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Abstract: Faulted gas reservoirs are very common in reality, where some linear leaky faults divide the gas reservoir 
into several reservoir regions with distinct physical properties. This kind of gas reservoirs is also known as linear 
composite (LC) gas reservoirs. Although some analytical/semi-analytical models have been proposed to investigate 
pressure behaviors of producing wells in LC reservoirs based on the linear composite ideas, almost all of them focus on 
vertical wells and studies on multiple fractured horizontal wells are rare. After the pressure wave arrives at the leaky 
fault, pressure behaviors of multiple fractured horizontal wells will be affected by the leaky faults. Understanding the 
effect of leaky faults on pressure behaviors of multiple fractured horizontal wells is critical to the development design. 
Therefore, a semi-analytical model of finite-conductivity multiple fractured horizontal (FCMFH) wells in LC gas 
reservoirs is established based on Laplace-space superposition principle and fracture discrete method. The proposed 
model is validated against commercial numerical simulator. Type curves are obtained to study pressure characteristics 
and identify flow regimes. The effects of some parameters on type curves are discussed. The proposed model will have 
a profound effect on developing analytical/semi-analytical models for other complex well types in LC gas reservoirs. 
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1 Introduction 
 

Faults are very common in various gas 
reservoirs, and some leaky faults have an important 
influence on the development of faulted gas 

reservoirs. Owing to the existence of leaky faults, 
the gas reservoirs are usually divided into several 
reservoir regions with different properties, and the 
gas in one reservoir region can flow cross the faults 
and go into other reservoir regions. Therefore, the 
influence of leaky faults on fluid flow has attracted 
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much attention. Linear composite (LC) model is 
considered as a reasonable approximation for 
describing fluid flow in hydrocarbon-bearing 
reservoirs separated by linear faults [1, 2]. In the 
last few decades, composite models, mainly 
including radial composite (RC) models and linear 
composite (LC) models, have been widely 
investigated and applied to various oil and gas 
reservoirs with variable reservoir properties. 
However, most of studies focus on RC models  
[3−5] and studies on LC models are few. 
    Pressure transient analysis is considered as a 
good way to analyze fluid flow characteristics and 
reservoir/well properties [6−15]. Pressure response 
of vertical wells in LC reservoirs has been 
investigated since the early 1960s. BIXEL et al [16] 
proposed the first analytical model of vertical wells 
in LC reservoirs and studied the impact of the fault 
on pressure behaviors. YAXLEY [1] developed an 
analytical model for LC reservoirs with a partially 
communicating fault. AMBASTHA et al [17] 
extended the LC model for infinite reservoirs to the 
one for finite strip reservoirs. BOURGEOIS et al 
[18] developed an analytical model for 3-zone LC 
reservoirs. KUCHUK et al [19] further developed 
an analytical model for n-zone LC reservoirs. 
ANDERSON [20] proposed an explicit analytical 
solution for fluid flow in infinite aquifers with a 
fault, and investigated the effect of the anisotropic 
fault. EZULIKE et al [21] developed an analytical 
model of horizontal wells in LC reservoirs, and 
investigated pressure behaviors of horizontal wells. 
ZEIDOUNI [22, 23] proposed analytical and 
semi-analytical models of vertical wells in 
multilayer reservoirs with a leaky fault, respectively. 
FENG et al [24] developed an analytical model of a 
vertical well in a dual-porosity LC reservoir, and 
studied the characteristic of pressure behaviors. 
Considering fault permeability alteration, MOLINA 
et al [2] proposed an analytical model of vertical 
wells in LC reservoirs and used it to detect the fault 
reactivation. However, until now, almost all of 
analytical/semi-analytical models for LC reservoirs 
were aimed at vertical wells, and the studies on 
complex well types in LC reservoirs are rare. 
Compared with the establishment of analytical/ 
semi-analytical RC models for complex well types, 
it is much more difficult to establish analytical/ 
semi-analytical LC models for complex well types. 
Therefore, there are still significant challenges in 
establishing analytical/semi-analytical models for 

complex well types in LC reservoirs, for example, 
multiple fractured horizontal (MFH) wells with 
finite-conductivity hydraulic fractures. 
    Horizontal well in combination with hydraulic 
fracturing is considered as a good means of 
developing various oil/gas reservoirs, especially 
low-permeability oil/gas reservoirs. In the last 
decade, tight oil/gas reservoirs have captured the 
attention of people owing to the enormous oil/gas 
reserves, and MFH well has been extensively 
employed to develop these ultra-low-permeability 
reservoirs. Of course, the MFH well is not merely 
applied to low-permeability reservoirs; it is also 
used to develop some mid/high-permeability 
reservoirs because it can significantly increase 
production at low cost. Therefore, a variety of 
analytical/semi-analytical models have been 
proposed to study pressure behaviors of MFH wells 
in various reservoirs, such as homogeneous 
reservoirs [25], dual porosity reservoirs [26], triple 
porosity reservoirs [27], fractal reservoirs [28], and 
radial composite reservoirs [29, 30]. 
    To our knowledge, there are few analytical/ 
semi-analytical models of MFH wells in LC 
reservoirs. Although some composite linear-flow 
models, which mainly include 3-linear flow model 
[31], 5-linear flow model [32], and other improved 
versions [33, 34], were proposed to deal with fluid 
flow in the stimulated reservoir volume near the 
MFH well, these composite linear-flow models 
divide the reservoir into several linear flow regions, 
which cannot reflect the complete characteristics of 
fluid flow in LC reservoirs. Therefore, it is still 
difficult to develop efficient and accurate 
analytical/semi-analytical models of MFH wells in 
LC reservoirs. 
    In this work, we derived the Laplace-space 
point source solution for LC gas reservoirs, and 
then proposed a semi-analytical model of finite- 
conductivity multiple fractured horizontal  
(FCMFH) wells in LC gas reservoirs based on 
Laplace-space superposition principle and fracture 
discrete method. The proposed semi-analytical 
model was validated against numerical simulation. 
Finally, pressure transient analysis of FCMFH wells 
in LC gas reservoirs was studied in detail. 
 
