−→ −z̃j (j = 1, 2) .

The first change is induced by the transformation M0 ◦ M−1
1 M0M1, un-

der which det(ζ) is invariant, and the invariance of det(ζ) under the second
change follows from Remark 2. �

4.3. Asymptotic at infinity

Here we assume that
ζ −→ ∞.

Let us apply the following symplectic normalization:

(q1, q2) = ζ−1/4 (Q1, Q2) , (p1, p2) = ζ1/4 (P1, P2) .

Then we get

G(2) = ζ1/2
{
P 2
1 + P 2

2

2
−Q1Q2

}
+O(1) = ζ1/2G

(2)
0 + · · · ,

G(3) = ζ1/4G
(3)
0 + · · · ,

G(4) = G
(4)
0 + · · · .

The reduction of G
(2)
0 to the normal form (2.3) is the following:

Q1 = z1 + z̃1 + z2 + z̃2, Q2 = z2 + z̃2 − z1 − z̃1,

P1 = z2 − z̃2 − i (z1 − z̃1) , P2 = z2 − z̃2 + i (z1 − z̃1) ,
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H(2) = 4ζ1/2 (z1z̃1 − z2z̃2) ,

κ1 = −1/4, κ2 = −i/4, λ1 = −iζ1/2, λ2 = ζ1/2.

It is not difficult to see that the leading part of det(ζ) is proportional
to ζ1 and the coefficient before ζ is calculated using the part

ζ1/2G
(2)
0 + ζ1/4G

(3)
0 +G

(4)
0

of the Hamiltonian. But we know that det(ζ) is an even function. So this
coefficient must equal zero. Therefore,

det(ζ) −→ det(∞) �= ∞ as ζ −→ ∞. (4.9)

This property is also confirmed by direct calculations.
We do not compute here the value det(∞), because it is rather involved.

4.4. Asymptotic at the 0 : 1 resonance

For ζ = 3
√
3/4 we find the following change of variables leading to the qua-

dratic Hamiltonian of the form (3.1):

q1 = − x

2
√
3
+

3y

2
− 2RE

(
3
√
3− 8i

)
z,

p1 =

√
3y

2
+ 2RE

(
1 + 3i

√
3
)
z,

q2 =
3x

2
−

√
3y

2
+ 7z + 7z̃,

p2 = − 2x√
3
+

3y

2
− 2RE

(
3
√
3− i

)
z,

where w̃ = w for a complex number w. Moreover,

μ = −i, κ = − i

56
.

Substituting into G(3) and G(4) we find

a = −
√
3

9
, b = 6, c = −3

√
3, d = −112

√
3,

P =
(− 11

√
3 + 34i

)
x2 +

(
66− 12i

√
3
)
xy − (

9
√
3 + 18i

)
y2,

Q =
(− 120

√
3 + 264i

)
x+

(
288 + 24i

√
3
)
y,

R = 2RE
{(− 504

√
3 + 560i

)
z3 − (

168
√
3 + 366i

)
z2z̃

}
,

A1 = A2 = 0, A3 = −27

8
, A4 = −1008, A5 = −14112

in equation (3.2). The perturbation parameter is

ε =
27

16
− ζ2.
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Since Aj(ε) are analytic in ε, we have B1,2 = A1,2(ε) = O(ε) as ε → 0.
Also calculation of B3 in (3.5) shows that B3 = 0 for ε = 0. Therefore,
equations (3.8) give

D22 = O

(
1

ε

)
, D12 = O

(
1√
ε

)
, D11 = O(1).

Since λ1 = O(1) and λ2 = O(
√
ε), equation (4.8) implies that

det(ζ) −→ det(ζ0) �= ∞ as ζ −→ ±ζ0. (4.10)

Like in the previous case we omit the calculation of the constant det(ζ0).

4.5. Asymptotic at the 1 : 1 resonance

Here we only check the “transversality” of the deformation relying on chang-
ing ζ21 = 23/16 to ζ2 = 23/16 + ε. Then from (3.17) and (4.8) it follows that
D(ζ) has simple poles at ζ = ±ζ1:

det(ζ) ∼ const
(
ζ2 − ζ21

)−1
. (4.11)

Firstly, one has to check the behavior of the discriminant of the char-
acteristic polynomial in (4.3), but this is obvious. Secondly, one has to check
that for ε = 0 the eigenspace corresponding to the double eigenvalue λ1 =
λ2 =

√−1/2 is one dimensional. This is easy and we refer the reader to [vdM].
Also we do not compute here the constant in (4.11); in fact, such cal-

culation (using Theorem 1) was done in the master’s thesis of Wiliński [Wil]
for ζ close to ζ2.

