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Abstract: Faulted gas reservoirs are very common in reality, where some linear leaky faults divide the gas reservoir
into several reservoir regions with distinct physical properties. This kind of gas reservoirs is also known as linear
composite (LC) gas reservoirs. Although some analytical/semi-analytical models have been proposed to investigate
pressure behaviors of producing wells in LC reservoirs based on the linear composite ideas, almost all of them focus on
vertical wells and studies on multiple fractured horizontal wells are rare. After the pressure wave arrives at the leaky
fault, pressure behaviors of multiple fractured horizontal wells will be affected by the leaky faults. Understanding the
effect of leaky faults on pressure behaviors of multiple fractured horizontal wells is critical to the development design.
Therefore, a semi-analytical model of finite-conductivity multiple fractured horizontal (FCMFH) wells in LC gas
reservoirs is established based on Laplace-space superposition principle and fracture discrete method. The proposed
model is validated against commercial numerical simulator. Type curves are obtained to study pressure characteristics
and identify flow regimes. The effects of some parameters on type curves are discussed. The proposed model will have
a profound effect on developing analytical/semi-analytical models for other complex well types in LC gas reservoirs.
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reservoirs. Owing to the existence of leaky faults,

1 Introduction the gas reservoirs are usually divided into several
reservoir regions with different properties, and the
Faults are very common in various gas gas in one reservoir region can flow cross the faults

reservoirs, and some leaky faults have an important and go into other reservoir regions. Therefore, the
influence on the development of faulted gas influence of leaky faults on fluid flow has attracted
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much attention. Linear composite (LC) model is
considered as a reasonable approximation for
describing fluid flow in hydrocarbon-bearing
reservoirs separated by linear faults [1, 2]. In the
last few decades, composite models, mainly
including radial composite (RC) models and linear
composite (LC) models, have been widely
investigated and applied to various oil and gas
reservoirs with variable reservoir properties.
However, most of studies focus on RC models
[3—5] and studies on LC models are few.

Pressure transient analysis is considered as a
good way to analyze fluid flow characteristics and
reservoir/well properties [6—15]. Pressure response
of wvertical wells in LC reservoirs has been
investigated since the early 1960s. BIXEL et al [16]
proposed the first analytical model of vertical wells
in LC reservoirs and studied the impact of the fault
on pressure behaviors. YAXLEY [1] developed an
analytical model for LC reservoirs with a partially
communicating fault. AMBASTHA et al [17]
extended the LC model for infinite reservoirs to the
one for finite strip reservoirs. BOURGEOIS et al
[18] developed an analytical model for 3-zone LC
reservoirs. KUCHUK et al [19] further developed
an analytical model for n-zone LC reservoirs.
ANDERSON [20] proposed an explicit analytical
solution for fluid flow in infinite aquifers with a
fault, and investigated the effect of the anisotropic
fault. EZULIKE et al [21] developed an analytical
model of horizontal wells in LC reservoirs, and
investigated pressure behaviors of horizontal wells.
ZEIDOUNI [22, 23] proposed analytical and
semi-analytical models of vertical wells in
multilayer reservoirs with a leaky fault, respectively.
FENG et al [24] developed an analytical model of a
vertical well in a dual-porosity LC reservoir, and
studied the characteristic of pressure behaviors.
Considering fault permeability alteration, MOLINA
et al [2] proposed an analytical model of vertical
wells in LC reservoirs and used it to detect the fault
reactivation. However, until now, almost all of
analytical/semi-analytical models for LC reservoirs
were aimed at vertical wells, and the studies on
complex well types in LC reservoirs are rare.
Compared with the establishment of analytical/
semi-analytical RC models for complex well types,
it is much more difficult to establish analytical/
semi-analytical LC models for complex well types.
Therefore, there are still significant challenges in
establishing analytical/semi-analytical models for

complex well types in LC reservoirs, for example,
multiple fractured horizontal (MFH) wells with
finite-conductivity hydraulic fractures.

Horizontal well in combination with hydraulic
fracturing is considered as a good means of
developing various oil/gas reservoirs, especially
low-permeability oil/gas reservoirs. In the last
decade, tight oil/gas reservoirs have captured the
attention of people owing to the enormous oil/gas
reserves, and MFH well has been extensively
employed to develop these ultra-low-permeability
reservoirs. Of course, the MFH well is not merely
applied to low-permeability reservoirs; it is also
used to develop some mid/high-permeability
reservoirs because it can significantly increase
production at low cost. Therefore, a variety of
analytical/semi-analytical models have been
proposed to study pressure behaviors of MFH wells
in various reservoirs, such as homogeneous
reservoirs [25], dual porosity reservoirs [26], triple
porosity reservoirs [27], fractal reservoirs [28], and
radial composite reservoirs [29, 30].

To our knowledge, there are few analytical/
semi-analytical models of MFH wells in LC
reservoirs. Although some composite linear-flow
models, which mainly include 3-linear flow model
[31], 5-linear flow model [32], and other improved
versions [33, 34], were proposed to deal with fluid
flow in the stimulated reservoir volume near the
MFH well, these composite linear-flow models
divide the reservoir into several linear flow regions,
which cannot reflect the complete characteristics of
fluid flow in LC reservoirs. Therefore, it is still
difficult to develop efficient and accurate
analytical/semi-analytical models of MFH wells in
LC reservoirs.

In this work, we derived the Laplace-space
point source solution for LC gas reservoirs, and
then proposed a semi-analytical model of finite-
conductivity  multiple  fractured  horizontal
(FCMFH) wells in LC gas reservoirs based on
Laplace-space superposition principle and fracture
discrete method. The proposed semi-analytical
model was validated against numerical simulation.
Finally, pressure transient analysis of FCMFH wells
in LC gas reservoirs was studied in detail.

2 Model descriptions

Figure 1 shows the schematic of an FCMFH
well in an LC gas reservoir with a fault. As shown,
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Figure 1 Schematic of FCMFH well in LC gas reservoir
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an infinite gas reservoir is divided into two regions,
i.e., Region 1 (x>0) and Region 2 (x<0), by a fault.
An FCMFH well can be located at arbitrary
position in Region 1. The proposed model is
described as follows:

1) Each reservoir region (i.e., Region 1 or
Region 2) is homogeneous and isotropic reservoir,
but the two regions can have different properties
(e.g., porosity,  permeability, and  rock
compressibility). The properties of both the two
regions are independent of pressure.