2 Model descriptions 
 
    Figure 1 shows the schematic of an FCMFH 
well in an LC gas reservoir with a fault. As shown, 
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Figure 1 Schematic of FCMFH well in LC gas reservoir 

with a fault 

 
an infinite gas reservoir is divided into two regions, 
i.e., Region 1 (x>0) and Region 2 (x<0), by a fault. 
An FCMFH well can be located at arbitrary 
position in Region 1. The proposed model is 
described as follows: 
    1) Each reservoir region (i.e., Region 1 or 
Region 2) is homogeneous and isotropic reservoir, 
but the two regions can have different properties 
(e.g., porosity, permeability, and rock 
compressibility). The properties of both the two 
regions are independent of pressure. 
    2) The gas reservoir, which has a uniform 
thickness for Region 1 and Region 2, is bounded by 
upper and lower impermeable layers. The fault is 
assumed to be located at x=0 and infinitely 
extended along the y-axis. The fault is considered as 
a partially communicating interface, where flux is 
continuous and pressure can be discontinuous. The 
orientation of the horizontal well can be arbitrary 
direction, and the angle between the horizontal well 
and x-axis is set as φ. 
    3) Hydraulic fractures completely vertically 
penetrate the gas reservoir, and the number of 
hydraulic fractures is assumed to be M. Each 
hydraulic fracture symmetrically distributes about 
the horizontal well and can intersect with the 
horizontal well with any angle (e.g., θj for the jth 
hydraulic fracture). The coordinates of the 
intersection between the jth hydraulic fracture and 
horizontal well are set to be (xwj, ywj). Gas flow 
within each finite-conductivity hydraulic fracture is 
viewed as an incompressible linear flow. 
    4) Gas flow in LC gas reservoirs is assumed to 
be isothermal single-phase flow, which follows the 
Darcy law. Initial reservoir pressure is uniformly 
distributed in Region 1 and Region 2. 

 
3 Mathematical models 
 
3.1 Seepage model for LC gas reservoirs 
    If a point source is assumed to be located at 
coordinates (xw, yw) in Region 1 and gas is 
withdrawn from the point source with flow rate 
qsc(t), gas flow in the LC gas reservoir can be 
described by the following governing equations 
(Appendix A): 
 

1 1 1 1 1 1k p p k p p

x Z x y Z y 
      

          
 

       sc sc
w w

sc

p Tq
x x y y

T h
    

   1 t1 1 1 , 0
C p p

x
Z t

 
 


                     (1) 

 
2 t2 22 2 2 2 2 2 2 , 0
C pk p p k p p p

x
x Z x y Z y Z t


 

       
            

 

(2) 
 
where subscripts 1 and 2 represent Region 1 and 
Region 2, respectively; k is the permeability, m2; μ 
is the gas viscosity, Pa∙s; p is the reservoir pressure, 
Pa; Z is the deviation factor of natural gas; x and y 
are the coordinates, m; psc is the pressure at 
standard condition, Pa; T is the gas reservoir 
temperature, K; qsc is the production rate of the 
point source at standard condition, m3/s; Tsc is the 
temperature at standard condition, K; h is the 
reservoir thickness, m; δ is Dirac delta function; xw, 
yw are the coordinates of the point source, m;  is 
the porosity; Ct is the total compressibility, Pa−1; t is 
the time, s. 
    In order to linearize Eqs. (1) and (2), the 
pseud-pressure is introduced as: 
 

 
0

2
d , 1,  2

jp

j j
p

p p j
Z

 


                 (3) 

 
    Substituting Eq. (3) into Eqs. (1) and (2), one 
can derive that: 
 

   
2 2

sc sc1 1
1 1 w w2 2

sc

2 p Tq
k k x x y y

T hx y

    
   

 
 

    1
1 t1 ,  0C x

t

  
 


                    (4) 

 
2 2

2 2 2
2 2 2 t22 2

,  0k k C x
tx y

     
  

 
          (5) 

 
    Gas viscosity μ in both Eqs. (4) and (5) is the 
function of pressure, which is usually estimated at 
the initial reservoir pressure, i.e., μ=μ(pi)=μi. Then, 
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Eqs. (4) and (5) become respectively: 
 

   
2 2

sc sc1 1
1 1 w w2 2

sc

2 p Tq
k k x x y y

T hx y

    
   

 
 

    1
1 t1 i ,  0C x

t

  
 


                   (6) 

 
2 2

2 2 2
2 2 2 t2 i2 2

,  0k k C x
tx y

     
  

 
         (7) 

 
    Introducing dimensionless variables (see  
Table 1), Eqs. (6) and (7) are rewritten as, 
respectively: 
 

   
2 2

1D 1D
D D wD D wD2 2

D D

2πq x x y y
x y

    
   

 
 

    1D
D

D

,  0x
t


 


                       (8) 

 
2 2

2D 2D 2D
D2 2

DD D

1
,  0x

tx y

  


  
  

 
             (9) 

 
Table 1 Definitions of dimensionless variables for 

FCMFH wells in LC gas reservoirs 

Nomenclature Definition 

Dimensionless time 
1

D 2
1 i t1

k t
t

C L 
  

Dimensionless 
pseud-pressure 

 1 sc
D i

sc sc

π
,j j

k hT

Q p T
     

where j=1, 2, f 

Dimensionless length D D,  ,
x y

x y
L L

   f
fD ,j

j

L
L

L
  

where j=1, 2, …, M 

Mobility ratio 2 1

i i

k k
 

   
    
   

 

Diffusivity ratio 2 1

2 t2 i 1 t1 i

k k
C C


   
   

    
   

 

Dimensionless production 
rate of point source 

sc
D

sc

q
q

Q
  

Dimensionless 
fracture flux density 

f
fD

sc

q L
q

Q
  

Dimensionless wellbore 
storage coefficient 

D 2
1 t12π

C
C

C hL
  

Dimensionless fracture 
conductivity coefficient 

f f
fD

1

k w
C

k L
  

Note: L is the reference length chosen as 
f

1

M

j
j

L L M


   in this 

study, m. 

