
SOCA (2014) 8:129–158
DOI 10.1007/s11761-013-0153-3

ORIGINAL RESEARCH PAPER

A survey of methods and approaches for reliable dynamic service
compositions

Anne Immonen · Daniel Pakkala

Received: 13 June 2013 / Revised: 7 November 2013 / Accepted: 30 December 2013 / Published online: 22 January 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract An increasing amount of today’s software sys-
tems is developed by dynamically composing available
atomic services to form a single service that responds to
consumers’ demand. These composite services are distrib-
uted across the network, adapted dynamically during run-
time, and still required to work correctly and be available on
demand. The development of these kinds of modern services
requires new modeling and analysis methods and techniques
to enable service reliability during run-time. In this paper, we
define the required phases of the composite service design
and execution to achieve reliable composite service. These
phases are described in the form of a framework. We per-
form a literature survey of existing methods and approaches
for reliable composite services to find out how they match
with the criteria of our framework. The contribution of the
work is to reveal the current status in the research field of
reliable composite service engineering.

Keywords Composite service · Service architecture ·
Reliability evaluation · Reliability-awareness

1 Introduction

Today, the need for advanced services is rapidly increasing,
as consumers’ needs become more demanding and com-
plex, most notably as a result of the growth in demand
for mobile devices and ubiquitous computing environments.
Composite services [1] aim to respond to today’s challenges,

A. Immonen (B) · D. Pakkala
VTT Technical Research Centre of Finland,
P. O. Box 1100, 90571 Oulu, Finland
e-mail: anne.immonen@vtt.fi

D. Pakkala
e-mail: Daniel.Pakkala@vtt.fi

as they combine several atomic services to form a unique ser-
vice composition that provides a solution to these complex
demands. Service-oriented architecture (SOA) [2] represents
an appropriate architectural model for composite services,
enabling, even dynamically, combinations of a variety of
independently developed services to form distributed, soft-
ware intensive systems.

Composite service developers form a new kind of service
consumer group, as they act both as a service consumer and
a service provider, composing services into one ensemble
and then providing it to consumers as a single service. The
composite service must fulfill both the task goals of the ser-
vice from the composite service consumer’s viewpoint and
the business goals of the composite service provider. When
well planned, a composite service is once designed and then
dynamically managed and evolved during run-time. These
dynamic capabilities require that the design must take into
account the run-time requirements to dynamically discover,
select, and bind available services and the capability to adapt
due to changes.

Service reliability and its verification become a prerequi-
site as these new kinds of modern services are present in our
everyday life affecting several everyday functions and situa-
tions. Service reliability can be defined as the probability that
the system successfully completes its task when it is invoked
(“reliability on demand”) [3]. For composite service con-
sumer, this means that the service works correctly and with-
out interruptions and is available when required. For a com-
posite service provider, reliability has a broader meaning; the
provider is able to ‘trust’ that the service fulfills the require-
ments and works as expected. New modeling and analysis
methods and techniques are required to enable to compose
and manage reliable service compositions at run-time.

In this study, we take the viewpoints of composite ser-
vice developer and composite service provider on achiev-

123

130 SOCA (2014) 8:129–158

ing reliable composite service. The role of the composite
service developer consists of different stakeholders, such as
requirement engineers, architects, evaluators, coordinators,
managers, and financial controllers, which influence the ser-
vice at design time. The service provider influences the ser-
vice at run-time, having responsibilities of making the service
available for consumers and managing the service availabil-
ity. Since all stakeholders have different roles in service life
cycle, they also have interests in reliability and responsibili-
ties in achieving it. In addition to traditional service reliability
engineering, several new challenges arise in this new setup:

• How to select reliable services for a composite service?
Reliability of composite service is dependent on reliabili-
ties of its atomic services. The composite service provider
should be able to analyze atomic service reliabilities, com-
pare different selections, and be ensured about the ser-
vice actual reliability before service binding. Reliabil-
ity analysis assists in building confidence to the techni-
cal capabilities of the service. However, reliability can
have “softer”, non-technical forms that manifest themself
between things, people, or organizations. Reputation relies
on the aggregation of experiences with the service or ser-
vice provider. Further, trust is gained from a person’s or
organizations’ own experiences with a service or service
provider. These other forms of reliability also have a great
influence on service selection.

• How to ensure reliability during composite service run-
time? In addition to selecting reliable services, compos-
ite service providers must be able to verify the reliability
of the selected services and the composite service during
run-time. This requires that the service execution is mon-
itored. The monitoring unit collects and stores statistics
of the quality characteristics of services at regular inter-
vals. Based on this collected statistics, run-time reliability
analysis is required to analyze both the atomic service and
the composite service reliability by calculating the quality
metrics.

• How to manage reliability? Reliability analysis as such
is not enough for composite service providers to ensure
service reliability. If detecting undesirable changes in reli-
ability of services or the reliability requirements are not
being met, the service system must have a plan how to
act based on the analysis results. The service system must
be able to adapt itself due to changes that occur in impor-
tant characteristics of a service (e.g., reliability, reputation,
and provider’s trustworthiness) to maintain the required
reliability. To enable this, the composite service provider
needs a comprehensive service composition and monitor-
ing architecture with decision making logic. Therefore, the
dynamic nature and the run-time reliability requirements
of composite service need to be taken into account already
in requirements engineering and design phase.

Implementation of a composite service may be deployed
inside one device or into several servers across a network.
Furthermore, we believe that the future’s composite services
will apply increasingly the cloud computing environments
[4], which provides software as a service (SaaS) through a
program interface, hiding the complexity of implementation
from the consumer, allowing the composite service to scale
to the amount of consumers. In any deployment and in any
computing environment, the reliability of composite service
must still be ensured and managed. To engineer reliable ser-
vices, the composite service developer requires means, meth-
ods, and techniques for specifying reliability requirements,
bringing reliability requirements into design, selecting ser-
vices based on reliability requirements, and analyzing and
verifying reliability (both at the architectural level and on
run-time).

There already exist several studies in the literature con-
sidering reliability analysis, service selection, and quality
adaptation. In this study, we discuss the essential issues that
the composite service developer should consider when engi-
neering reliable composite services. We then define a domain
and implementation independent evaluation framework with
evaluation criteria derived from the issues in reliable com-
posite service design and execution. We perform a litera-
ture survey of existing approaches and methods for reliable
composite services, which are not restricted to any specific
domain, and examine how the approaches in the literature
respond to these criteria. Thus, the purpose of the frame-
work is to assist in revealing how the criteria are taken into
account in the current approaches in the literature, and what
is the status of the research literature considering each of the
criteria. We select nine approaches for further examination
and evaluate how these approaches consider and implement
the discussed criteria. Our literature survey also reveals the
current status in the research field, exposing the potentials,
shortcomings, and development targets.

In the next section, the essential issues in composite ser-
vice design and execution are discussed. Section 3 introduces
our evaluation framework. Section 4 describes the results
of our literature survey, which include the evaluation of the
selected approaches and the discussion about the other related
literature for each of the framework criteria. We discuss the
emerging issues of our research in Sect. 5, and finally, in
Sect. 6, we conclude our work.

2 Overview of reliable composite service design
and execution

Reliable composite service design and run-time consist of
several phases. Figure 1 describes these phases from the
composite service developer (design time) and provider
(run-time) viewpoints. Requirements engineering, service

123

SOCA (2014) 8:129–158 131

Requirements
engineering

Service
modeling

Service
selection and
contracting

Service
binding and
execution

Static
reliability
analysis

Dynamic
reliability
analysis

Decision
making

Service
reliability

data

Service
repository

Service
registry

Run-time
monitoring

SLA
monitoring

Service
search

Design time Run-time

List of
candidates

Dynamic
service

discovery

Adaptation

Reputation
data

Fig. 1 Reliable composite service design and run-time modeling

modeling, service search, service selection and contracting,
and service binding, and execution are the traditional phases
in the composite service design and execution. The required
data sources for the traditional phases (service repository
and service registry) are described in Fig. 1 using rectangle
shapes. The new required phases to achieve and manage reli-
ability are described using the ellipse shape to separate them
from the traditional phases. New required data sources are
described using gray rectangle shapes.

We assume that the composition service developer is
an organization that develops a composite service that ful-
fills some complex consumer’s tasks. The developer spec-
ifies the functionality and quality of the service according
to anticipated, foreseen, or prespecified demand, focusing
on achieving economic goals by providing the service for
multiple consumers. Reliability requirements are achieved
using a formal requirement engineering (RE) method and
one or more requirement elicitation techniques. Reliability
requirements contain both measurable, quantitative require-
ments and qualitative requirements that end up to some
design decisions. Measurable reliability requirements for
a service must be expressed using metrics, with which
the target values can be defined. In reliability analysis,
these values are used to verify the fulfillment of require-
ments. The means to achieve and manage reliability dur-
ing run-time must be taken into account in design deci-
sions and must therefore be noted already in requirements

engineering phase. Therefore, reliability requirements must
cover the requirements for context-awareness, reliability-
awareness, and self-adaptiveness. From service-centric view-
point, context-awareness is here restricted, meaning only
that the dynamic service discovery detects if new services
(possible with better reliability) become available, whereas
reliability-awareness means that the service is aware of its
current reliability. Self-adaptiveness means that software is
expected to fulfill its requirements at run-time by monitor-
ing itself and its context, detecting changes, deciding how
to react, and acting to execute decisions on how to adapt
to these changes. This requires both context-awareness and
reliability-awareness.