2) The gas reservoir, which has a uniform
thickness for Region 1 and Region 2, is bounded by
upper and lower impermeable layers. The fault is
assumed to be located at x=0 and infinitely
extended along the y-axis. The fault is considered as
a partially communicating interface, where flux is
continuous and pressure can be discontinuous. The
orientation of the horizontal well can be arbitrary
direction, and the angle between the horizontal well
and x-axis is set as @.

3) Hydraulic fractures completely vertically
penetrate the gas reservoir, and the number of
hydraulic fractures is assumed to be M. Each
hydraulic fracture symmetrically distributes about
the horizontal well and can intersect with the
horizontal well with any angle (e.g., 6; for the jth
hydraulic fracture). The coordinates of the
intersection between the jth hydraulic fracture and
horizontal well are set to be (xw;, V). Gas flow
within each finite-conductivity hydraulic fracture is
viewed as an incompressible linear flow.

4) Gas flow in LC gas reservoirs is assumed to
be isothermal single-phase flow, which follows the
Darcy law. Initial reservoir pressure is uniformly
distributed in Region 1 and Region 2.

3 Mathematical models

3.1 Seepage model for LC gas reservoirs

If a point source is assumed to be located at
coordinates (xw, Jw) in Region 1 and gas is
withdrawn from the point source with flow rate
gs(t), gas flow in the LC gas reservoir can be
described by the following governing equations
(Appendix A):

Ofkpdp ), Ofkpiop |
ox\ uzZ ox oy\ uZ oy

T
M(S(x—xw)ﬂy—yw)

Tch
=¢1Ct1pl%’x>0 (1)
zZ ot
9 kP oy |, 0 (kP 0Py |_$Cor, 0P |
ox\ uZ ox oy\ uzZ oy Z o’

()
where subscripts 1 and 2 represent Region 1 and
Region 2, respectively; k is the permeability, m*; u
is the gas viscosity, Pa-s; p is the reservoir pressure,
Pa; Z is the deviation factor of natural gas; x and y
are the coordinates, m; ps is the pressure at
standard condition, Pa; T is the gas reservoir
temperature, K; ¢s is the production rate of the
point source at standard condition, m?/s; Ty is the
temperature at standard condition, K; /4 is the
reservoir thickness, m; ¢ is Dirac delta function; x,
yw are the coordinates of the point source, m; ¢ is
the porosity; C; is the total compressibility, Pa™'; # is
the time, s.

In order to linearize Egs. (1) and (2), the
pseud-pressure is introduced as:

vi=v(p)=[]" "G i=1.2 ®

Substituting Eq. (3) into Egs. (1) and (2), one
can derive that:

Oy v, 2p.Iq
k 1 k 1 _ sc_1sc 5 _ S _

0
= ¢1Cﬂ,u—(;//l , x>0 4)
t
Oy, | Oy oy
k 24k 2 =g Cou—2, x<0 5
27,2 28y2 %tzﬂatx (5

Gas viscosity u in both Eqgs. (4) and (5) is the
function of pressure, which is usually estimated at
the initial reservoir pressure, i.e., u=u(pi)=ui. Then,
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Egs. (4) and (5) become respectively:

Oy oy, 2p.TIq
k 1 +k 1 _ sc” Ise 5§ _ ) _
1 6)62 1 8}12 ];Ch (X xw) (y yw)

¢l l:ux > x>0 (6)
PR — g Co Y2 x <0 (7)
2 ax 2 a 12 Hi ot >

Introducing dimensionless variables (see
Table 1), Egs. (6) and (7) are rewritten as,

respectively:
ik o, ik i +27VID5(xD wa)5(yD wa)
axD @D
- s @®)
82l//ZD 6 ‘//2D 1 al//ZD , xp <0 (9)
ok ol moap P

Table 1 Definitions of dimensionless variables for
FCMFH wells in LC gas reservoirs

Nomenclature Definition
| , kyt
Dimensionless time D= T 2
$CyL
. . nklh Tsc
Dimensionless Yip= ('//i _V/_/),
QSCpSCT
pseud-pressure
where j=1, 2, f
L.
X, =2 i
Dimensionless length =T Ly L’
where j=1,2, -, M
k k
Mobility ratio A= [zj / [1]
H H
S VS
iffusivity ratio =
3 Cok #Cuk
Dimensionless production _ s
. qp =
rate of point source O,
Dimensionless 4 = gL
fracture flux density Oy
Dimensionless wellbore b= c
storage coefficient 214 Cyyhl?
Dimensionless fracture Cp = kg wy
conductivity coefficient f kL

M

Note: L is the reference length chosen as j — z Ly / M in this
j=l

study, m

Dimensionless outer boundary conditions
lim yyp (xp, ypstp) = im yop (xp, yp.tp ) =0
Xp—>+0 Xp—>—0

(10)

lim WlD(xD’J’D’tD)— 11m l//2D(xD9yD9tD) 0

yp—>Eo

11
Dimensionless interface boundary conditions
al//lD(xDsyDﬂtD)| ﬂaWZD(anythDN (12)
Oxp N Oxp o

Ovip (Xp» Yp»tp)
Oxp

Sk I =Vip xD»yDatD)|x -0
xp=0
¥ (*p> yD’tD)L - (13)

where 4 is the mobility ratio defined in Table 1; Sk
is the skin factor across the fault.
Dimensionless initial conditions

¥ip (¥p, V.o )LD:O = (¥p, V.o )|,D:0 =0 (14)

Taking Laplace transform of Egs. (8)—(14)
with respect to (w.r.t) fp and infinite Fourier
transform w.r.t. yp respectively, the Laplace-space
point source solution for LC gas reservoirs is able
to be derived as (Appendix B):