4.6. Asymptotic at the 2 : 1 resonance

For ζ = ζ2 =
√
611/20 we have

√
Δ = 3/5, λ1 = −2i/

√
5, λ2 = μ = −i/

√
5.

Next we use equation (4.7). Thus we have

q1 =

(√
611

20
− 4i√

5

)
z1 +

(√
611

20
+

2i√
5

)
z̃2 + · · · ,

q2 = −31

20
z1 − 19

20
z̃2 + · · · ,

κ1 = −25i
√
5

93
, κ2 =

50i
√
5

57
,

where we have skipped the terms with z̃1 and z2. Substituting it into G(3),
expanding and collecting terms, we find the following two resonant terms
h10;02z1z̃

2
2 and h̄10;02z̃1z2 with

h10;02 = A1 = Ā2 =

√
3
(−20 226− 204i

√
5 · 611)

90 000
.

Moreover, for ζ2 − ζ22 small we have

ε = λ1 − 2λ2 =
125i(ζ2 − ζ22 )

12
√
5

+ · · · .
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Now from (3.18) and (4.8) we obtain

det(ζ) ∼ 24μ2κ1κ
2
2 |A1|2 ε−1 ∼ −2662

5625

(
ζ2 − ζ22

)−1
. (4.12)

This agrees with the Deprits formula.

4.7. Calculations for three special values of the parameter

The first value is taken as ζ3 =
√
639/20, i.e., corresponding to the 3 : 1

resonance. We have

√
Δ =

4

5
, λ1 = − 3i√

10
, λ2 = − i√

10 i
, (λ1λ2)

2
=

9

100
,

κ1 = −25

99
i

√
5

2
, κ2 =

25

17
i

√
5

2
,

q1 = 2RE

(√
639

20
− 3i

√
2

5

)
z1 + 2RE

(√
639

20
− i

√
2

5

)
z2,

q2 = −2RE
33

20
z1 − 2RE

17

20
z2

(see equations (4.7)). The calculations give

D11 = − 309

2240
, D12 = −1219

560
, D22 = − 79

320

and finally

det(ζ3) =
4671

5600
,

like in the Deprits formula.

The other two values correspond to the 4 : 1 resonance and the 3 : 2
resonance, i.e., ζ4 =

√
7547/68 (with λ1 = −4i/

√
17, λ2 = −i/

√
17 − i,

(λ1λ2)
2
= 16/289) and ζ5 = 3

√
443/52 (with λ1 = −3i/

√
13, λ2 = −2i/

√
13,

(λ1λ2)
2
= 36/169). The calculations give

det (ζ4) = −167 509

340 200
and det (ζ5) = −89 289

2800
,

in agreement with equation (4.9).

Remark 3. In [BaZo] the isoenergetic degeneracy determinant det(ζ) was
studied near the points ζ = ∞, ζ = ζ0 and ζ = ζ2. In the third case the
difference between our asymptotic and equation (4.12) relied only on another
definition of this determinant (see Note 8). In the first case we have found
det(ζ) → ∞ (compare equation (4.9)), because we have made improper choice
of branches of some multivalued functions (like λ(ζ)). In the case ζ → ζ0 we
have committed a mistake in calculations and obtained det(ζ) → ∞ (compare
equation (4.10)); the same wrong asymptotic was given in [Leo].
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4.8. The speciality of the restricted three-body problem

The above analysis indicates that the 1-parameter family of Hamiltonians
associated with the restricted three-body problem is somewhat special. This
speciality is related with the way it meets the bifurcational values of the
parameter ζ. Whereas the bifurcations at ζ = ∞, ζ = ζ3, ζ = ζ2 and at
ζ = ζ1 are of generic type, the bifurcation at ζ = ζ0 is highly degenerate.
Three coefficients in the normal form (3.4) vanish: B1, B2 and B3. This
explains the astonishing simplicity of the Deprits formula.

There are works devoted to generalization of the restricted three-body
problem, like the (N+1)-body problems where a configuration of N “heavy”
bodies forms a special central planar configuration and the “light” body
moves in the gravitational field formed by the heavy bodies (in works of
Grebenikov and his students [GKJ]). Special case (studied numerically by
Prokopenya [Pro]) is when the N = 3 heavy bodies form the triangular La-
grange configuration. These models contain several parameters. It would be
interesting to study bifurcations of resonant singular points in the spirit it is
done in our paper.
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