Service architecture is a set of platform and implemen-
tation technology independent definitions of structure, func-
tionalities, data, management, and control of services within
a service-oriented system. Service architecture should be
modeled in a way that assists in reliability analysis and to
compare different service selections. Ideally, service archi-
tecture describes the conceptual service in a form of a ser-
vice template or as an abstract, conceptual level architecture
into which the suitable services are searched. The reliability
requirements must be brought into the architectural design in
a formal way. Usually, they emerge in a form of design deci-
sions and required qualities for services to be searched. After
finishing service architecture, the composite service devel-
oper must perform the feasibility study, inspecting carefully

123

132 SOCA (2014) 8:129–158

which part of the system it is rational to implement using
ready-made services offered by several service providers.
Since there exist several services that embody the same
functionality, the key in service selection is to find services
that fulfill the non-functional requirements best. For reliable
composite service, the services for the service architecture
are searched mainly based on their reliability information.
Services are commonly searched from a service repository,
which is a development time registry of human understand-
able (may also be machine interpretable) service descriptions
that can be utilized in software development. The service
repository contains usually static information about the reli-
ability of services that is subjective (i.e., provider’s adver-
tised service information). If possible, the actual, dynamic
reliability information about the services should be obtained
from the dynamic environment, possible from the dynamic
data storages. The trustworthiness of the information must
be ensured.

Reliability analysis emerges already in the design time.
The static reliability analysis can be pure architectural level
analysis, which is done in service modeling phase. In that
case, the analysis is done using the estimated probability of
failure values of services and behavioral description. This
kind of predictive analysis provides, among others, feedback
to service design and helps to detect critical services. The sta-
tic analysis can be performed also in service searching phase
using the obtained reliability values (static or dynamic, if
available). Services with low reliability decrease the reliabil-
ity of the whole composite service, and that is why reliability
evaluation is extremely important within composite services.
The analysis helps to compare the services and the different
service selections before service binding.

Based on reliability analysis, the services are selected
and possible contracts [including service level agreements
(SLAs)] are made with service providers. Service reliability
is a strong justification for selection of reliable composite
service, but it is not always enough. The weak reputation of
the service provider is a good reason not to choose a certain
service. The service reputation itself should be a justification
for selection, since it reveals how it has been experienced.
Trustworthiness, if reachable, tells how the promised qual-
ity meets the actual quality, revealing also the trustworthi-
ness of the service provider. Within devices, the status of the
device has a great influence on its selection. Finally, selec-
tion is strongly affected by the reliability of the service at
the time of selection. A highly reliable service can be some-
times unreliable or even unavailable. That is why the ser-
vice dynamic reliability information should contain both the
most recent and average reliability. The SLAs with the ser-
vice providers are a good way to save the composite service
provider side. In SLA, numerous service reliability metrics
are defined, and their values are negotiated. In design time,
for each service, several candidate services are searched. The

list of candidate services should be established from where
the suitable services can be selected when services in used
need to be replaced. The SLA contracts with the candidate
service providers should also be negotiated beforehand so
that there will not be any breaks in composite service execu-
tion when replacing services.

After service selection, the services are bind and the com-
posite service execution begins with the help of service
registry. Service registry is a run-time registry of machine
interpretable service descriptions, which includes all the ser-
vices that are available at that moment. The service discov-
ery should still continue dynamically during run-time (i.e.,
context-awareness). In the run-time, the dynamic service dis-
covery updates the lists of candidates. The SLAs still need
human inference and should therefore be prenegotiated reg-
ularly. The executed services are monitored (i.e., reliability-
awareness). The monitored data are stored in dynamic data
storage for reliability analysis purposes. Within devices, sta-
tus should also be monitored during service execution. Con-
sumers may be provided some kind of system to vote or
evaluate the service he/she just has been consumed. These
data can be used for reputation calculation for service or
service provider, and also has to be collected and stored in
dynamic data storage for analysis purposes. Dynamic data
storages store two kinds of information. The raw, monitored,
or collected data are used for analysis purposes only. The cal-
culated service reliability or reputation values are also stored
in data storage. The stored information should include both
average and the most recent values. Ideally, this information
could be available for anyone searching for dynamic relia-
bility information about the services.

Dynamic reliability analysis calculates actual reliability
values for services. After a certain time unit, it obtains the
data from the dynamic data storages to calculate dynamic
service reliability and service reputation. For trustworthiness
calculation, the analysis requires also the service provider’s
advertised service reliability information. SLA contract is
being monitored based on the reliability analysis. Decision
making unit is responsible for making decisions to ensure
and manage reliability by performing dynamic quality adap-
tation (i.e., self-adaptiveness). Usually, this means that the
unreliable services are being replaced if needed. The unit
has to clarify whether the purpose is to obtain the optimal
reliability, or is it enough that the reliability values are inside
a certain value range. If optimal reliability is selected, the
decision making unit checks regularly the list of candidate
services to inspect whether services with better reliability
are detected. If true, the services in use are replaced with
services with better reliability values. In other case, the list
is used if the reliability analysis shows that some services
in use are unreliable or the reliability of the composite ser-
vice drops below the required level. The decision making
unit maintains and updates the list of candidates according

123

SOCA (2014) 8:129–158 133

Composite service consumer

Composite
service XY

Service X(1) Service Y(2)

Composite service XY provider

Dynamic data storage provider

Run-time monitor provider

Dynamic
data

storage

Uses

Run-time monitor

Monitors

Provides

Provides

Provides

Monitors

Provides

Updates
Service X(2)

Service Y(1)

Provides Provides
Provides

Resource Z(3)

Resource Z(2)Resource Z(1)

Trusts
Consumes

Information provider

Updates

Service
registry

Uses

Reliability analysis system

Analysis system provider

Provides
Uses

Service providers

Fig. 2 Composite service in its deployment environment

to its own criteria for service selection, keeping services in
list in order of superiority. In addition to reliability analysis,
the SLA checking may also cause the decision to adapt.

Figure 2 describes the composite service in its deployment
environment. We do not want to limit the service definition
of our work to include only software services; thus, a service
can be defined as including both software services and device
services. Software service is “a function that is well defined,
self-contained, and does not depend on the context or state of
other services” [5], whereas a device can be defined as eas-
ily accessible computing devices that assume many different
forms and sizes, able to communicate with each other and
act “intelligently” [6]. In SOA, the services and devices are
considered as independent resources provided independently
by multiple service providers. A device provides device ser-
vices to software services, whereas a software service may
require a device to implement its functionality. A compos-
ite service is here understood according to the definition in
OASIS reference architecture for SOA [1], thus being visi-
ble to consumer as one service and being a composition of
several atomic services. A composite service is formed by
composing dynamically the available resources.

The functionality of composite service XY in Fig. 2 con-
sists of two software services: Service X and Service Y, and
one device service: Resource Z. To fully operate, compos-

ite service XY requires a comprehensive composition and
monitoring architecture that includes the required logic for
reliability monitoring, context monitoring (i.e., new services
appearing), change detection, and decision making and exe-
cuting. It uses service registry to discover services. Atomic
services are located across the network on different net-
work nodes and provided by different service providers. For
each selected atomic services (Service X, Service Y and
Resource Z), there exists alternative services in the network
that implement the same functionality. These services can
be selected instead if the reliability of the selected services
decreases. Composite service provider is the actor that pro-
vides the composite service to service consumers. Compos-
ite service provider must maintain a network of reliable ser-
vice providers, since the trust and reputation of the service
provider may be one of the service selection criteria. Service
consumers can be human user via user interface or another
service.

To guarantee reliability, the composite service must
include “means” to achieve and manage reliability. This
includes the means for context-awareness, reliability-aware-
ness and self-adaptability. Run-time monitoring system is
required to monitor the service execution. Reliability analysis
system is required to analyze the reliability of the composite
service and its atomic services. Both the monitoring system

123

134 SOCA (2014) 8:129–158

and the analysis system may be provided by the compos-
ite service provider himself or third-party system providers
as in Fig. 2. Dynamic data storage is required to store the
dynamic reliability information. These data are updated by
the monitoring system and by other information providers,
such as other monitoring systems, service agents and user
evaluations that offer valuable information about the actual
use of the services. The data storage provider can be com-
posite service provider or a third-party data storage provider.