1/71D(xD7yDa ) QD.[ |: ~Varlxo-zy .:,_ae \/Z(XD‘*wa)]

cos(@y,p )cos(@yp ) +sin(@y,p )sin(oyp) do

Jar

(15)
where
a, = +s (16)
4, =’ +> (17)
n

\/7+SF/1 aa, — /1\/7 (18)
P Jay + Spaaay + 2y

Based on superposition principle in Laplace
space [35, 36], pressure response at arbitrary
position in Region 1 caused by an MFH well is
obtained by integrating Eq. (15) along the line
segments of all hydraulic fractures:

ZJL“” 7

LﬂJ/

1/71D (xD » VDS
L:O {e’\/ZVD*XwD/*‘ZCOS(%*(/’N +

—\Ja [Xp+x,p;+arcos(6;+
aze \/—1[ Dt Xwp) (0; </7)]}'

{{cos {a)[waj +asin(f; + (p)]}cos(a)yD )+
sin{a)[waj +asin(f; + go)]}sin(a)yD)}/
Jai fdoda (19)
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where M is the number of hydraulic fractures; 6; is
the angle between the jth hydraulic fracture and
horizontal well, (°); ¢ is the angle between the
horizontal well and x-axis, (°); Lm; is the
dimensionless half-length of the jth hydraulic
fracture; gm is the dimensionless fracture flux
density; xwp; and ywp, are the dimensionless
coordinates of the intersection between the jth
hydraulic fracture and horizontal well.

3.2 Seepage model for hydraulic fractures

Gas flow within each finite-conductivity
hydraulic fracture of FCMFH wells is usually
viewed as an incompressible linear flow. The
seepage model of gas flow within the jth hydraulic
fracture is established based on coordinate system
(%, ¥) (see Figure 2) (Appendix C):

=+00
Region 2 ¥

Region 1

{9 jth hydraulic|fracture

Fault | Horizontal well

y=—0
X==00 x=0 x=to0
Figure 2 Relationship diagram of different coordinate

systems

v (xDjatD) 2n

-4 (xpjs1p ) =0 20

ax%j Coo th( Dj D) (20)

Wi (xDj’tD) 2 (0

— ===, aw (xpptp Jxp, (21)
axD_/ " Cip 'L

0 Xp;,t L,

Woltob)l 2 (e, (22
XDj xDv%O+ D

Equations (20)—(22) can be used to obtain the
pressure at any position within the hydraulic
fractures, which is expressed as follows:

Vit (t0)~ ¥ (xDj7tD) =

é:) [XD/ .[(;L dm (xD/’tD )dXDJ

L1 (Buty)apda| (23)

0

for —Lgp,; <xp; <0;

Vi (tp) Vi (xDjafD) =
é_:;|:x[)j Lﬁmj qm (xD/stD )d'XDj -
o i aw (.10 )4pe| (24)

for 0<uxp, <Ly, , where yupn is the dimensionless

wellbore pseud-pressure.

3.3 Semi-analytical model of an FCMFH well in
LC gas reservoirs
The solution for gas flow in LC gas reservoirs
(i.e., Eq. (19)) can be combined with the solution
for gas flow in hydraulic fracture (i.e., Egs. (23) and
(24)) by the following expression:

ip (*ps> Vpstp ) =¥ (xDjatD)a (_Lij = Xp; S Lij)

(25)
where xp, =x,p; +xp;cos(d; +9) and yp=y,p +
xp, Sin(8; + ) .

Substituting Eq. (25) into Egs. (23) and (24)
and taking the Laplace transform w.r.t. fp, one can
derive that:

[z (S)_‘/71D (xDaJ’DaS) =
27[ Lm,
CfD |:xDj J‘(y Ulin) (xDj’ )dXDJ
o i (ps)apde | (26)

for —Lip; < xp; <0
Vo (8) = ¥ip (¥p, Vp»s) =
é_;[xDjj;mj I (xD./as)dej -
o i (8.5)dpa| @7)

for 0<xp <Ly, , where yp(xp, yp,s) 18
presented in Eq. (19).

The production rate of the FCMFH well is the
sum of the flow rates from all the hydraulic

fractures, which is expressed as:
Mo
:ZJ._L‘ qf(xjat)dxj (28)
j=1 fj

Introducing the dimensionless variables (as
shown in Table 1) and taking the Laplace transform
w.r.t. tp, Eq. (28) can be rewritten as:

M Ly _ 1
ZLL g (Xp;» s)dxp; =— (29)
=1 Dj S
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Equations (26), (27) and (29) associating with
Eq. (19) form a mathematical model of an FCMFH
well in LC reservoirs in Laplace space. However,
the proposed model is difficult to be analytically
solved, and thus fracture discrete method is used to
Each of
is discretized into several

derive the semi-analytical solution.
hydraulic fractures
segments. As shown in Figure 3, the two wings of
the jth hydraulic fracture are discretized into N;
segments with the same length, respectively, and

thus the total number of segments for an FCMFH

M
well is 22 N; . The flux is uniformly distributed in
Jj=1
each segment. The mid-point coordinates of the ith
segment of the jth hydraulic fracture, (Xmij, Ymi,), are

o1
Ximi,j = X —(z _Ej Aij cos(t?/- +(p)

1 .
Ymi,j = Vwj _(’ _EjALfi Sm(‘?/ +(p)

1<j<M, 1<i<N, (30)

) 1
Ximi,j = Xy +(1—Nj —EjAij cos(é?j +(p)

. 1 .
Vmi,j = Vwj +(’ -N; _EJALfJ Sm(ej +¢’)
I<j<M, N, +1<i<2N, €2))
where AL; =Lg /N, is the fracture-segment length

of the jth hydraulic fracture, m.
The coordinates (Xmij, Vmi;j) are transformed

into the dimensionless form as follows:

1
XmDi,j = XwDj _(l _Ej ALy, cos(9j + go)

1 .
ymDi,j = waj _(l _EJALfD/ Sln(aj +¢)

1< j<M, 1<i<N, (32)

. 1
XmDi,; = *wDj "(’ -N; _EJALfD./ cos(Hj +¢)

. 1 .
ymDi,j = waj +(Z_N‘/ _EJALfDI Sln(a/ +(/7)

1<j<M, N;+1<i<2N, (33)

where Xmpi/~Xmij/L, Ympi/~Vmij/L, Xwp/~%wj/L, ywp/~=
ywj/L, and ALtDj:Aij/L.