 
    Dimensionless outer boundary conditions 
 

   
D D

1D D D D 2D D D Dlim , , lim , , 0
x x

x y t x y t 
 

   

(10) 

   
D D

1D D D D 2D D D Dlim , , lim , , 0
y y

x y t x y t 
 

   

(11)  
    Dimensionless interface boundary conditions 
 

   

D D

1D D D D 2D D D D

D D0 0

, , , ,

x x

x y t x y t

x x

 


 

 


 
 (12) 

 
   

D

D

1D D D D
F 1D D D D 0

D 0

, ,
, ,

x
x

x y t
S x y t

x








 


 

     
D

2D D D D 0
, ,

x
x y t


                  (13) 

 
where λ is the mobility ratio defined in Table 1; SF 
is the skin factor across the fault. 
    Dimensionless initial conditions 
 

   
D D

1D D D D 2D D D D0 0
, , , , 0

t t
x y t x y t 

 
     (14) 

 
    Taking Laplace transform of Eqs. (8)−(14) 
with respect to (w.r.t.) tD and infinite Fourier 
transform w.r.t. yD respectively, the Laplace-space 
point source solution for LC gas reservoirs is able 
to be derived as (Appendix B):  

   1 D wD1 D wD
1D D D D 30

, , e e a x xa x xx y s q a
          

    
       wD D wD D

1

cos cos sin sin
d

y y y y

a

   



 

(15)  
where 
 

2
1a s                               (16) 

 
2

2
s

a 


                               (17) 
 

1 F 1 2 2
3

1 F 1 2 2

a S a a a
a

a S a a a

 
 

 


 
                (18) 

 
    Based on superposition principle in Laplace 
space [35, 36], pressure response at arbitrary 
position in Region 1 caused by an MFH well is 
obtained by integrating Eq. (15) along the line 
segments of all hydraulic fractures:  

  fD

fD
1D D D fD

1

, , j

j

M L

L
j

x y s q




   

     1 D wD| cos( )|

0
e j ja x x          

    1 D wD[ cos( )]
3e

j ja x x
a

        

      wD Dcos [ sin( )] cos( )j jy y        

      wD Dsin [ sin( )] sin( )j jy y       

    1 d da                            (19) 
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where M is the number of hydraulic fractures; θj is 
the angle between the jth hydraulic fracture and 
horizontal well, (°); φ is the angle between the 
horizontal well and x-axis, (°); LfDj is the 
dimensionless half-length of the jth hydraulic 
fracture; qfD is the dimensionless fracture flux 
density; xwDj and ywDj are the dimensionless 
coordinates of the intersection between the jth 
hydraulic fracture and horizontal well. 
 
3.2 Seepage model for hydraulic fractures 
    Gas flow within each finite-conductivity 
hydraulic fracture of FCMFH wells is usually 
viewed as an incompressible linear flow. The 
seepage model of gas flow within the jth hydraulic 
fracture is established based on coordinate system 
(xj, yj) (see Figure 2) (Appendix C): 
 

 
Figure 2 Relationship diagram of different coordinate 

systems 

 

   
2

fD D D
fD D D2

fDD

, 2π
, 0

j
j

j

x t
q x t

Cx


 


          (20) 

 
   

fD

D

0fD D D
fD D D D

D fD
0

, 2π
, d

j

j

j
j jL

j
x

x t
q x t x

x C

 









   (21) 

 
   fD

D

fD D D
fD D D D0

D fD
0

, 2π
, dj

j

Lj
j j

j
x

x t
q x t x

x C







 

   (22) 

 
    Equations (20)−(22) can be used to obtain the 
pressure at any position within the hydraulic 
fractures, which is expressed as follows: 
 

   wDH D fD D D,jt x t    

     fD

D fD D D D0
fD

2π
, d

jL

j j jx q x t x
C 

    

     D

fD D0 0
, d d

jx
q t


  

 


                (23) 

for fD D 0j jL x   ; 

   wDH D fD D D,jt x t    

     fD

D fD D D D0
fD

2π
, djL

j j jx q x t x
C 

    

     D

fD D0 0
, d djx

q t


   

                 (24) 

 
for D fD0 j jx L  , where ψwDH is the dimensionless 

wellbore pseud-pressure. 
 
3.3 Semi-analytical model of an FCMFH well in 

LC gas reservoirs 
    The solution for gas flow in LC gas reservoirs 
(i.e., Eq. (19)) can be combined with the solution 
for gas flow in hydraulic fracture (i.e., Eqs. (23) and 
(24)) by the following expression: 
 

     1D D D D fD D D fD D fD, , , ,j j j jx y t x t L x L      

(25) 
 
where D wD D cos( )j j jx x x      and D wDjy y   

D sin( )j jx   . 

    Substituting Eq. (25) into Eqs. (23) and (24) 
and taking the Laplace transform w.r.t. tD, one can 
derive that: 
 

   wDH 1D D D, ,s x y s    

     fD

D fD D D0
fD

2π
, d

jL

j j jx q x s x
C 

    

     D

fD0 0
, d djx

q s


   

                  (26) 

 
for fD D 0j jL x   ; 
 

   wDH 1D D D, ,s x y s    

     fD

D fD D D0
fD

2π
, d

jL

j j jx q x s x
C 

    

     D

fD0 0
, d d

jx
q s


   


                  (27) 

 
for D fD0 j jx L  , where 1D D D( ,  ,  )x y s  is 

presented in Eq. (19). 
    The production rate of the FCMFH well is the 
sum of the flow rates from all the hydraulic 
fractures, which is expressed as: 
 

f

f
sc f

1

( , )d
j

j

M L

j jL
j

Q q x t x




                     (28) 

 
    Introducing the dimensionless variables (as 
shown in Table 1) and taking the Laplace transform 
w.r.t. tD, Eq. (28) can be rewritten as: 

fD

fD
fD D D

1

1
( ,  )d

j

j

M L

j jL
j

q x s x
s



                  (29) 
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    Equations (26), (27) and (29) associating with 

Eq. (19) form a mathematical model of an FCMFH 

well in LC reservoirs in Laplace space. However, 

the proposed model is difficult to be analytically 

solved, and thus fracture discrete method is used to 

derive the semi-analytical solution. Each of 

hydraulic fractures is discretized into several 

segments. As shown in Figure 3, the two wings of 

the jth hydraulic fracture are discretized into Nj 

segments with the same length, respectively, and 

thus the total number of segments for an FCMFH 

well is 
1

2
M

j
j

N

 . The flux is uniformly distributed in 

each segment. The mid-point coordinates of the ith 
segment of the jth hydraulic fracture, (xmi,j, ymi,j), are 
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    1 , 1 2j jj M N i N                  (31) 
 
where f fj j jL L N   is the fracture-segment length 

of the jth hydraulic fracture, m. 