3 Evaluation framework

This section introduces our evaluation framework. The cri-
teria of our framework are derived from the issues discussed
in Sect. 2. To be applicable to different context, the criteria
are purposely described in quite high level. The approaches
are inspected and discussed from the following viewpoints:

• Context of the approach: the approaches are introduced
and their main content regarding reliability is examined

• Reliability requirements and service architecture design:
the early composite service development phases are exam-
ined

• Reliability analysis: the reliability analysis methods are
inspected

• Decision making logic: the decision making involving ser-
vice selection and quality adaptation is inspected

• Composition and monitoring architecture: the means to
achieve and manage reliability are examined

• Applicability of the approach: inspection of the approach
as “a method to be applied”

Each of the viewpoints is discussed in more detailed in the
next sections.

3.1 Context of the approaches

The purpose of this section is to examine the background
of the methods/approaches. In addition to methods’ main
characteristics, the compared issues include:

• composite service definition: how does the approach define
the term composite service

• application area: where can be approach be applied
• main content: what is the main focus of the goal of the

approach
• expected benefits: what can be achieved by using the

method/approach

Currently, in the context of Web services, a service is often
defined to include only software services, whereas in the

context of pervasive/ubiquitous systems, the service stands
for both software services and device services. The domi-
nant standards to publish and discover services, such as Web
Ontology Language for Services (OWL-S) and Web Services
Description Language (WSDL), do not enable the description
of quality of service-related information. Due these restric-
tions, many extensions to these standards have been devel-
oped [7–10] that extend OWL-S.

Service-oriented architecture and composite services have
been commonly applied within Web services [11–13]. Com-
posite Web service includes multiple Web services as part
of a composite service, providing its service to consumers
through single interface. Web services seem to be more
mature technology, since it has well-defined technologies and
standards. Also, the number of efforts at standardization of
semantic descriptions and quality description in connection
with Web services reveals its popularity and potential. The
common interest in Web services is also revealed by the num-
ber of literature surveys of the approaches considering Web
service selection and composition [12,14–17]. Recently, the
idea of composite services has been increasingly applied also
in the context of ambient intelligence (AmI) environments
[18–20], which obeys the guidelines of pervasive and ubiq-
uitous computing. Pervasive computing [21] refers to easily
accessible computing devices connected to a ubiquitous net-
work infrastructure. Ubiquitous computing [22] allows con-
sumers to complete simple or complex tasks using the avail-
able resources; the environment enables that the connectivity
of devices is embedded in a way that it is always available
and invisible to consumers. Some of the AmI systems still
employ Web service technologies and standards, and some
of them relate to services of different technologies, such as
UPnP [23] or OSGi [24].

The main focus of the methods/approaches inspected in
this survey is to enable reliable composite service. The
approaches may still have different ways and methods to
achieve the main focus. Therefore, the main emphasis of
the approaches can vary between reliability analysis meth-
ods, service selection methods, monitoring architecture, etc.
Also, the expected main benefits of the methods may vary
due to different main contents.

3.2 Reliability requirements and service architecture design

The purpose of this section is to examine how the require-
ments affecting reliability are engineered, modeled and
brought to the architecture design. The inspected issues
include:

• reliability ontology: the structure and description format
of reliability-related information

• reliability requirements: the content, engineering process
and description format of requirements affecting compos-

123

SOCA (2014) 8:129–158 135

ite service reliability and the means to achieve and manage
reliability

• transforming reliability requirements into architecture
design: description of how the requirements affect the
design

• composite service architecture description: the description
of service architecture based on the requirements engineer-
ing.

3.2.1 Reliability ontology

The use of ontologies is one of the key issues in the require-
ment engineering and architectural design enabling com-
plete, consistent, and traceable requirements and design deci-
sions. Furthermore, ontologies are a formal way to express
and share knowledge about the service in question. Require-
ments ontology describes the structure of what and how
requirements should be described, and guides the elicitation
process with stakeholders. Quality-of-service (QoS) ontol-
ogy consists of concepts and their relationships related to
quality engineering, containing quality metrics, i.e., unit of
measurements and quantitative ranges. QoS ontology facili-
tates the matching of required QoS properties with provided
QoS properties. Reliability ontology describes the struc-
ture and description format of reliability-related information,
consisting of concepts and their relationships with reliabil-
ity engineering. The capabilities of devices, such as device
quality and other attributes, should also be described in the
form of ontology. Despite ontologies, quality policies [25]
can be used to generate quality objectives, and they also serve
as a general framework for action. Policy-based computing
means that the computation constraints are specified and ana-
lyzed separately, and enforced and evaluated at run-time. To
simplify, a policy is a collection of alternatives, which con-
sists of assertions, each of them representing one require-
ment, capability or behavior of a service. On the composite
service provider’s side, policies can be used to describe the
required quality properties and the actions in service selec-
tion. At the atomic service provider’s side, policies are used
to describe and represent the provided quality properties of
services in a standardized way.

3.2.2 Reliability requirements and means for achieve
and manage reliability

Requirements describe the features or capabilities that a ser-
vice must have. Requirements must be documented, mea-
surable, testable, traceable and defined in such a detail level
that is required for service design or for searching suitable
services. Requirement can be commonly classified into func-
tional, non-functional and constraints. Functional require-
ments describe the behavior of a service that support the
tasks or activities of the user. Non-functional requirements

describe the qualities of the system, such as reliability, perfor-
mance and security. Constraints are those characteristics that
limit the development and use of the service (design, imple-
mentation, interface or physical requirements). Reliability
requirements must consider both quantitative and qualitative
requirements. The quantitative requirements are described
using metrics and are verified using reliability analysis. The
qualitative requirements are non-measurable, ending up to
some design decisions. The qualitative requirements thus
contain the “means” to achieve and manage reliability (i.e.,
the means for context-awareness, reliability-awareness and
self-adaptability).

Commonly, a lot of attention has been paid to techni-
cal solutions for making service-oriented systems, such as
service discovery, selection, invocation, composition and
interoperability [13,26,27]. Less attention is being invested
in requirement engineering for services, although the poor
and inadequate requirement engineering has been recog-
nized as one of the main reasons why software development
projects fail. Most of the traditional RE methods in the litera-
ture concentrate on functional requirements. Although some
approaches on non-functional requirements (NFR) engineer-
ing exist, there is still no agreed or clear pathway on how
to derive NFR from business goals, how to transform them
to design and how to verify whether they are met. Also,
the transfer from the RE tools to architecture design tools
is weak when considering requirements traceability. Non-
functional attributes exist on the composition level as well as
on the atomic service level, which complicates their defini-
tion, representation and analysis. Very often it is also difficult
to understand satisfaction criteria of non-functional require-
ments.

The existing requirement engineering methods can be
applied also in the case of services, but they are inadequate
as such. Service orientation brings several new challenges
into requirement engineering. These challenges are derived
the special features of service-oriented computing, but also
the goals and business objectives of the service providers.
Although service should be developed to satisfy the needs
of the service consumers, the service may have a signifi-
cant impact on providers as well. The conflicting service
needs of different stakeholder groups must be communi-
cated and negotiated. The real challenge is that the actual
service consumer is not usually known in RE phase or cannot
be reached for requirement elicitation. Service development
needs to deal more with uncertainties, which must be recog-
nized and anticipated by the requirement engineering phase.
For example, decisions affecting the service capacity, i.e.,
number of requests the service can handle without affecting
its reliability and availability, must be done before know-
ing the amount of future consumers. Furthermore, the final
deployment environment may not be known in RE phase,
but the boundaries are set during the RE phase. The roles

123

136 SOCA (2014) 8:129–158

and responsibilities of services are also difficult to define,
since the final composition of services is not always known
in RE phase, and service roles can vary as the composition of
services changes. The requirements for reliability-awareness,
context-awareness and self-adaptability also bring new chal-
lenges. According to design for adaptability guidelines repre-
sented in [28], entirely new actor, adaptation designer, needs
to be introduced to define adaptability concepts. In addition,
to be able to monitor itself and the context, detect changes,
decide how to react and act to execute decisions, the self-
adaptive software requires a management system that imple-
ments the decisions in a controlled way.

3.2.3 Transforming reliability requirements into service
architecture design

After requirements engineering, the composite service archi-
tecture must be specified by dividing the specified system
tasks into abstract, conceptual level services. The require-
ments are brought to the architecture by mapping them onto
the architectural elements, when the fulfillment of require-
ments becomes the responsibility of the services. The quality
requirements are transformed into design decisions, i.e., the
properties that the composite service has to have. The con-
ceptual services are initially defined in a service template
form or as a conceptual architecture; the concrete services
for each conceptual service are determined either before run-
time or dynamically at run-time. The service architecture
should be described in a formal way, e.g., using Unified Mod-
eling Language (UML) [29], which is a standard and widely
accepted modeling language. As such, the UML is inade-
quate to express quality in design, but it can be extended
by specific profiles to support certain quality aspects. Pro-
files for Schedulability, Performance and Time [30], and for
modeling the QoS and Fault Tolerance [31] have already been
suggested.