The distance between the coordinates (xwj, Vw))
and the coordinates (xwj+1, yws+1) is defined as:

785
. |y=to
Region 2 Region 1 X O
y
0
Fauﬂlt Horlzontal Jjth hydraullc
well fracture
y=—©
X=—00 x=0 X=+00

Figure 3 Discretization diagram of jth hydraulic fracture

2 2
Ayy; = \/(ij+1 - ij) + (ywj+1 - ywj) >
j=1,2, -, M—1 (34)
If hydraulic fractures are discretized, Egs. (26),
(27) and (29) associating with Eq. (19) can be
rewritten in the discrete form:

M 2N;
l/7wDH Zzl//lDl,/( mka’ymkaﬂ )+
j=li=1
2 v—l_
C_n{ D k (S)‘[(V—”)'AL%D/CH
fD (n=1
ALy,

SfD 'qﬂ)v,k (S)} = {|:2n|:(mev,k - xWDk)2 +

1 N
(ymDv,k _wak)2:|2:|/CfD}quDn,k (S)ALtDk >

n=1
1<k<M,1<v<N, (35)

M 2N;
¥wDH (S z Z 1D, (mev,ksymDv,ksS)+

Jj=1i=1

{ Z qun k
fD

n=N;+1

ALy, —
Dk . quv,k (S)} = {|:2n|:(mev,k — XwDk )2 +

8

1
(VD g = wak)2:|2 :|/CfD } :

2N,

z qunk

n=N; +1

1<k<M, N, +1<v<2N, (36)

$)1(v=n)- ALy 1+

ALka’

2N

M j 1
Z I:qul j ALij :' (37)

—1 i= s

~.

where ¢m;; is the dimensionless fracture flux
density of the ith segment of the jth hydraulic
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fracture; ¥ip, ;(Xmpyi> Ympvs» §) 18 given as:

ALgy /2 _

YiDiy (mev,ksJ’mDv,kaS) = I dmi,j (5) :

~ALpy /2
s

0

XmDv & ~XmDi, j —0’005(0_/‘*(0)‘ 4

a C_JG—I[XmDV'k +Xppy, ;T cos(0j+¢7)] } )
3

{[cos[a}[ymmj +asin(0, + (ﬂ)ﬂ )
COS(@Y ypy 4 ) +5in [w[ymDi’f +

asin 0, +) | [Sin(@yp, o) | /\/a_1 }da)da (38)

M
Equations (35)—(38) consist of [2ZNJ-+1]

=

M
linear equations with (2ZN j+1J unknowns, i.e.,
=
Wwou (s) and g, (s) 1<j<M, 1<i<2N;). By
solving the linear equations, the dimensionless
wellbore pseud-pressure in Laplace space ¥ py(s)
is obtained. To incorporate the impact of the

wellbore storage and skin, Duhamel’s principle is
used as follows [37, 38]:

SWyp () +S
s+ S2CD |:Sl/7WDH (s) + S]

where S is the skin factor near the wellbore; Cp is
the dimensionless wellbore storage coefficient
defined in Table 1. Finally, the numerical Laplace
inversion method [39] is employed to transform the
Laplace-space pseud-pressure ,(s) to the
real-space pseud-pressure .. (¢p).

(78 (5): (39)

<—— Region 2

4 Model validation

The proposed semi-analytical model is
validated by comparing with numerical results
generated by the Saphir numerical simulator in this
section. The schematic of the numerical model is
shown in Figure 4, from which it is seen that an
FCMFH well is located in Region 1 of an LC gas
reservoir separated by a fault. The dimensionless
size of the LC gas reservoir is set as a large value
(i.e., 4000x4000), which could avoid the boundary
effect within the simulation time. The unstructured
grid system (i.e., Voronoi grid), which is
automatically generated by the Saphir numerical
simulator, is applied to the spatial discretization of
the numerical model (see Figure 5). The input
parameters used for numerical simulations are

2000 f,. K
f\Io-ﬂow
boundaries
H(__)rizontal well
A v Y\ .. Hydraulic
= O Fault | fhso fracture
Region 2 Region 1
No-flow bounda;_ies
i v
=2000 0 2000
XD

Figure 4 Schematic of an FCMFH well in an LC gas
reservoir with a fault

Region 1

2000 |

1000 F

y/m
]

-1000 f

-2000 f

-6000 -5000 -4000 -3000 -2000

000

I
[}
(=3
[}
%3
(=}
S
(=}
(o)

Figure 5 Local spatial discretization of numerical model of an FCMFH well in an LC gas reservoir with a fault by using

Saphir numerical simulator
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mainly collected from the published literature [40]
and are listed in Table 2. Figure 6 shows the
comparison of the results obtained by the proposed
model and Saphir numerical simulator. It is seen

Table 2 Basic data for numerical simulations

Parameter Value
Reservoir thickness, #/m 7.62
Porosity of Region 1, ¢ 0.075
Gas viscosity at the initial reservoir 0.0252
pressure, ui/(mPa-s)
Total compressibility of Region 1, s
Cu/MPa’! 1.43x10
Permeability of Region 1, k&1/mD 0.05
Initial reservoir pressure, pi/MPa 44.8
Gas reservoir temperature, 7/K 412.04
Number of hydraulic fractures, M 3
Half-length of jth hydraulic
40
fracture, Lg/m
Angle between jth hydraulic fracture 90
and horizontal well, 6/(°)
Angle between the horizontal well and
. 45
x-axis, p/(°)
Distance between the horizontal well 3000
center and the fault, x,/ M
Fracture spacing, Ayw/ 1 400
Dimensionless fracture conductivity
. 20
coefficient, Cip
Production rate of the FCMFH well at 5000
standard condition, Qse/(m*-d ")
Mobility ratio, 0.2
Diffusivity ratio, # 1
Skin factor across the fault, Sr 0
Skin factor near the wellbore, S 0
Dimensionless wellbore storage
. 0
coefficient, Cp
10!
£ 100
a
R
>
3
S
1071 g
o ¥'ypfp (saphir numerical solution)
---,,p (proposed solutin)
— ' \ptp (proposed solutin)
10_2 d |

100 102 10° 10* 105 10°
)

Figure 6 Comparison of results obtained by proposed

model and Saphir numerical simulator (M=3, Ly=40 m,

S§=0, Cp=0, Cp=20, 6=90°, ¢=45°, n=1, 1=0.2, S¥=0,

xw=3000 m, =0 m, Ayy=Apyw1=Ayw2=400 m)

107" 10°

that the proposed solution agrees excellently with
Saphir numerical solution, demonstrating that the
proposed semi-analytical model is able to be used
to investigate the pressure characteristics of an
FCMFH well in LC gas reservoirs with a fault.