    The coordinates (xmi,j, ymi,j) are transformed 

into the dimensionless form as follows: 
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where xmDi,j=xmi,j/L, ymDi,j=ymi,j/L, xwDj=xwj/L, ywDj= 

ywj/L, and ∆LfDj=∆Lfj/L. 

    The distance between the coordinates (xwj, ywj) 

and the coordinates (xwj+1, ywj+1) is defined as: 

 

 
Figure 3 Discretization diagram of jth hydraulic fracture 
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    If hydraulic fractures are discretized, Eqs. (26), 
(27) and (29) associating with Eq. (19) can be 
rewritten in the discrete form: 
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where qfDi,j is the dimensionless fracture flux 
density of the ith segment of the jth hydraulic 
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fracture; 1D , mD , mD ,( ,  ,  )i j v k v kx y s  is given as: 
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    Equations (35)−(38) consist of 
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 wDH s and fD , ( ) (1 , 1 2 ).i j jq s j M i N    By 

solving the linear equations, the dimensionless 
wellbore pseud-pressure in Laplace space wDH ( )s  

is obtained. To incorporate the impact of the 
wellbore storage and skin, Duhamel’s principle is 
used as follows [37, 38]: 
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           (39) 

 
where S is the skin factor near the wellbore; CD is 
the dimensionless wellbore storage coefficient 
defined in Table 1. Finally, the numerical Laplace 
inversion method [39] is employed to transform the 
Laplace-space pseud-pressure wD ( )s  to the 
real-space pseud-pressure wD D( ).t  

 
4 Model validation 
 
    The proposed semi-analytical model is 
validated by comparing with numerical results 
generated by the Saphir numerical simulator in this 
section. The schematic of the numerical model is 
shown in Figure 4, from which it is seen that an 
FCMFH well is located in Region 1 of an LC gas 
reservoir separated by a fault. The dimensionless 
size of the LC gas reservoir is set as a large value 
(i.e., 4000×4000), which could avoid the boundary 
effect within the simulation time. The unstructured 
grid system (i.e., Voronoi grid), which is 
automatically generated by the Saphir numerical 
simulator, is applied to the spatial discretization of 
the numerical model (see Figure 5). The input 
parameters used for numerical simulations are  
 

 
Figure 4 Schematic of an FCMFH well in an LC gas 

reservoir with a fault 

 

 
Figure 5 Local spatial discretization of numerical model of an FCMFH well in an LC gas reservoir with a fault by using 

Saphir numerical simulator 
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mainly collected from the published literature [40] 
and are listed in Table 2. Figure 6 shows the 
comparison of the results obtained by the proposed 
model and Saphir numerical simulator. It is seen  

 

Table 2 Basic data for numerical simulations 

Parameter Value 

Reservoir thickness, h/m 7.62 

Porosity of Region 1, 1 0.075 

Gas viscosity at the initial reservoir 
pressure, μi/(mPa∙s)  

0.0252 

Total compressibility of Region 1, 
Ct1/MPa−1 

1.43×10−2 

Permeability of Region 1, k1/mD 0.05 

Initial reservoir pressure, pi/MPa 44.8 

Gas reservoir temperature, T/K 412.04 

Number of hydraulic fractures, M 3 

Half-length of jth hydraulic 
fracture, Lfj/m 

40 

Angle between jth hydraulic fracture 
and horizontal well, θj/(°) 

90 

Angle between the horizontal well and 
x-axis, φ/(°) 

45 

Distance between the horizontal well 
center and the fault, xw/ m  

3000 

Fracture spacing, ∆yw/ m  400 

Dimensionless fracture conductivity 
coefficient, CfD 

20 

Production rate of the FCMFH well at 
standard condition, Qsc/(m3∙d−1)  

5000 

Mobility ratio, λ 0.2 

Diffusivity ratio, η 1 

Skin factor across the fault, SF 0 

Skin factor near the wellbore, S 0 

Dimensionless wellbore storage 
coefficient, CD 

0 

 

 
Figure 6 Comparison of results obtained by proposed 

model and Saphir numerical simulator (M=3, Lfj=40 m, 

S=0, CD=0, CfD=20, θj=90°, φ=45°, η=1, λ=0.2, SF=0, 

xw=3000 m, yw=0 m, ∆yw=∆yw1=∆yw2=400 m) 

that the proposed solution agrees excellently with 
Saphir numerical solution, demonstrating that the 
proposed semi-analytical model is able to be used 
to investigate the pressure characteristics of an 
FCMFH well in LC gas reservoirs with a fault. 
 
5 Type curves and sensitivity analysis 
 
    The proposed model is employed to obtain the 
dimensionless wellbore pseud-pressure (DWPP) 
and dimensionless wellbore pseud-pressure 
derivative (DWPPD) of an FCMFH well in LC gas 
reservoirs. Type curve of an FCMFH well in LC gas 
reservoirs is plotted to study the characteristics of 
transient pressure responses and identify flow 
regimes. The effects of some parameters on the 
DWPP and DWPPD responses are analyzed in 
detail. 
 