3.2.4 Composite service architecture description

A service-oriented architecture is a collection of services that
communicate with each other by exchanging data or by coor-
dinating some activity with two or more services. Service
architecture is the first asset that describes the composite ser-
vice as a whole. For each composite service, the service archi-
tecture is a unique structure of its building blocks, i.e., ser-
vices, and a description of how data, management and control
flow between these services. Architecture can be described
with different details depending on the purpose, e.g., for the
reliability analysis, the architecture should be described in a
way that enables the analysis performed in the analysis phase.
Architectural description can also have different abstraction
levels. The conceptual level means delayed design decisions

concerning, for example, functionality. Concrete level refines
the conceptual designs in more detailed descriptions.

3.3 Reliability analysis

The purpose of this section is to examine how the reliability
of the composite service is analyzed, both at the design time
and run-time. The examined issues include:

• analysis level: applicability of the analysis to different
phases of composite service development and execution

• data source for the analysis: the data source for the analysis
and the trustworthiness of the source

• analysis technique/method: the complexity and applica-
bility of the reliability analysis method

• analysis output: what is achieved with the analysis.

3.3.1 Analysis level

Composite service reliability analysis can be divided into
static and dynamic analysis. Static analysis is architectural
level analysis, performed before service binding and exe-
cution. In the ideal situation, architectural level reliability
analysis can be performed purely on the conceptual abstrac-
tion level prior to making any implementation-related deci-
sions, such as selection of services. This kind of analysis
has several benefits, such as the reliability problems can be
solved more easily, and modifications are easier and cheaper
to implement. The analysis also helps to detect the most
used and therefore critical services of the system; special
attention should be paid to how to ensure the reliability of
those services. The effects of the design decisions of sys-
tem reliability can be detected beforehand, and the required
design decisions to ensure reliability can be made based on
the analysis. This kind of predictive reliability analysis can be
performed using the estimated probability of failure values
of services and behavioral descriptions. The most used way
to perform static reliability analysis is in service selection
phase by analyzing service reliability with selected services
before system deployment and execution. This kind of analy-
sis helps to compare different service candidates before final
service selection and binding. The analysis can be performed
by using reliability information available about the services
(static or dynamic).

Dynamic analysis is run-time analysis that occurs during
composite service execution. For dynamic reliability analy-
sis, composite service provider needs to achieve dynamic,
actual information about the quality of the services through
active monitoring of service execution and possible feedback
from the previous service consumers. As a result, the analy-
sis projects the probability of failure of individual services
that form the composite service, and also the probability of
failure of the composite service with these selected services,

123

SOCA (2014) 8:129–158 137

enabling also detection of changes in service quality. The
dynamic analysis also provides information about the actual
usage profile of the system.

3.3.2 Data source for the analysis

Acquiring data from the candidate services for reliability
analysis is also a great challenge. Usually, service providers
make this information available whether by advertising it
or providing an interface to access the data. Either way,
the quality information is subjective and static. Different
approach is to collect quality information by utilizing the
earlier consumers of a service. Earlier consumers provide
objective insight into the service and can therefore provide
valuable information for service trustworthiness and reputa-
tion evaluation. Another approach is to trust in a third party
to collect information or to rate certain service providers.
This approach is expensive and inflexible in a dynamic envi-
ronment where changes occur constantly. The safest way to
collect objective data is the use of monitoring systems that
actively observe the execution of services, collect statistics
and calculate the actual, realized values of the quality met-
rics of the service. Since reliability is generally an execution
quality of software, monitoring helps to achieve the actual,
dynamic quality of the services.

3.3.3 Analysis method

The first service-oriented reliability analysis methods
appeared in 2003–2005 [32–34] and several promising
approaches have been suggested since. Traditional reliability
analysis methods can be roughly classified into quantitative
and qualitative methods. The quantitative reliability analysis
computes the failure behavior of a system based on its struc-
ture in terms of composition (i.e., services and their inter-
actions), and the failure behavior of the services and their
interaction. Methods employing quantitative techniques are
further classified into state-based, path-based and additive
models [35]. State-based models use the probabilities of the
transfer of control between components to estimate system
reliability, whereas path-based models compute the reliabil-
ity of composite software based on possible execution paths
of the system. Additive models address the failure intensity of
composite software, assuming that the system failure inten-
sity can be calculated from component failure intensities.
The qualitative reliability analysis consists of reasoning the
design decisions (e.g., fault tolerance and recovery mecha-
nisms) and their support for the requirements. By analyzing
and reasoning about one architectural solution, qualitative
analysis provides assurance that the requirements have been
addressed in the design.

Traditional reliability analysis approaches can be applied
in the context of composite services, but only at the archi-

tectural level, where the analysis is based on static informa-
tion. The suitability of architecture-based quantitative reli-
ability analysis methods for component-based software is
analyzed in [36], according to which, although there are
several methods available for reliability analysis, they still
have serious shortcomings that restrict their application in
the industry. These shortcomings include lack of tool sup-
port, weak reliability analysis of atomic software compo-
nents, and weak validation of the methods and their results.
The architecture-based reliability models cannot be used dur-
ing service execution, since they assume that the reliability
of components is known or can be estimated, the architec-
ture is stable, and the connections among the components are
reliable.

3.3.4 Analysis output

For composite services, there are two levels of reliability:
atomic service reliability and composite service reliability.
Atomic service reliability is the reliability of the service as an
independent unit. Drawing the line and isolating the service
from its surroundings for reliability analysis are still hard,
since service reliability is affected by the reliabilities of the
services it requires to operate and also by the reliability of
the context, i.e., the operating environment. The reliability of
the atomic service is often advertised by the service provider,
and the composite service provider is forced to trust its valid-
ity. Since reliability is an execution quality, i.e., observable
during run-time, the actual atomic service reliability can be
determined only during system execution. The composite ser-
vice reliability is affected by the reliability of each service
in the composition, the reliability of the operating environ-
ment and the service interactions in the form of usage profile.
Usage profiles are of great concern in the frequency of exe-
cuting each service and each interaction between services,
and therefore, they form a complex challenge when analyz-
ing composite service reliability. When a composite service
is composed dynamically, usage profiles will be unknown
beforehand and can be observed only during execution. As
an execution quality, the impact of faults and low reliabil-
ity of atomic services on composite service reliability differ
depending on how the system is used.

3.4 Decision making logic

In this section, the purpose is to examine how and based
on what information the decisions in service selection and
adaptation are being made. The inspected issues include:

• type of data for decision making: description of the type
of data, which is used in decision making

• service selection criteria: description of the criteria for
decision making

123

138 SOCA (2014) 8:129–158

• service selection process: description of how the service
is selected

• quality adaptation: description of how the quality adapta-
tion occurs.

3.4.1 Type of data for decision making

Service selection policies can be divided into static and
dynamic policies. Static policies are based on the static,
stable, unchangeable information about the services. This
includes, for example, license issues, technical and functional
descriptions, and any information that has been made avail-
able by the service provider, including quality information.
Dynamic policies, on the other hand, take into account the
dynamic information about the service, e.g., the current sta-
tus and the actual, dynamic quality information. Only the
dynamic, objectively observed information can be used in
reliable service selection.

Dynamic information may also have two separate aspects:
average and the most recent. Average quality information is
the long-term, measured quality of a service past execution up
to the present, whereas recent quality information concerns
the current quality of the service, measured in the most recent
time period. Highly reliable service can sometimes be less
reliable through a certain cause, such as malicious attacks, as
a sudden change in service execution can change the values
for the metrics temporarily. In some cases, the most recent
values matter more when the request for a service arrives.
In those cases, quality information should be updated in real
time.

3.4.2 Service selection criteria

There exist several studies in the literature about what infor-
mation about a service is required to enable selection of
reliable services. At the moment, there exists no agreement
about quality attributes. The work in [37] represents the W3C
Working Group’s consensus agreement as to the current set
of requirements for the Web services architecture. In addition
to [37], in several other cases such as [8,38–43], reliability
issues are considered to be relevant, after which often follow
availability, security and performance. Very often also cost,
i.e., the price for using the service, has been included as a
part of selection criteria [39,41,42,44], as well as the service
capacity [37,41,43].