5 Type curves and sensitivity analysis

The proposed model is employed to obtain the
dimensionless wellbore pseud-pressure (DWPP)
and dimensionless wellbore pseud-pressure
derivative (DWPPD) of an FCMFH well in LC gas
reservoirs. Type curve of an FCMFH well in LC gas
reservoirs is plotted to study the characteristics of
transient pressure responses and identify flow
regimes. The effects of some parameters on the
DWPP and DWPPD responses are analyzed in
detail.

5.1 Type curves

Figure 7 shows type curve of an FCMFH well
in LC gas reservoirs with a fault. Type curve
consists of the DWPP curve (i.e., wwp versus #p/Cp
curve) and the DWPPD curve (i.e., wip-tp/Cp
versus fp/Cp curve). It is observed from Figure 7
that the type curve can be divided into nine parts,
which correspond to nine flow regimes as follows:
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S 1072 2|
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Figure 7 Type curve of an FCMFH well in LC gas
reservoirs with a fault (M=3, Ly=40 m, =103, Cp=10"%,
Cp=20, 6=90°, p=45°, =1, 2=0.2, Sr=1000, x,=3000 m,
=0 m, Ayw=Ayw1=Ayw>=400 m)

1) Wellbore storage flow period (WSFP):
DWPP curve and DWPPD curve show the same
straight line with unit slope. During the WSFP, the
produced gas is all from the wellbore-storage gas,
and the gas in the reservoir has not entered into the
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wellbore.

2) Transitional flow period after WSFP
(TFP-WSFP): DWPPD curve exhibits a “hump”,
which is mainly affected by the seepage capability
near the wellbore. During this period, the gas in the
reservoir begins to flow into the wellbore, and the
pressure wave travels in the reservoir area near the
wellbore.

3) Bilinear flow period (BFP): DWPPD curve
exhibits a 0.25-slope straight line. During the BFP,
the two linear flows take place together: one is
within the hydraulic fracture; the other is
perpendicular to the reservoir-fracture contact
surface (see Figure 8(a)).

4) First linear flow period (FLFP): DWPPD
curve shows a 0.5-slope straight line. During the
FLFP, the linecar flow perpendicular to the
reservoir-fracture contact surface takes place, and
the linear flow of each hydraulic fracture cannot
interact with each other (see Figure 8(b)).

5) First pseudo-radial flow period (FPRFP):
DWPPD curve exhibits a horizontal line. During
the FPRFP, the pseudo-radial flow independently
takes place around each of hydraulic fractures (see
Figure 8(c)).

6) Second linear flow period (SLFP): DWPPD
curve exhibits a straight line with a 0.5 slope. In the
SLFP, pressure waves caused by adjacent hydraulic

fractures have interacted with each other, and a
linear flow occurs along the direction of hydraulic
fractures (see Figure 8(d)).

7) Second pseudo-radial flow period (SPRFP):
DWPPD curve shows a horizontal line with the
magnitude being 0.5. During the SPRFP, the
pseudo-radial flow toward the FCMFH well occurs
in Region 1 and the pressure wave has not reached
the fault (see Figure 8(e)).

8) Transitional flow period after SPRFP
(TFP-SPRFP): DWPPD curve appears as a step.
During the TFP-SPRFP, the pressure wave has
arrived at the fault but has not transmitted into
Region 2 totally. The flow period is mainly affected
by the properties of the fault and Region 2, which
will be analyzed in detail later.

9) Third pseudo-radial flow period (TPRFP):
DWPPD curve shows a horizontal line with a
constant value, whose magnitude is dependent on
the properties of Region 2. During the TPRFP, the
pressure wave has totally transmitted into Region 2
and the pseudo-radial flow toward the FCMFH well
takes place in the whole gas reservoir including
Region 1 and Region 2 (see Figure 8(f)).

It should be noted that not all the flow regimes
described above exist for FCMFH wells in LC gas
reservoirs with a fault. Depending on the
reservoir/well properties, some of these flow
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Figure 8 Flow pattern of an FCMFH well in LC gas reservoirs with a fault
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regimes may be absent. Therefore, sensitivity
analysis will be conducted in the next subsection to
study the effect of some parameters on the pressure
behaviors.

5.2 Sensitivity analysis

Figure 9 shows the effect of skin factor across
the fault (Sr) on the DWPP and DWPPD responses
of an FCMFH well in LC gas reservoirs with a
fault, from which it is seen that the Sr merely
affects the flow periods after the pressure wave has
arrived at the fault, i.e., TFP-SPRFP and TPREFP.
Increasing the Sr will result in a longer duration of
the TFP-SPRFP and a later start time of the TPRFP.
The reason of this phenomenon is that a larger Sr
represents a larger flow resistance across the fault.
If the flow resistance across the fault increases, the
drawdown pressure should be enhanced to keep the
production rate unchanged, and the transmission
time of the pressure wave across the fault should
become longer.
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Figure 9 Effect of skin factor across fault (S¢) on type
curve of an FCMFH well in LC gas reservoirs with a
fault (M=3, Li=40 m, S=1073, Cp=107%, Cpp=20, 6=90°,
p=45°, n=1, =1, xw=3000 m, y=0 m, Ayy=Apwi=
Ayw>=400 m)