5.1 Type curves 
    Figure 7 shows type curve of an FCMFH well 
in LC gas reservoirs with a fault. Type curve 
consists of the DWPP curve (i.e., ψwD versus tD/CD 
curve) and the DWPPD curve (i.e., wD D Dt C    
versus tD/CD curve). It is observed from Figure 7 
that the type curve can be divided into nine parts, 
which correspond to nine flow regimes as follows: 
 

 
Figure 7 Type curve of an FCMFH well in LC gas 

reservoirs with a fault (M=3, Lfj=40 m, S=10−3, CD=10−6, 

CfD=20, θj=90°, φ=45°, η=1, λ=0.2, SF=1000, xw=3000 m, 

yw=0 m, ∆yw=∆yw1=∆yw2=400 m) 

 
    1) Wellbore storage flow period (WSFP): 
DWPP curve and DWPPD curve show the same 
straight line with unit slope. During the WSFP, the 
produced gas is all from the wellbore-storage gas, 
and the gas in the reservoir has not entered into the 
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wellbore. 
    2) Transitional flow period after WSFP 
(TFP-WSFP): DWPPD curve exhibits a “hump”, 
which is mainly affected by the seepage capability 
near the wellbore. During this period, the gas in the 
reservoir begins to flow into the wellbore, and the 
pressure wave travels in the reservoir area near the 
wellbore. 
    3) Bilinear flow period (BFP): DWPPD curve 
exhibits a 0.25-slope straight line. During the BFP, 
the two linear flows take place together: one is 
within the hydraulic fracture; the other is 
perpendicular to the reservoir-fracture contact 
surface (see Figure 8(a)). 
    4) First linear flow period (FLFP): DWPPD 
curve shows a 0.5-slope straight line. During the 
FLFP, the linear flow perpendicular to the 
reservoir-fracture contact surface takes place, and 
the linear flow of each hydraulic fracture cannot 
interact with each other (see Figure 8(b)). 
    5) First pseudo-radial flow period (FPRFP): 
DWPPD curve exhibits a horizontal line. During 
the FPRFP, the pseudo-radial flow independently 
takes place around each of hydraulic fractures (see 
Figure 8(c)). 
    6) Second linear flow period (SLFP): DWPPD 
curve exhibits a straight line with a 0.5 slope. In the 
SLFP, pressure waves caused by adjacent hydraulic 

fractures have interacted with each other, and a 
linear flow occurs along the direction of hydraulic 
fractures (see Figure 8(d)). 
    7) Second pseudo-radial flow period (SPRFP): 
DWPPD curve shows a horizontal line with the 
magnitude being 0.5. During the SPRFP, the 
pseudo-radial flow toward the FCMFH well occurs 
in Region 1 and the pressure wave has not reached 
the fault (see Figure 8(e)). 
    8) Transitional flow period after SPRFP 
(TFP-SPRFP): DWPPD curve appears as a step. 
During the TFP-SPRFP, the pressure wave has 
arrived at the fault but has not transmitted into 
Region 2 totally. The flow period is mainly affected 
by the properties of the fault and Region 2, which 
will be analyzed in detail later. 
    9) Third pseudo-radial flow period (TPRFP): 
DWPPD curve shows a horizontal line with a 
constant value, whose magnitude is dependent on 
the properties of Region 2. During the TPRFP, the 
pressure wave has totally transmitted into Region 2 
and the pseudo-radial flow toward the FCMFH well 
takes place in the whole gas reservoir including 
Region 1 and Region 2 (see Figure 8(f)). 
    It should be noted that not all the flow regimes 
described above exist for FCMFH wells in LC gas 
reservoirs with a fault. Depending on the 
reservoir/well properties, some of these flow 

 

 
Figure 8 Flow pattern of an FCMFH well in LC gas reservoirs with a fault 
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regimes may be absent. Therefore, sensitivity 
analysis will be conducted in the next subsection to 
study the effect of some parameters on the pressure 
behaviors. 
 
5.2 Sensitivity analysis 
    Figure 9 shows the effect of skin factor across 
the fault (SF) on the DWPP and DWPPD responses 
of an FCMFH well in LC gas reservoirs with a  
fault, from which it is seen that the SF merely 
affects the flow periods after the pressure wave has 
arrived at the fault, i.e., TFP-SPRFP and TPRFP. 
Increasing the SF will result in a longer duration of 
the TFP-SPRFP and a later start time of the TPRFP. 
The reason of this phenomenon is that a larger SF 
represents a larger flow resistance across the fault. 
If the flow resistance across the fault increases, the 
drawdown pressure should be enhanced to keep the 
production rate unchanged, and the transmission 
time of the pressure wave across the fault should 
become longer. 
 

 
Figure 9 Effect of skin factor across fault (SF) on type 

curve of an FCMFH well in LC gas reservoirs with a 

fault (M=3, Lfj=40 m, S=10−3, CD=10−6, CfD=20, θj=90°, 

φ=45°, η=1, λ=1, xw=3000 m, yw=0 m, ∆yw=∆yw1= 

∆yw2=400 m) 

 

    Figure 10 shows the effect of the distance 
between the horizontal well center and the fault (xw) 
on the DWPP and DWPPD responses of an 
FCMFH well in LC gas reservoirs with a fault. It is 
observed that the xw affects the duration of the 
SPRFP and the start time of the TFP-SPRFP. The 
smaller the xw is, the shorter the duration of the 
SPRFP is and the earlier the start time of the 
TFP-SPRFP becomes. It is noted that if the FCMFH 
well is located near the fault, the SPRFP may 

disappear. The reason is that as the xw becomes 
smaller, the pressure wave reaches the fault earlier. 
    Figure 11 shows the effect of mobility ratio (λ) 
on the DWPP and DWPPD responses of an 
FCMFH well in LC gas reservoirs with a fault. 
Based on the definition of the λ (as shown in Table 
1), the λ represents the flow capability of Region 2 
compared with Region 1. The flow capability of 
Region 2 increases with increasing λ. It is clear 
from Figure 11 that λ has an impact on pressure 
responses of FCMFH wells after the pressure wave 
reaches the fault, and the DWPP and DWPPD 
increase with decreasing λ. The cause of this 
phenomenon is that the decrease of λ reduces the 
flow capability of Region 2, and thus the drawdown 
 