Besides technical quality, selection may also be based on
softer, non-technical quality properties. Non-technical reli-
ability properties are indirectly related to service, helping
to build “trust” to the service. Trustworthiness is defined as
the degree of confidence that the software meets a set of
requirements [45]. These requirements can involve any criti-
cal requirements relating to service functionality and quality,
but also to non-technical properties, such as licensing and

characteristics of the service and service provider. The con-
cept of reputation is closely linked to trustworthiness, mean-
ing “what is generally said or believed about a person’s or
thing’s character or standing” [46]. User experiences, feed-
back about the actual use of the service, and general opinion
build the reputation of the service, and often also the reputa-
tion of the service provider. Trustworthiness can be achieved,
for example, by comparing the advertised quality provided by
the service provider with the actual quality. Reputation-based
approaches are usually based on user feedbacks and/or sys-
tem/user monitoring. For device services, information about
dynamic quality is required as well, but also information
about its technical details. Furthermore, within devices, the
status of the device has a great influence on its selection.
Status information can vary depending on the service and
the service domain. For example, the location of the ser-
vice compared with the requestor must be known when the
selection is based on geographical distance. The amount of
current CPU or memory usage and free disk/memory space
can effect selection and so can data transfer speed and relia-
bility of transfer. Therefore, the status of services at the time
of selection should be checked and also monitored during
service execution.

3.4.3 Service selection process

Reliable service selection can be roughly divided into three
phases: service search, dynamic information gathering and
selection. At first phase, available services are searched tra-
ditionally, based on static information, using, for example,
the standard publishing and finding techniques. The required
policies are compared with the provided policies, and the
candidate services are selected for further comparison. In
the second phase, the actual, dynamic information about
the identified candidate services are gathered. The reliability
information is collected, for example, to dynamic data stor-
age, through an active monitoring of the service execution or
through user feedbacks. The information is used to calculate
values for service reliability metrics. These values denote
the actual reliability of the service. For device services, the
status of the candidate and currently available services is
being checked. In the third phase, the best suitable service is
selected. The requirements are compared with the achieved
dynamic reliability data, the status information, preferences
and priorities. Matching engine/algorithm is required to com-
pare the required quality characteristics with service dynamic
quality policies. The decision making unit must have rules
how the selection is made using these criteria, and what are
the priority and preferences of the selection criteria. Trade-
offs has to be made, for example, is the better reputation better
than distant location of the service. The reliability analysis of
the composite service can be done with real reliability val-
ues. The analysis gives estimations about the reliability of

123

SOCA (2014) 8:129–158 139

the composite service with these selected services. Services
can still be changed, and the reliability of the different alter-
native compositions can be checked before the final service
binding.

3.4.4 Quality adaptation

The classification of adaptability properties by Horn [47]
serves as the de facto standard in the domain, including
self-configuring, self-healing, self-diagnosis, self-optimizing
and self-protecting. Self-configuring, self-healing and self-
protecting assist also in achieving reliability. These proper-
ties require self-awareness and context-awareness to oper-
ate. Self-configurable composite service can configure itself
automatically in response to changes. With the help of self-
configuration, the service composition can be configured
when services with better reliability are detected or the reli-
ability of the services in use declines. The purpose of self-
configuration is whether to achieve optimal reliability or the
reliability that satisfies the requirements. Self-healing maxi-
mizes reliability of the system by discovering, diagnosing and
recovering from failed services. The means to attain depend-
ability [48] are applicable in anticipating potential problems
and acting to prevent failures. The purpose of fault preven-
tion is to prevent the occurrence or introduction of faults.
Fault tolerance tends to prevent systems from failing in the
presence of faults, consisting of error detection, and system
recovery through error and fault handling. Fault removal indi-
cates a reduction in the number and severity of faults during
the use of a system through corrective or preventive main-
tenance. Fault forecasting estimates the probability of faults
and failures according to the current and future behavior of
the system, as well as the consequences of projected faults.
With self-protection, a system prepares itself to defend from
malicious attacks by detecting security breaches and recov-
ering from their effects.

Six questions for eliciting requirements for a self-adaptive
system can be identified [49]: where is the need for a change;
when a change needs to be applied, what needs to be changed;
why is a change needed; who should implement the change;
and how the adaptable artifact is changed. From the archi-
tectural point of view, dynamic adaptation requires special
architectural elements that must be taken into account in
the composite service RE phase. Run-time monitors are the
“standard” solution to assess the quality of running applica-
tions. A monitoring system must be available to monitor the
service execution, and a collection mechanism is required to
gather user feedback, ratings, etc. The monitor and collec-
tion mechanisms store statistics of the quality characteristics
at regular intervals, which are then used in reliability analy-
sis by a calculation unit that calculates the quality metrics
at regular intervals to maintain dynamic quality information
on the services. The decision making unit is responsible for

detecting when and where the change is required and what
needs to be changed and how. The decision making unit
compares the results of the reliability analysis against the
composite service requirements, and also the history data, to
detect when a response to a change is required. After detect-
ing where the change is required, the decision making unit
decides what needs to be changed and how the change should
be implemented. The decision making process should occur
during run-time and should not require human inference. In
addition to adaptation, the decision making unit must have
rules determining how the selection of replacement services
is to be made. The decision making unit must have strictly
defined selection criteria, and the priority and preferences of
the selection criteria. Trade-offs must be made, for example,
with respect to the higher reputation over distant location of
a service.

3.5 Composition and monitoring architecture

In this section, the means of the approaches to achieve and
manage reliability are examined. The required elements of
the composition and monitoring architecture are inspected in
more detail. These issues include:

• dynamic list of candidate services: a back-up plan in the
case of failure or decrease in quality

• run-time service monitoring: the monitoring activity of the
service execution

• SLA monitoring: monitoring of the contract between
atomic service providers and composite service provider
(here in a role of a service consumer)

• feedback collection system: how the data are achieved for
trustworthiness and reputation evaluation.

3.5.1 Dynamic list of candidate services

In the case of failure or unfavorable change, a composite ser-
vice must have a ready-made plan how to act to guarantee
the continuous service execution. For reliable composite ser-
vice, this back-up plan is usually a list or a pool of candidate
services, i.e., for each abstract service, there is a possibility
to bind it to a set of functionally similar concrete service.
Ideally, the reliability of these candidate services has been
verified beforehand. By keeping services in list in order of
superiority, the next service is already preselected when a ser-
vice in use needs to be replaced. This list should be updated
dynamically, i.e., it should always contain the best available
candidates.

3.5.2 Run-time service monitoring

Recently, quality awareness has been seen as a persistent
challenge in service computing [13,26,50]. Some attempts

123

140 SOCA (2014) 8:129–158

have been made to standardize service monitoring; how-
ever, none of them have been commonly adopted. Web Ser-
vices Distributed Management (WSDM) [51] is a promising
OASIS standard for controlling and monitoring the status of
other WSDM-compliant services. The specification defines
how to represent and access the manageability interfaces of
resources as Web services, how to manage Web services as
resources, and how to describe and access that manageabil-
ity. The earlier studies of fault monitoring approaches and
tools, such as [52], reveal that although there are numerous
approaches for implementing monitors, most of the tools are
for research use only. Thus, although there is an enormous
demand for monitoring approaches, the concept of how to
implement it is not mature. The huge amount of papers con-
centrating on service systems monitoring reveals that there
is a great demand for execution-level quality verification.

Commonly, the monitoring-based approaches monitor
only the selected services. Monitoring all available candi-
date services, such as in [40], seems unsuitable since a large
amount of services may exist. When monitoring only the
selected services, the dynamic quality of candidate services
cannot be verified when the selected services need to be
replaced. A good solution could be a dynamic list of suit-
able candidate services, such as in [53], which quality is
monitored and updated regularly.

3.5.3 SLA monitoring

A SLA is a legal negotiated agreement between a service
provider and a consumer, defining the “level of service” for
each area of the service scope. It describes the agreed-upon
terms with respect to quality of service and other related con-
cerns, such as price, being also a guarantee of the promised
quality. Further actions and possible sanctions have been
negotiated in SLA as, for example, if the requirements are
not being met. Web Service Level Agreement (WSLA) [54]
focuses on specifying and monitoring SLAs for Web ser-
vices, but it does not address the modeling and management
of the QoS of composite services.

In the case of SLAs, the composite service provider acts
as a service consumer, requesting and using atomic services
as a part of his/her composite service. To be useful for com-
posite service provider, the use of SLAs requires the SLA
monitoring. If the SLA agreement is not met, the composite
service developer must have the means for selecting alterna-
tive services to guarantee the availability and reliability of
his/her composite service. For these alternative services, the
composite service provider needs a list of trustworthy service
providers and prenegotiated SLAs with each atomic service
providers. In an ideal situation, the SLA negotiation could be
automated; an element is required to search alternative ser-
vices and negotiate the SLAs, such as mentioned in [55]. The
use of SLAs in dynamic service composition could be easily

applied into approaches that already enable to bind abstract
services to a set of functionally similar concrete service.

3.5.4 Feedback collection system

Consumers’ experiences provide “actual” insight into the
services and are therefore a good information source for
analyzing the softer forms of reliability. Many of trust
and reputation-based approaches, especially the agent-based
approaches, rely quite heavily on service final consumers,
such as ratings from previous use of services and consumer
feedback. The feedback can be explicit (e.g., the consumer
fills out a form in consultation with the human user, such
as in [41]) or implicit (the agent infers the consumer’s rat-
ing based on heuristics), or the service consumer provides
a rating indicating the level of satisfaction with a service
after each interaction with the service (e.g., in [56]). Besides
being subjective, the other drawback of the reputation-based
approaches is that in the case of composite service, the feed-
back or rating for single services is hard to obtain, and it only
gives insight into the average behavior of the service. Collect-
ing data while the service is interacting with the consumer
(e.g., in [57]) could give an objective insight into the actual
reputation of the service. However, the major drawback of
reputation-based approaches is that they are as such inade-
quate to ensure the service reliability during run-time since it
cannot detect the sudden changes during service execution.