Figure 10 shows the effect of the distance
between the horizontal well center and the fault (xy)
on the DWPP and DWPPD responses of an
FCMFH well in LC gas reservoirs with a fault. It is
observed that the x, affects the duration of the
SPRFP and the start time of the TFP-SPRFP. The
smaller the xy is, the shorter the duration of the
SPRFP is and the earlier the start time of the
TFP-SPRFP becomes. It is noted that if the FCMFH
well is located near the fault, the SPRFP may

disappear. The reason is that as the x, becomes
smaller, the pressure wave reaches the fault earlier.
Figure 11 shows the effect of mobility ratio (1)
on the DWPP and DWPPD responses of an
FCMFH well in LC gas reservoirs with a fault.
Based on the definition of the A (as shown in Table
1), the A represents the flow capability of Region 2
compared with Region 1. The flow capability of
Region 2 increases with increasing A. It is clear
from Figure 11 that A has an impact on pressure
responses of FCMFH wells after the pressure wave
reaches the fault, and the DWPP and DWPPD
increase with decreasing A. The cause of this
phenomenon is that the decrease of A reduces the
flow capability of Region 2, and thus the drawdown
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Figure 10 Effect of distance between horizontal well
center and fault (xw) on type curve of an FCMFH well in
LC gas reservoirs with a fault (M=3, L=40 m, S=1073,
Cp=107%, Cp=20, 0=90°, ¢p=45°, =1, 4=0.2, Sr=1000,
w=0 m, Ayw=Aywi=Ayw>,=400 m)
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Figure 11 Effect of mobility ratio (1) on type curve of an
FCMFH well in LC gas reservoirs with a fault (M=3,
Lg=40 m, S=107, Cp=10"°, Cp=20, 6=90°, p=45°, =1,
S¥=0, x,=3000 m, y4w=0 m, Ayy=Ayw1=Apyw2=400 m)
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pressure should be enhanced to keep the production
rate unchanged.

Figure 12 shows the effect of diffusivity ratio
() on the DWPP and DWPPD responses of an
FCMFH well in LC gas reservoirs with a fault.
According to the definition of # (see Table 1), # is
inversely proportional to (¢,Cy,)/(4C,) under the
same other parameters (e.g., the same A). The
storage capability of Region 2 increases with
decreasing #. It is seen from Figure 12 that # mainly
has an impact on the TFP-SPRFP, where the DWPP
and DWPPD decrease with decreasing #. The
reason is that decreasing s improves the storage
capability of Region 2, and thus the drawdown
pressure must decrease to maintain the fixed
production rate.

10?
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Figure 12 Effect of diffusivity ratio () on type curve of
an FCMFH well in LC gas reservoirs with a fault (M=3,
Li=40 m, $=1073, Cp=10"%, Cp=20, 6=90°, p=45°, i=1,
Sr=0, xw=3000 m, y»w=0 m, Ayw=Ayw1=Apw2=400 m)

Figure 13 shows the effect of dimensionless
fracture conductivity coefficient (Cp) on the DWPP
and DWPPD responses of an FCMFH well in LC
gas reservoirs with a fault. It is clear that Cp
primarily affects the early-time flow periods
including TFP-WSFP, BFP, and FLFP. As Cp
increases, the DWPP and DWPPD decrease, the
BEFP lasts shorter, and the FLFP appears earlier. The
reason is that increasing Cip causes the increase of
the hydraulic-fracture permeability; in other words,
increasing Cip leads to the improvement of the
seepage capability near the wellbore. Therefore, in
order to keep the production rate constant, the
drawdown pressure of the FCMFH well should
decrease with increasing Crp. Furthermore, with the
improvement of the hydraulic-fracture permeability,
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Figure 13 Effect of dimensionless fracture conductivity
coefficient (Cp) on type curve of an FCMFH well in LC
gas reservoirs with a fault (M=3, L#F=40 m, S=1073,
Cp=107%, 6=90°, @=45°, y=1, 7=0.2, Sr=1000, x,=
3000 m, y4w=0 m, Ayw=Ayw1=Ayw>=400 m)

the BFP lasts shorter and then the FLFP begins
earlier.

Figure 14 shows the effect of fracture spacing
(Ayw) on the DWPP and DWPPD responses of an
FCMFH well in LC gas reservoirs with a fault. It is
obvious that Ay, has an effect on the flow periods
from FPRFP to SPRFP. As Ay, decreases, the
duration of the FPRFP gets shorter, and the SLFP
and SPRFP begin earlier. If Ay, is small enough,
the FPRFP may be masked by the SLFP and SPRFP.
This is because that as Ay, decreases, the
interference between adjacent hydraulic fractures
occurs earlier.

It is noted that some differences are observed
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Figure 14 Effect of fracture spacing (Ayw) on type curve
of an FCMFH well in LC gas reservoirs with a fault
(M=3, Li=40 m, 5=1073, Cp=10"%, C;p=20, 6=90°, p=45°,
n=1, 1=0.2, Sg=1000, x,=3000 m, yw=0 m, Ay.=
Aywi=Ayw2)
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at some intermediate-time flow periods in Figures 9,
10, 12 and 14. The explanations are given as
follows: Sr only has an effect on the TFP-SPRFP
and TPRFP (as shown in Figure 9); x, mainly
affects the SPRFP and TFP-SPRFP (as shown in
Figure 10); n mainly has an impact on the
TFP-SPRFP (as shown in Figure 12); Ayw mainly
has an effect on the FPRFP, SLFP, and SPRFP (as
shown in Figure 14).

Figure 15 shows the effect of the number of
hydraulic fractures (M) on the DWPP and DWPPD
responses of an FCMFH well in LC gas reservoirs
with a fault. It is clear that M mainly has an impact
on the flow periods (i.e., from TFP-WSFP to
SPRFP) that the pressure wave has not reached the
fault. As M increases, the DWPP and DWPPD
decrease. The reason is that increasing M means the
improvement of the seepage capability near the
wellbore, and thus the drawdown pressure of
FCMFH wells with a fixed production rate should
decrease with increasing M.
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Figure 15 Effect of number of hydraulic fractures (M) on
type curve of an FCMFH well in LC gas reservoirs with
a fault (Ly=40 m, $=1073, Cp=10"%, Cp=20, 6=90°,
p=45°, n=1, 2=0.2, Sy=1000, x,=3000 m, yw=0 m,
Ayw=Ay=400 m)

6 Conclusions

1) A semi-analytical model of FCMFH wells in
LC gas reservoirs is proposed based on
Laplace-space superposition principle and fracture
discrete method. The proposed model is validated
against the results obtained by Saphir numerical
simulator.