 
Figure 10 Effect of distance between horizontal well 

center and fault (xw) on type curve of an FCMFH well in 

LC gas reservoirs with a fault (M=3, Lfj=40 m, S=10−3, 

CD=10−6, CfD=20, θj=90°, φ=45°, η=1, λ=0.2, SF=1000, 

yw=0 m, ∆yw=∆yw1=∆yw2=400 m) 

 

  
Figure 11 Effect of mobility ratio (λ) on type curve of an 

FCMFH well in LC gas reservoirs with a fault (M=3, 

Lfj=40 m, S=10−3, CD=10−6, CfD=20, θj=90°, φ=45°, η=1, 

SF=0, xw=3000 m, yw=0 m, ∆yw=∆yw1=∆yw2=400 m) 
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pressure should be enhanced to keep the production 
rate unchanged. 
    Figure 12 shows the effect of diffusivity ratio 
(η) on the DWPP and DWPPD responses of an 
FCMFH well in LC gas reservoirs with a fault. 
According to the definition of η (see Table 1), η is 
inversely proportional to 2 t2 1 t1( ) / ( )C C   under the 
same other parameters (e.g., the same λ). The 
storage capability of Region 2 increases with 
decreasing η. It is seen from Figure 12 that η mainly 
has an impact on the TFP-SPRFP, where the DWPP 
and DWPPD decrease with decreasing η. The 
reason is that decreasing η improves the storage 
capability of Region 2, and thus the drawdown 
pressure must decrease to maintain the fixed 
production rate. 
 

 
Figure 12 Effect of diffusivity ratio (η) on type curve of 

an FCMFH well in LC gas reservoirs with a fault (M=3, 

Lfj=40 m, S=10−3, CD=10−6, CfD=20, θj=90°, φ=45°, λ=1, 

SF=0, xw=3000 m, yw=0 m, ∆yw=∆yw1=∆yw2=400 m) 

 
    Figure 13 shows the effect of dimensionless 
fracture conductivity coefficient (CfD) on the DWPP 
and DWPPD responses of an FCMFH well in LC 
gas reservoirs with a fault. It is clear that CfD 
primarily affects the early-time flow periods 
including TFP-WSFP, BFP, and FLFP. As CfD 
increases, the DWPP and DWPPD decrease, the 
BFP lasts shorter, and the FLFP appears earlier. The 
reason is that increasing CfD causes the increase of 
the hydraulic-fracture permeability; in other words, 
increasing CfD leads to the improvement of the 
seepage capability near the wellbore. Therefore, in 
order to keep the production rate constant, the 
drawdown pressure of the FCMFH well should 
decrease with increasing CfD. Furthermore, with the 
improvement of the hydraulic-fracture permeability, 

 

 
Figure 13 Effect of dimensionless fracture conductivity 

coefficient (CfD) on type curve of an FCMFH well in LC 

gas reservoirs with a fault (M=3, Lfj=40 m, S=10−3, 

CD=10−6, θj=90°, φ=45°, η=1, λ=0.2, SF=1000, xw=  

3000 m, yw=0 m, ∆yw=∆yw1=∆yw2=400 m) 

 

the BFP lasts shorter and then the FLFP begins 
earlier. 
    Figure 14 shows the effect of fracture spacing 
(∆yw) on the DWPP and DWPPD responses of an 
FCMFH well in LC gas reservoirs with a fault. It is 
obvious that ∆yw has an effect on the flow periods 
from FPRFP to SPRFP. As ∆yw decreases, the 
duration of the FPRFP gets shorter, and the SLFP 
and SPRFP begin earlier. If ∆yw is small enough, 
the FPRFP may be masked by the SLFP and SPRFP. 
This is because that as ∆yw decreases, the 
interference between adjacent hydraulic fractures 
occurs earlier. 
    It is noted that some differences are observed 
 

 
Figure 14 Effect of fracture spacing (∆yw) on type curve 

of an FCMFH well in LC gas reservoirs with a fault 

(M=3, Lfj=40 m, S=10−3, CD=10−6, CfD=20, θj=90°, φ=45°, 

η=1, λ=0.2, SF=1000, xw=3000 m, yw=0 m, ∆yw= 

∆yw1=∆yw2) 
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at some intermediate-time flow periods in Figures 9, 
10, 12 and 14. The explanations are given as 
follows: SF only has an effect on the TFP-SPRFP 
and TPRFP (as shown in Figure 9); xw mainly 
affects the SPRFP and TFP-SPRFP (as shown in 
Figure 10); η mainly has an impact on the 
TFP-SPRFP (as shown in Figure 12); ∆yw mainly 
has an effect on the FPRFP, SLFP, and SPRFP (as 
shown in Figure 14). 
    Figure 15 shows the effect of the number of 
hydraulic fractures (M) on the DWPP and DWPPD 
responses of an FCMFH well in LC gas reservoirs 
with a fault. It is clear that M mainly has an impact 
on the flow periods (i.e., from TFP-WSFP to 
SPRFP) that the pressure wave has not reached the 
fault. As M increases, the DWPP and DWPPD 
decrease. The reason is that increasing M means the 
improvement of the seepage capability near the 
wellbore, and thus the drawdown pressure of 
FCMFH wells with a fixed production rate should 
decrease with increasing M. 
 