According to the literature survey in [58], the current
trust and reputation systems are almost centralized where
a central QoS registry is deployed to collect and store QoS
data from Web service consumers [44,57,59]. However, the
disadvantage of these UDDI-based approaches is that the
UDDI server may become outdated in a dynamic environ-
ment where changes occur continuously. Therefore, the peer-
to-peer Web services with decentralized trust and reputation
techniques provide more reliable and available service sys-
tems. On the other hand, these decentralized approaches seem
more complicated than centralized methods, involving a lot
of communication between elements, such as in the approach
described in [60] where QoS registries are organized in a P2P
way to collect QoS feedback from consumers. Each registry
is responsible for managing reputation for a part of service
providers.

3.6 Applicability of the approach

To assist the composite service developer and provider to
engineer reliable composite service, the approach/method
should, above all, provide guidance for all stakeholders in
their responsibilities to achieve reliability. In an ideal situ-
ation, the method should not require special user skills, but
rather use of the method should be included as a part of
the method user’s normal activities. The financial cost and

123

SOCA (2014) 8:129–158 141

investments of introducing the method must be known, as
well as the amount of work required to implement it. To be
easily introduced, the method should be mature, i.e., there
should be some kind of evidence about its use, applicability,
benefits and costs. Mature methods are validated or used in
the industry. For mature method, also tool support usually
exists.

4 The results of the survey

In this section, the methods and approaches which can
be applicable in developing reliable composite services as
described in Fig. 1 and Sect. 2 are examined. Since the num-
ber of reliability-related work in the literature is large, we
had to restrict the scope of our survey. We therefore define
the criteria for the selection of approaches for this survey
and concentrate only on the methods that fulfill these crite-
ria. However, since we made an extensive literature survey,
we also discuss some emerged issues revealed in the sur-
vey. We conclude the current status of the work in the liter-
ature considering the criteria and refer to some other related
approaches. Some approaches were applicable only to certain
framework criteria, but brought new viewpoints, thoughts or
ideas to the discussion.

The selection criteria for the detailed inspected approaches
were the following:

• The approach had to concentrate on composite services.
The traditional software systems differ in many ways from
the service-oriented systems, and therefore, development
methods and approaches suitable for them are not applica-
ble for service-oriented systems. The features such as
model-driven, evaluation-based and policy-based comput-
ing [61], and run-time behavior such as service discov-
ery, selection, composition and monitoring are typical to
service-oriented systems. Composite service is here con-
sidered as a wide, distributed entity; the composite service
must not be restricted to one device.

• The approach had to concentrate on reliability. The
approaches concentrating “softer”, non-technical reliabil-
ity, such as reputation, trust or trustworthiness can also be
included as long as they provide a formal way to achieve
it. Approaches including reliability as a part of their QoS
property can also be included as long as reliability has its
own metric in analysis.

• The approach had to be applicable in service-centric con-
text. User-centric contexts [62] promote applications that
move with consumers and adapt according to changes in
the available resources. Service-centric contexts [63] pro-
mote applications that allow for service adaptability, deal
with service availability and support on-the-fly service
composition. Context-awareness allows systems to detect

changes, such as detection of a new service or device offer-
ing services with better quality, failure of a service in use
or a decline in its quality and an inappropriate change in
service status. Service-centric context is more convenient
from the composite service provider’s viewpoint, since the
provider needs context-awareness for detection of new ser-
vices.

• The approaches had to be applicable to any domain. As
long as the domain was not restricted, we wanted to include
papers considering different application areas and tech-
nologies, such as Web services and pervasive/ubiquitous
systems.

• The approaches had to be applicable for composite service
developer and provider. The approach had to assist the
developer both in composite service engineering and in
reliability engineering, considering all the phases in Fig. 1.

4.1 Context of the approaches

4.1.1 Introduction of the selected approaches

A hierarchical reliability model for service-based software
system (Wang et al. [53]). The approach provides a model-
ing framework to analyze reliability of data, service, service
pool and composition. The composition of services is mod-
eled as a workflow of processes, and the reliability model is
constructed of atomic, simple and composite processes con-
nected by the control constructs and corresponding transition
rules. The system reliability is modeled from the static and
dynamic viewpoints. The static model can be used for early-
stage quality prediction, before service deployment, and is
generated by transforming the service process model into
discrete time Markov chain (DTMC) model. The dynamic
DTMC model is dynamically constructed by run-time moni-
toring of the service execution paths. The monitoring is used
to detect changes in the system composition, configuration
and operational profiles, adjusting the reliability model con-
tinuously. These are obtained from the logged operating pro-
files in the form of transition probabilities between services.
A service pool mechanism is used for providing run-time ser-
vice redundancy, maintaining a local index of the available
alternative services. A prototype is provided, through use of
which the reliability models can be automatically established
and continuously adjusted. The approach is not restricted to
any particular domain, but it requires that the services are
described with OWL-S.

Context-aware dynamic service composition in ubiquitous
environment (Tari et al. [64]). The purpose of the work is to
enable the seamless integration of smart objects in a ubiq-
uitous space. The approach provides a design architecture
including planning algorithms and monitoring mechanism
for dynamic service composition. The approach separates the

123

142 SOCA (2014) 8:129–158

concepts of abstract and concrete services. The service com-
position architecture consists of three types of plans: abstract
template and optimal plans, and a concrete execution plan.
The template plan is created using rule-based techniques,
containing all possible abstract services that could compose
the service. The optimal plan is created by selecting the best
abstract services candidates according to their reputation and
the complementarity of the parameters. Finally, the execution
plan is created by selecting concrete services based on their
quality of user experience (QoE) value, which is weighted
according to user preferences, user’s context and the environ-
ment context. The execution plan is monitored. The adapta-
tion enables replacing the concrete services by another or
even updating the optimal plan. The approach introduces a
QoS-based learning mechanism, which rewards a concrete
service after execution, and calculates its new quality para-
meters and estimates the new reputation of its abstract service
accordingly.

QoS-driven run-time adaptation of service-oriented archi-
tectures (Cardellini et al. [55]). The approach provides a
methodology for run-time adaptation of service systems to
meet its QoS requirements in its operating environment. The
approach uses two-level grammar to model the class of SOA
systems managed by MOSES (MOdel-based SElf-adaptation
of SOA systems) framework; the first level specifies the struc-
ture of the considered composite service, whereas the second
level defines the production rules for each abstract service.
The MOSES bases on the idea of binding each abstract ser-
vice to a set of functionally equivalent concrete services. The
MOSES framework requires as an input a set of candidate
concrete services and the description of the composite ser-
vice provided using a workflow orchestration language. If
the description is verified belonging to the class of SOA sys-
tems, the behavioral model of the composite service is built.
If a relevant change in the operating environment is detected
by the monitoring activity, the model is dynamically used to
calculate a re-arrangement of the available concrete services.
The QoS of a composite service is calculated by recursive
rules using the QoS of the concrete services, the way they
are orchestrated, and the usage profile of those services. The
behavioral model is used to build the template of an optimiza-
tion problem, which parameters are derived from the SLAs
negotiated with the composite service clients and providers,
and from a monitoring activity. The adaptation policy is to
select the best implementations of the composite service in
a given scenario optimized in a given environment. MOSES
can be applied to any composite service whose orchestration
pattern matches the first level of the grammar. A prototype
of the MOSES implementation is currently provided.

Reliability modeling and analysis of service-oriented archi-
tectures (Cortellessa and Grassi [65]). The approach pro-

vides a methodology for reliability modeling and analysis
of SOA. The model for reliability prediction is based on a
probabilistic flow graph, which is enriched with statistical
information needed to support the prediction. This includes
the pattern of requests addressed to other services and the
information about the internal reliability of a service asso-
ciated with each stage of the flow graph. Transitions from
node to node of the flow graph follow the Markov property,
but is extended with other kinds of control flows allowing
more than one external service request to be specified within
each node. The model evaluation algorithm takes the client-
side perspective on reliability, assuming that the service reli-
ability can be expressed by multiplying the probability of
reaching the end state of the flow graph (calculated using
Markov process) and the reliability of the network used by
the client to access the service. The approach also presents
an architecture that implements the methodology in SOA
environment. The methodology assumes that each compos-
ite service provider publishes information concerning the
service internal structure that consists of exploited external
services, how the services are glued together, and how fre-
quently they are invoked. Three different service selection
policies are identified based on the published information.
The methodology can be used to support the selection pro-
cedure by comparing the reliability of candidate concrete
services.