2) Type curves of an FCMFH well in LC gas
reservoirs are obtained to conduct the pressure

transient analysis based on the established model. It
is found that there are nine possible flow regimes in
the whole production process of the FCMFH well.
Before the pressure wave reaches the fault, the first
seven flow periods (i.e., from WSFP to SPRFP)
appear one after another; after the pressure wave
arrives at the fault, the last two flow periods (i.e.,
TFP-SPRFP and TPRFP) just turn up.

3) The effects of some parameters on type
curves and flow regimes are discussed in detail. It is
found that dimensionless fracture conductivity
coefficient, fracture spacing, and number of
hydraulic fractures mainly affect the pressure
behaviors before the pressure wave reaches the
fault; skin factor across the fault, mobility ratio, and
diffusivity ratio only have an impact on the pressure
behaviors after the pressure wave arrives at the
fault.

4) The proposed model provides an efficient
method to obtain pressure responses of FCMFH
wells in LC gas reservoirs. It is also helpful to
further develop analytical/semi-analytical models
for other complex well types in LC gas reservoirs.

Appendix A Derivation of governing equations for
point source in LC gas reservoirs

Based on mass conservation, continuity
equations for LC gas reservoirs with a point source
located at (xw, yw) are given as:

0
a(pluxl) (pluyl)_pscqsc é‘(x_xw)é‘(y_yw)

ox oy h
_oled) L, (A1)
ot
_3(P2Ux2)_6(p2uy2):a(pﬁﬁz) x<0 (A2)
ox oy o

where subscript 1 and 2 represent Region 1 and
Region 2, respectively; p is the gas density, kg/m®;
vx 18 the x-direction gas velocity, m/s; v, is the
y-direction gas velocity, m/s; ps is the gas density at
standard condition, kg/m?; gy is the production rate
of the point source at standard condition, m’/s; & is
the reservoir thickness, m; ¢ is Dirac delta function;
x, y are the coordinates, m; xy, yw are the
coordinates of the point source, m; ¢ is the porosity;
¢ is the time, s.

According to the Darcy law, the gas velocities
in the x and y directions are described by,
respectively:
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o k;ap; (A3) 1) Laplace transform of Egs. (8)—(14) w.r.t. tp

v u Ox 621/7 621/7

k. Op. 6—21])+a—21])+2an5(xD_xWD)g(yD_yWD)
v, __Kiop; (Ad) Xp YD
where subscript j=1, 2 represents Region 1 and o’y o’y s _
. PrJ . P g1 ). #+#:_V/2Da)€D<O (B2)
Region 2, respectively; & is the permeability, m~; u oxp b
is the gas viscosity, Pa's; p is the reservoir pressure, . .
Pa lim i (xp,yp,s)= lim @op (xp,yp.s)=0 (B3)
. Xp—>+0 Xp—>—0
The equation of state for real gas is given as N N
follows: yt}lf}ml//m (xD,yD,S) = yt}lf}m‘//zD (xDayD:S) =0 (B4)
M = —
2, :% (As) i (myp.s) _ 0Wap (3p.yp.5) (B5)
Oxp x50 Oxp =0
where subscript j=1, 2 represents Region 1 and .
Region 2, respectively; M, is the gas molar mass, SFM =i (¥pype5).
kg/mol; Z is the deviation factor of natural gas; R is Oxp, xp=0 o
the universal gas constant, J/(mol-K); 7T is the gas ¥ap (X, yD,s)L " (B6)
xp=

reservoir temperature, K.

The gas  compressibility and  rock
compressibility are defined, respectively, as:
1 107
C,=——-——— (A6)
£ p; Zop,
0.
= 19 (A7)
¢j op J

where subscript j=1, 2 represents Region 1 and
Region 2, respectively; C, is the gas compressibility,
Pa™'; C: is the rock compressibility, Pa™".

Substituting Eqgs. (A3)—(A7) into Egs. (Al)
and (A2) yields that:

i(_klpl %}ri("ll’l %j_

ox\ uzZ ox oy\ uzZ oy
Pelbe s (x-x,)5(r-1.)
_ACan g (A8)
Z o
i ksz% +i kzpz% :¢2Ct2p2% <0
ox\ uzZ ox ) oy\ uzZ oy zZ o’
(A9)

where Cy and Cp are the total compressibility of
Region 1 and Region 2, respectively, which are
defined by C;=Cy+Cy;, j=1, 2. It is noted that C; and
Cy are actually the functions of pressure, but they
are usually treated as constants for engineering
applications, i.e., Cy=Cu(pi) and Co=Cu(pi).

Appendix B Derivation of Laplace-space
point source solution for LC gas reservoirs

where s is the Laplace transform variable; g,
¥,p and g, are the corresponding Laplace-space
variables of yip, y2p and ¢p, respectively, which are
given as:

Yip (XD:yD’S):_[(:oV/lD (xpsypstp )e Pty (B7)
¥ap (XD,J’D’S):J?%D (xp. ypstp)e Pty (B8)
o (s)= L:c qp (tp)e Pty (B9)

2) Infinite Fourier transform of Eqgs. (B1)—(B6)
w.r.t. yp

=
Vo Wle —(a)2 +s)l/7m +27r67De_my“'D5(xD —Xyp)=0,
Oxp
xp>0 (B10)
62; S | =
%—(m2+—}//w=0, Xp <0 (B11)
XD n

lim ¥ (xp,@,s)= lim @p (xp,@,5)=0 (B12)
Xp—>+0 Xp—>—00

81/71D()CD=‘0’S)| :;L@l;ZD(xD’w’SM (B13)
6)(?[) |XD:0 axD |xD:O
OWip (xp> @, 5) =
g 9V (Xp,@,5) _ _
F 6XD xp=0 P (XD,a),S)LC =0
Vo (xp,®,5) xp=0 (B14)

where o is the Fourier transform variable; i, and
¥, are the corresponding Fourier-space variables
of ¥, and v, ), respectively, which are defined as:
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Vip (xD,a),s)=I_wwy71D (XD,yD,S)e"'“’deyD (B15) Ay, :{{i[cos(a)wa)sin(a}yD)_