 
Figure 15 Effect of number of hydraulic fractures (M) on 

type curve of an FCMFH well in LC gas reservoirs with 

a fault (Lfj=40 m, S=10−3, CD=10−6, CfD=20, θj=90°, 

φ=45°, η=1, λ=0.2, SF=1000, xw=3000 m, yw=0 m, 

∆yw=∆ywj=400 m) 

 

6 Conclusions 
 
    1) A semi-analytical model of FCMFH wells in 
LC gas reservoirs is proposed based on 
Laplace-space superposition principle and fracture 
discrete method. The proposed model is validated 
against the results obtained by Saphir numerical 
simulator. 
    2) Type curves of an FCMFH well in LC gas 
reservoirs are obtained to conduct the pressure 

transient analysis based on the established model. It 
is found that there are nine possible flow regimes in 
the whole production process of the FCMFH well. 
Before the pressure wave reaches the fault, the first 
seven flow periods (i.e., from WSFP to SPRFP) 
appear one after another; after the pressure wave 
arrives at the fault, the last two flow periods (i.e., 
TFP-SPRFP and TPRFP) just turn up. 
    3) The effects of some parameters on type 
curves and flow regimes are discussed in detail. It is 
found that dimensionless fracture conductivity 
coefficient, fracture spacing, and number of 
hydraulic fractures mainly affect the pressure 
behaviors before the pressure wave reaches the  
fault; skin factor across the fault, mobility ratio, and 
diffusivity ratio only have an impact on the pressure 
behaviors after the pressure wave arrives at the 
fault. 
    4) The proposed model provides an efficient 
method to obtain pressure responses of FCMFH 
wells in LC gas reservoirs. It is also helpful to 
further develop analytical/semi-analytical models 
for other complex well types in LC gas reservoirs. 
 
Appendix A Derivation of governing equations for 
point source in LC gas reservoirs  
    Based on mass conservation, continuity 
equations for LC gas reservoirs with a point source 
located at (xw, yw) are given as: 
 

       1 11 1 sc sc
w w

yx q
x x y y

x y h

     


    
 

 

    
 1 1 ,  0x

t

 
 


                     (A1) 

 

     2 22 2 2 2 ,  0
yx x

x y t

     
   

  
       (A2) 

 
where subscript 1 and 2 represent Region 1 and 
Region 2, respectively; ρ is the gas density, kg/m3; 
υx is the x-direction gas velocity, m/s; υy is the 
y-direction gas velocity, m/s; ρsc is the gas density at 
standard condition, kg/m3; qsc is the production rate 
of the point source at standard condition, m3/s; h is 
the reservoir thickness, m; δ is Dirac delta function; 
x, y are the coordinates, m; xw, yw are the 
coordinates of the point source, m;  is the porosity; 
t is the time, s. 
    According to the Darcy law, the gas velocities 
in the x and y directions are described by, 
respectively: 
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j j
xj

k p

x





 


                           (A3) 

 
j j

yj

k p

y





 


                           (A4) 

 
where subscript j=1, 2 represents Region 1 and 
Region 2, respectively; k is the permeability, m2; μ 
is the gas viscosity, Pa∙s; p is the reservoir pressure, 
Pa. 
    The equation of state for real gas is given as 
follows: 
 

gj
j

p M

ZRT
                              (A5) 
 
where subscript j=1, 2 represents Region 1 and 
Region 2, respectively; Mg is the gas molar mass, 
kg/mol; Z is the deviation factor of natural gas; R is 
the universal gas constant, J/(mol∙K); T is the gas 
reservoir temperature, K. 
    The gas compressibility and rock 
compressibility are defined, respectively, as: 
 

g
1 1

j j

Z
C

p Z p


 


                         (A6) 

 

r
1 j

j
j j

C
p








                            (A7) 

 
where subscript j=1, 2 represents Region 1 and 
Region 2, respectively; Cg is the gas compressibility, 
Pa−1; Cr is the rock compressibility, Pa−1. 
    Substituting Eqs. (A3)−(A7) into Eqs. (A1) 
and (A2) yields that: 
 

1 1 1 1 1 1k p p k p p

x Z x y Z y 
      

          
 

       sc sc
w w

sc

p Tq
x x y y

T h
    

   1 t1 1 1 ,  0
C p p

x
Z t

 
 


                  (A8) 

 
2 2 2 2 2 2k p p k p p

x Z x y Z y 
      

         
2 t2 2 2 ,  0
C p p

x
Z t

 
 


 

(A9) 
 
where Ct1 and Ct2 are the total compressibility of 
Region 1 and Region 2, respectively, which are 
defined by Ctj=Cg+Crj, j=1, 2. It is noted that Ct1 and 
Ct2 are actually the functions of pressure, but they 
are usually treated as constants for engineering 
applications, i.e., Ct1=Ct1(pi) and Ct2=Ct2(pi). 
 
    Appendix B Derivation of Laplace-space 
point source solution for LC gas reservoirs 

    1) Laplace transform of Eqs. (8)−(14) w.r.t. tD 
 

   
2 2

1D 1D
D D wD D wD2 2

D D

2πq x x y y
x y

    
   

 
 

    1D D,  0s x                        (B1) 
2 2

2D 2D
2D D2 2

D D

,  0
s

x
x y

  


 
  

 
             (B2) 

 
   

D D
1D D D 2D D Dlim , , lim , , 0

x x
x y s x y s 

 
    (B3) 

 
   

D D
1D D D 2D D Dlim , , lim , , 0

y y
x y s x y s 

 
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D D

1D D D 2D D D
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x x
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 

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 
   (B5) 

 
   

D

D

1D D D
F 1D D D 0

D 0

, ,
, ,

x
x

x y s
S x y s

x








 


 

     
D

2D D D 0
, ,

x
x y s


                   (B6) 

 
where s is the Laplace transform variable; 1D , 

2D  and Dq  are the corresponding Laplace-space 
variables of ψ1D, ψ2D and qD, respectively, which are 
given as: 
 

    D
1D D D 1D D D D D0

, , , , e dstx y s x y t t 
        (B7) 

 

    D
2D D D 2D D D D D0

, , , , e dstx y s x y t t 
       (B8) 

 

    D
D D D D0

e dstq s q t t
                    (B9) 

 
    2) Infinite Fourier transform of Eqs. (B1)−(B6) 
w.r.t. yD 
 

   wD

2
21D

1D D D wD2
D

2 e 0i ys q x x
x

    
    



  , 

    xD>0                             (B10) 
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s
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
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      

             (B11) 
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x x
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D

D
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F 1D D 0
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x

x s
S x s

x

 
 





 




  