A real-time reliability model for ontology-based dynamic
Web service composition (Chawla et al. [10]). The main con-
tent of the approach is a feasible real-time reliability model.
Reliability of a service is defined using the OWL-S profile
attached to each service with two parameters; desired and
marginal reliability. A service is described as a process using
a process model template (PMT) into which the suitable ser-
vices are searched. PMT is defined as a dynamic process
model consisting of structural components, which is then
instantiated into instantiated process model (IPM) by binding
components of PMT into atomic or composite services. IPM
extends the PMT with a set of placeholders for the details
how a simple component can be bound to a selected Web
service. The atomic service reliability consists of the relia-
bility of the service and the reliability of the machine where
the service is deployed. The atomic service real-time relia-
bility is calculated using the failure intensity and execution
time, and the hardware reliability using the shape and scale
parameters. The parameters for the reliability calculation are
stored in an OWL-S profile. The reliability of a composite
service depends on its structure, the degree of independence
between service components and the availability of its con-
stitutive Web services. Reliability model for each structural
component (sequence, parallel, choice and loop) is defined.
The approach supports maintaining reliability at run-time
by monitoring the service reliabilities in real time. However,

123

SOCA (2014) 8:129–158 143

the re-configuration of the composite service requires human
interference. A prototype of service monitoring tool is pro-
vided.

Dynamic Web service selection for reliable Web service
composition (Hwang et al. [66]). The approach provides a
method for dynamic Web service selection for reliable Web
service composition. The method is based on aggregated
reliability (AR), metrics to measure the reliability of each
configuration in a WS composition and two dynamic strate-
gies that use the computed ARs for dynamically selecting
atomic WSs for the composite Web service. The service
composition is described using Markov chains with added
states, success and failure and transition probability, and
the AR of each configuration is defined recursively from
the probability that the services are successfully executed
in the current configuration. In AR-based selection strategy,
an atomic WS is selected for each incoming operation of
the composite WS so as to achieve maximum reliability.
In composability and AR (CAR)-based selection strategy
the ARs as well as the composabilities of configurations in
selecting atomic WSs are considered. The approach takes
an iterative approach to compute the vector of aggregated
reliabilities considering the different possible mappings in
an WS composition in order to choice of which sequence
of service delegation to use. The approach can be imple-
mented using the current WS standards; however, due to
the invocation order in a set of operations, it requires using
some business process composition language. A prototype
has been developed using BPEL that implements the pro-
posed approach for specifying the invocation order of a Web
service.

A reliability evaluation framework on composite Web service
(Ma and Chen [67]). The approach proposes a service relia-
bility model both for atomic Web services and for composite
services, and a consumer feedback-based composite service
framework. The atomic service reliability bases on assump-
tions of independency of service reliability and is calculated
using time-dependent Markov model with failure intensity
and failure locating and fixing time. The approach describes
the composite service structure as nodes and the relation-
ship between nodes. Markov chain is used also to evalu-
ate the back-up services to achieve node reliability. Finally,
the aggregated composite service reliability is described as
reliability of nodes and the operation relationships of sub-
set of node set. The feedback-based framework uses feed-
back mechanism to collect QoS information from clients
consuming the service. The collected atomic service QoS
information is stored in UDDI repository, from where they
are used for composite service reliability evaluation each time
a change occurs in service composition. The framework can
be extended to include more attributes.

QoS-aware middleware for Web services composition (Zeng
et al. [40]). The approach provides QoS-aware middleware,
AgFlow, for supporting quality driven Web service compo-
sition. The main features include service quality model to
evaluate the quality of Web services and composite services,
and two alternative service selection approaches for execut-
ing composite services. The quality model defines the QoS
criteria for both elementary services and composite services.
The selection process bases on the user’s weight assigned
to each criteria and a set of user-defined constraints. In the
local optimization approach, the optimal service selection is
performed for each individual task in a composite service
without considering the global QoS. The QoS information
of each candidate service is collected, after which a quality
vector is computed for each of the candidate services. The
service is selected basing on the quality vectors applying a
multiple criteria decision making (MCDM) technique. In the
global planning approach, QoS constraints and preferences
assigned to a composite service as a whole are considered.
Every possible execution plan associated with a given execu-
tion path is generated. The selection of an execution is made
by relying on the MCDM technique. The simple additive
weighting technique is used in both approaches whether to
select the optimal service or the optimal execution plan. The
approach also includes an adaptive execution engine, which
reacts to changes occurring during the execution of a com-
posite service (e.g., component services become unavailable
or change their predicted QoS) by re-planning the execution.
Currently, the AgFlow has been implemented as a platform
that provide tools for defining service ontologies, specifying
composite services using state charts, and assigning services
to the tasks of a composite service. The service selection
approaches can be applied to other paradigms than Web ser-
vices, such as in the context of service-oriented architectures.

Toward autonomic Web services trust and selection (Maxim-
ilien and Singh [57]). The approach provides an agent-based
trust framework for service selection in open environments.
The framework includes a policy language to capture profiles
and preferences of the service consumer and the provider,
which are expressed using the concepts in the ontology. The
framework enables the service selection based on the pref-
erences of service consumers and the trustworthiness of ser-
vice providers. The approach bases on software agents that
are attached to each Web service, which communicate with
the service consumers, calculate service quality reputation
and assign a trust level to the available services. The archi-
tecture of the approach includes agency where the agents
collaborate and share data collected from their interactions
with the services. The approach provides detailed matching
algorithms, which the agents use to select services based
on the policies using semantic matching. Thus, the agents
add the quality-based selection functionality between ser-

123

144 SOCA (2014) 8:129–158

vice and consumers. The agents and ontologies reside and
are managed in a separate server. The services are assumed
to be described using WSDL. In the current implementa-
tion, the agents are implemented in Java, but the agent may
implement Web service interface to the client and thus allow
cross-platform consumer-to-agent interactions.

4.1.2 Comparison of the context of approaches

The surveyed approaches are summarized in Table 1.
According to Table 1, the surveyed approach seemed to

have very similar definition for composite service, except
for pervasive/ubiquitous systems [64], the definition also
included device services. We found papers representing dif-
ferent technologies; however, the offering was larger on the
context of Web services. According to our survey, OWL-S
seems to be the most popular format for Web service descrip-
tion. We found out that besides the Web services, OWL-S
seems to be used in the context of pervasive and ubiqui-
tous systems. The main content of most of the approaches
was architecture or a framework that enabled services to
be composed, monitored and analyzed dynamically. The
work described in [40,57,66] concentrated clearly on service
selection problem, and the works in [10,53,65,67] concen-
trated strongly on reliability analysis, providing reliability
evaluation framework or models. Service composition plan-
ning was the main content in [64] and run-time adaptation in
[55]. The expected benefit of each approach was the reliable
or trustworthy composite service, although the approaches
had different levels and methods on how to achieve it. These
issues are discussed in more detailed in the next sections.

4.2 Reliability requirements and service architecture design

4.2.1 Evaluation results

Table 2 summarizes the selected approaches from the RE and
architecture design viewpoint.

Of the surveyed approaches in Table 2, only [40,57] sup-
ported ontologies. The approach described in [57] suggests
QoS ontology, which is used in service matchmaking by
enabling service providers express quality policies and ser-
vice consumers express quality preferences. The QoS ontol-
ogy has three levels; the upper ontology includes the basic
characteristics of all qualities and their main concepts. The
middle ontology specifies domain-independent quality con-
cepts, such as reliability, availability and security, which are
then completed by a domain-specific lower ontology. The ser-
vice quality model suggested in [40] consists of five quality
dimensions; execution price, execution duration, reputation,
reliability and availability. For each dimension, the model
determines the definition of the quality element, related ser- Ta

bl
e

1
In

tr
od

uc
tio

n
of

ap
pr

oa
ch

es

M
et

ho
d/

ap
pr

oa
ch

C
om

po
si

te
se

rv
ic

e
de

fin
iti

on
A

pp
lic

at
io

n
ar

ea
M

ai
n

co
nt

en
t

E
xp

ec
te

d
be

ne
fit

s

W
an

g
et

al
.[

53
]

C
om

po
si

tio
n

of
at

om
ic

so
ft

w
ar

e
se

rv
ic

es
So

ft
w

ar
e

se
rv

ic
e

ba
se

d
sy

st
em

de
sc

ri
be

d
w

ith
O

W
L

-S
C

om
pr

eh
en

si
ve

sy
st

em
ar

ch
ite

ct
ur

e,
re

lia
bi

lit
y

m
od

el
in

g
an

d
an

al
ys

is
m

et
ho

ds
R

el
ia

bl
e

an
d

fa
ul

t-
to

le
ra

nt
co

m
po

si
te

se
rv

ic
e

Ta
ri

et
al

.[
64

]
C

om
po

si
tio

n
of

in
te

lli
ge

nt
at

om
ic

se
rv

ic
es

(a
pp

lic
at

io
ns

,s
en

so
rs

,
ro

bo
ts

,d
ev

ic
es

,e
tc

)