. w i sin(@yyp ) cos(wyp) \/; (B28)
Vap (xD,a),s)zj_wl//zD (xp.yp.s)e " “rdyy (B16) v v ]}/ 1}

Equations (B10)—(B14) consist of ordinary
differential equations w.r.t. xp, which are able to be
analytically solved as follows:

ﬂ_qDe—la)wa (e_\/Z‘XD_wa‘ N

a

‘;ID (xD»a’aS) =

age o)) (B17)

- 2ane_iWy‘”De_\/a—leD+\/sz
,0,5) = B18
e N N v r

where

a =’ +s (B19)
ay =+ (B20)
_\/Z+SF1 alaz—/"t\/g (B21)

o Jay + SpasJaga; + 2 ay

3) Inverse Fourier transform of Eq. (B17) w.r.t.
)

V71D (XD,yD,S) = qTDI:,[e_\/Z‘XD_xWD‘ +a3e—\/2(xD+wa)j|.

{{[cos(a)wa )—isin(@y,p )]
[ cos(wyp ) +isin(wyp )]}/\/a}da)

Equation (B22) is obtained based on the
expression of inverse Fourier transform:

(B22)

_ 1 o =~ io
Yip (XD,)/D,S)=%JLOO’//1D (xp,@,5)Pdo  (B23)

It is obvious that the integrand in Eq. (B22) is
the product of two parts (i.e., 41 and A4,):

Al - e’\/a—l‘XD*wa‘ + a3e’\/a(xn+wa) (B24)
4, = {{[cos (0yyp ) —isin(@yyp )] :
[cos(a)yD)-i-isin(a)yD)]}/\/Z} (B25)

Equation (B25) can be rewritten as the sum of
two parts:

Ay = Ay + Ay (B26)
where
Ay, ={{[[cos(@pp ) cos (@yp )+

sin(@yyp )sin(@yp )]}/\a | (B27)

It is noted that 4, in Eq. (B24) and A2 in
Eq. (B27) are even functions of w, A2, in Eq. (B28)
is odd function of .

Considering the odevity of functions and the
symmetry of integral domain, Eq. (B22) can be
simplified as:

l/71D (XD,)/D,S) = JDJ’:|:e7\/a—1‘XD*an‘ i

age (xD+wa)} {

[cos(@yyp ) cos(@yp )+

sin(wy,,p)sin(wyp )]/\/Z}da) (B29)

Appendix C Derivation of dimensionless
model for gas flow within a hydraulic fracture

Because of a very small volume within
hydraulic fracture compared with the reservoir
volume, gas flow within hydraulic fractures is
usually viewed as an incompressible linear flow. To
study the linear flow within hydraulic fractures, the
coordinate system (x;,y;) for the jth hydraulic
fracture is employed to establish the dimensionless
model for gas flow within the jth hydraulic fracture
(see Figure 2). The governing equation of gas flow
within the jth hydraulic fracture can be described as
[41]:

0 {pf apf(x./’yj”)]Jr 0 [pf apf(xpyf»’)}o

ox; | uZ ox; ;| HZ P,
(Cl)
Wr Wr . :
where Ly <x; <Ly, _TSijT’ Ly is the

half-length of the jth hydraulic fracture, m; wr is the
hydraulic fracture width, m; pr is the pressure in
hydraulic fractures, Pa.

Introducing the pseud-pressure:

e 2
ve=y(pr)=[)' 220 (€2)

Equation (C1) becomes:

i{wiilw}o (C3)

Oox ; ox ; 8y_ i oy ;

The fracture flux density of the jth hydraulic
fracture is described by:

_ kT, | 9V (xj’yj’[>|

qf(xﬁt)_zpscT ; ‘ m_
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o (xj’y«l"t) (C4)

where —Lg; <x; <Ly, and gr is the fracture flux

density at standard condition, m%/s.

Considering the incompressible linear flow
within hydraulic fractures, the wellbore conditions
can be described as:

hj% ke T, awf(xj,yj,t)dy

5 2p T ox; / .
J
o
_J‘_LﬁCIf(xjat)de (CS)
hj?i kasc al//f(xj’yj’t)dy' —
M 2p T ox; ! .
x;—>
Ly
g (2 )y (C6)

where kr is the permeability of hydraulic fracture,
m?.

The boundary conditions of  the
reservoir-fracture contact surface can be described

based on the mass conservation:

kT, 0w (x)0,.1) _ kT a‘//l(x./’y./’t)|
2p,.T 8yj Cw 2p T ayj ‘ ™
Yisy Vit
(C7)
ka;C al//f (xjayjat) _
2pscT ayj We
}’/:’7
kT 0V (x;000) (C8)
2p T , L=V

2

Owing to the hydraulic fracture width being
very small, the y;-direction pressure variation within
the jth hydraulic fracture is usually neglected, and
the y;-direction average pressure is introduced as:

Wy
Vi (xj’f):wiff_zw'/’f (xj0jt)dvys —Ly <x; <L
2

(C9)

With the aid of Egs. (C7)—(C9), Eq. (C3) can
be rewritten as:

52'>”f(xj»’)Jr ky a'/’l(xj»yj”)|

axi weke oy;

o (x):3,:1) —0 (C10)

Substituting Eq. (C4) into Eq. (C10) yields
that:

Oy (x1) L 2pT

ox; wekehT,,

gr (x,1)=0 (C11)
Based on Eq. (C9), Egs. (C5) and (C6) can be
rewritten as:
kaSC al//f (xj,t) ~ o
th 2pscT T B _J:Lf/. £l (x.f’t)dx.f (C12)
x; 0"
kasc a(//f (xj,t)
2pscT axj

- Off’qf(xj,t)dxj (C13)

hwy

)c/-~>04r

Considering the dimensionless variables (see
Table 1), Egs. (C11)—(C13) are rewritten in
dimensionless form:

v (xDjafD) _2n

X .’t :O C14
ax%)j CfD qu( Dj D) ( )
oW (xDjatD) 21 (0
_— = — X .’t .
o BT
xDj—>07
(C15)
oW | Xpy»Ip 27 Ly
% == O:D 4 (xDj,tD )dej
XDj . Cp
xDj—>O
(Cl16)
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