     
D

2D D 0
, ,

x
x s 


                    (B14) 

 
where ω is the Fourier transform variable; 1D  and 

2D are the corresponding Fourier-space variables 
of 1D  and 2D,  respectively, which are defined as: 
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    D
1D D 1D D D D, , , , e di yx s x y s y  

 


      (B15) 
 

    D
2D D 2D D D D, , , , e di yx s x y s y  

 


       (B16) 
 
    Equations (B10)−(B14) consist of ordinary 
differential equations w.r.t. xD, which are able to be 
analytically solved as follows: 
 

  wD
1 D wDD

1D D
1

e
, , e

i y
a x xq

x s
a

 


    

      1 D wD
3e

a x xa                        (B17) 
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1 wD 2 DwD
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
 

 
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 
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where 
 

2
1a s                              (B19) 

 
2

2
s

a 


                             (B20) 
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1 F 1 2 2

a S a a a
a
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 
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 


 
              (B21) 

 
    3) Inverse Fourier transform of Eq. (B17) w.r.t. 
ω 
 

   1 D wD1 D wDD
1D D D 3, , e e

2
a x xa x xq

x y s a
   


       

        wD wDcos siny i y      

         D D 1cos sin dy i y a           (B22) 
 
    Equation (B22) is obtained based on the 
expression of inverse Fourier transform: 
 

    D
1D D D 1D D

1
, , , , e d

2π
i yx y s x s    




      (B23) 

 
    It is obvious that the integrand in Eq. (B22) is 
the product of two parts (i.e., A1 and A2):  

 1 D wD1 D wD
1 3e e a x xa x xA a                (B24) 

 
   2 wD wDcos sinA y i y       

         D D 1cos siny i y a            (B25) 
 
    Equation (B25) can be rewritten as the sum of 
two parts: 
 

2 21 22A A A                            (B26) 
 
where 
 

   21 wD Dcos cosA y y    

         wD D 1sin siny y a              (B27) 

   22 wD Dcos sinA i y y    

         wD D 1sin cosy y a             (B28) 
 
    It is noted that A1 in Eq. (B24) and A21 in   
Eq. (B27) are even functions of ω, A22 in Eq. (B28) 
is odd function of ω. 
    Considering the odevity of functions and the 
symmetry of integral domain, Eq. (B22) can be 
simplified as:  

  1 D wD
1D D D D 0

, , e a x xx y s q
     

      1 D wD
3 wD De [cos( )cos( )a x xa y y     

 

    wD D 1sin( )sin( )] / dy y a             (B29) 
 
    Appendix C Derivation of dimensionless 
model for gas flow within a hydraulic fracture 
    Because of a very small volume within 
hydraulic fracture compared with the reservoir 
volume, gas flow within hydraulic fractures is 
usually viewed as an incompressible linear flow. To 
study the linear flow within hydraulic fractures, the 
coordinate system ( ),j jx y  for the jth hydraulic 
fracture is employed to establish the dimensionless 
model for gas flow within the jth hydraulic fracture 
(see Figure 2). The governing equation of gas flow 
within the jth hydraulic fracture can be described as 
[41]: 
 

   f ff f
, , , ,
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j j j j

j j j j

p x y t p x y tp p

x Z x y Z y 

     
    
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(C1)  

where f f
f f ,  ;

2 2j j j j
w w

L x L y       Lfj is the 

half-length of the jth hydraulic fracture, m; wf is the 
hydraulic fracture width, m; pf is the pressure in 
hydraulic fractures, Pa. 
    Introducing the pseud-pressure: 
 

  f

f f 0

2
d

p p
p p

Z
 


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    Equation (C1) becomes: 
 

   f f, , , ,
0

j j j j

j j j j

x y t x y t

x x y y

      
    
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  (C3) 

 
    The fracture flux density of the jth hydraulic 
fracture is described by: 
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where f f ,j j jL x L   and qf is the fracture flux 

density at standard condition, m2/s. 
    Considering the incompressible linear flow 
within hydraulic fractures, the wellbore conditions 
can be described as: 
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where kf is the permeability of hydraulic fracture, 
m2. 
    The boundary conditions of the 
reservoir-fracture contact surface can be described 
based on the mass conservation: 
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    Owing to the hydraulic fracture width being 
very small, the yj-direction pressure variation within 
the jth hydraulic fracture is usually neglected, and 
the yj-direction average pressure is introduced as: 
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    With the aid of Eqs. (C7)−(C9), Eq. (C3) can 
be rewritten as: 
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    Substituting Eq. (C4) into Eq. (C10) yields 
that: 
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    Based on Eq. (C9), Eqs. (C5) and (C6) can be 
rewritten as: 
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    Considering the dimensionless variables (see 
Table 1), Eqs. (C11)−(C13) are rewritten in 
dimensionless form: 
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中文导读 
 

线性复合气藏有限导流多段压裂水平井压力动态分析 
 
摘要：断块气藏是一种在现实中非常常见的气藏，该类气藏被一些线性滤失断层分割成多个具有不同

物性的储层区域，这类气藏也被称为线性复合气藏。虽然目前已有一些解析/半解析模型用于研究线性

复合气藏中生产井的压力动态，但是大部分成果针对直井，而对多段压裂水平井研究得较少。当压力

波传播到滤失断层后，多段压裂水平井的压力动态将会受到滤失断层的影响，因此，弄清楚滤失断层

对多段压裂水平井压力动态的影响对开发断块气藏非常重要。基于 Laplace 空间的叠加原理和裂缝离

散方法，本文建立了线性复合气藏有限导流多段压裂水平井的半解析模型。通过与商业数值模拟器进

行结果对比，检验了该模型的可靠性。绘制了线性复合气藏中有限导流多段压裂水平井的压力动态典

型曲线，研究了压力动态特征，开展了流动阶段划分，并分析了不同参数对压力动态典型曲线的影响。

本文建立的模型有助于进一步发展线性复合气藏中其他复杂井型的解析/半解析模型。 
 
关键词：半解析模型；线性复合气藏；多段压裂水平井；有限导流压裂裂缝；压力动态 