C
om

po
si

te
se

rv
ic

es
in

ub
iq

ui
to

us
en

vi
ro

nm
en

t
D

yn
am

ic
se

rv
ic

e
co

m
po

si
tio

n
ar

ch
ite

ct
ur

e
Fl

ex
ib

le
an

d
fa

ilu
re

-t
ol

er
an

ts
er

vi
ce

co
m

po
si

tio
n

C
ar

de
lli

ni
et

al
.[

55
]

C
om

po
si

tio
n

of
ne

tw
or

k-
ac

ce
ss

ib
le

(s
of

tw
ar

e)
se

rv
ic

es
A

ny
so

ft
w

ar
e

se
rv

ic
e-

ba
se

d
sy

st
em

s
Q

oS
br

ok
er

ar
ch

ite
ct

ur
e

Se
lf

-a
da

pt
ab

le
,d

ep
en

da
bl

e
SO

A
sy

st
em

C
or

te
lle

ss
a

an
d

G
ra

ss
i[

65
]

A
ss

em
bl

y
of

so
ft

w
ar

e
sy

st
em

s
fr

om
pr

ee
xi

st
in

g
co

m
po

ne
nt

s/
se

rv
ic

es
A

ny
SO

A
-b

as
ed

sy
st

em
s

A
m

od
el

fo
r

pr
ed

ic
tin

g
an

d
an

al
yz

in
g

re
lia

bi
lit

y
in

SO
A

fr
am

ew
or

k
R

el
ia

bl
e

co
m

po
si

te
se

rv
ic

e

C
ha

w
la

et
al

.[
10

]
R

ea
l-

tim
e

co
m

po
si

tio
n

of
av

ai
la

bl
e

W
eb

se
rv

ic
es

W
eb

se
rv

ic
es

M
on

ito
ri

ng
sy

st
em

ar
ch

ite
ct

ur
e,

re
lia

bi
lit

y
m

od
el

s
R

ea
l-

tim
e

re
lia

bi
lit

y
ev

al
ua

tio
n

of
va

ri
ou

s
se

rv
ic

e
co

m
po

si
tio

ns
H

w
an

g
et

al
.[

66
]

C
om

po
si

te
W

eb
se

rv
ic

e
or

ch
es

tr
at

ed
by

ru
n-

tim
e

in
vo

ke
d

W
eb

se
rv

ic
es

W
eb

se
rv

ic
es

Tw
o

dy
na

m
ic

W
S

se
le

ct
io

n
st

ra
te

gi
es

,
dy

na
m

ic
W

S
se

le
ct

io
n

ar
ch

ite
ct

ur
e

M
ax

im
iz

ed
lik

el
ih

oo
d

of
su

cc
es

sf
ul

ex
ec

ut
io

n
of

co
m

po
si

te
W

S
op

er
at

io
ns

M
a

an
d

C
he

n
[6

7]
C

om
po

si
tio

n
of

at
om

ic
W

eb
se

rv
ic

es
W

eb
se

rv
ic

es
R

el
ia

bi
lit

y
ev

al
ua

tio
n

fr
am

ew
or

k
R

el
ia

bl
e

an
d

tr
us

tw
or

th
y

co
m

po
si

te
W

eb
se

rv
ic

e
Z

en
g

et
al

.[
40

]
C

om
po

si
tio

n
of

in
te

r-
co

nn
ec

te
d

W
eb

se
rv

ic
es

W
eb

se
rv

ic
es

M
id

dl
ew

ar
e

pl
at

fo
rm

en
ab

lin
g

th
e

qu
al

ity
dr

iv
en

se
rv

ic
e

co
m

po
si

tio
n

O
pt

im
iz

ed
Q

oS
in

th
e

co
m

po
si

te
se

rv
ic

e
ex

ec
ut

io
n

M
ax

im
ili

en
an

d
Si

ng
h

[5
7]

A
pp

lic
at

io
n

co
m

po
se

d
of

dy
na

m
ic

al
ly

se
le

ct
ed

(s
of

tw
ar

e)
se

rv
ic

es
W

eb
se

rv
ic

es
A

ug
m

en
te

d
ar

ch
ite

ct
ur

e
w

ith
ag

en
t

fr
am

ew
or

k
D

yn
am

ic
al

ly
co

nfi
gu

re
d,

tr
us

tw
or

th
y

ap
pl

ic
at

io
n

123

SOCA (2014) 8:129–158 145

Ta
bl

e
2

R
el

ia
bi

lit
y

re
qu

ir
em

en
ts

an
d

ar
ch

ite
ct

ur
e

de
si

gn

M
et

ho
d/

ap
pr

oa
ch

R
el

ia
bi

lit
y

(Q
oS

)
on

to
lo

gy
R

el
ia

bi
lit

y
re

qu
ir

em
en

ts
an

d
m

ea
ns

fo
r

ac
hi

ev
e

an
d

m
an

ag
e

re
lia

bi
lit

y

T
ra

ns
fo

rm
in

g
re

lia
bi

lit
y

re
qu

ir
em

en
ts

in
to

ar
ch

ite
c-

tu
re

de
si

gn

C
om

po
si

te
se

rv
ic

e
ar

ch
ite

c-
tu

re
de

sc
ri

pt
io

n

W
an

g
et

al
.[

53
]

N
ot

co
ns

id
er

ed
R

el
ia

bi
lit

y
re

qu
ir

em
en

ts
ha

ve
no

tb
ee

n
co

ns
id

er
ed

.S
er

vi
ce

po
ol

is
us

ed
as

fa
ul

t-
to

le
ra

nc
e

m
ec

ha
ni

sm
;n

ot
co

ns
id

er
ed

in
re

qu
ir

em
en

ts

N
ot

co
ns

id
er

ed
N

o
co

nc
ep

tu
al

ar
ch

ite
ct

ur
e

ex
is

ts
.C

om
po

si
te

se
rv

ic
e

is
m

od
el

ed
as

a
w

or
kfl

ow
of

O
W

L
-S

pr
oc

es
se

s

Ta
ri

et
al

.[
64

]
N

ot
co

ns
id

er
ed

Q
ua

lit
y

re
qu

ir
em

en
ts

ar
e

sp
ec

ifi
ed

in
th

e
co

ns
um

er
pr

ofi
le

.F
au

lt-
to

le
ra

nc
e

is
ta

ke
n

in
to

ac
co

un
ti

n
th

e
co

m
po

si
tio

n
ar

ch
ite

ct
ur

e
(l

ea
rn

in
g

m
ec

ha
ni

sm
an

d
re

pu
ta

tio
n)

N
ot

co
ns

id
er

ed
C

om
po

si
tio

n
is

de
sc

ri
be

d
as

a
te

m
pl

at
e

pl
an

th
at

co
nt

ai
ns

al
lp

os
si

bl
e

ab
st

ra
ct

se
rv

ic
es

th
at

co
ul

d
co

m
po

se
th

e
re

qu
ir

ed
se

rv
ic

e.
D

es
cr

ib
ed

in
th

e
fo

rm
of

a
gr

ap
h

C
ar

de
lli

ni
et

al
.[

55
]

N
ot

co
ns

id
er

ed
In

vo
lv

ed
pa

rt
ie

s
st

at
e

th
e

re
qu

ir
ed

va
lu

es
fo

r
at

tr
ib

ut
es

in
a

co
nt

ra
ct

(S
L

A
s-

R
).

M
ea

ns
fo

r
re

lia
bi

lit
y

ve
ri

fic
at

io
n

ar
e

im
pl

em
en

te
d

in
br

ok
er

ar
ch

ite
ct

ur
e

N
ot

co
ns

id
er

ed
C

om
po

si
tio

n
lo

gi
c

is
ab

st
ra

ct
ly

de
fin

ed
as

an
in

st
an

ce
of

a
gr

am
m

ar
.E

ac
h

ab
st

ra
ct

se
rv

ic
e

is
th

en
bo

un
d

to
a

co
nc

re
te

se
rv

ic
e

C
or

te
lle

ss
a

an
d

G
ra

ss
i[

65
]

N
ot

co
ns

id
er

ed
B

as
es

on
re

lia
bi

lit
y

pr
ed

ic
tio

n
of

se
rv

ic
e

co
m

po
si

tio
ns

;r
eq

ui
re

m
en

ts
ar

e
no

tc
on

si
de

re
d

N
ot

co
ns

id
er

ed
Se

rv
ic

e
is

de
sc

ri
be

d
as

pr
ob

ab
ili

st
ic

flo
w

gr
ap

h
fo

r
re

lia
bi

lit
y

an
al

ys
is

C
ha

w
la

et
al

.[
10

]
N

ot
co

ns
id

er
ed

R
el

ia
bi

lit
y

re
qu

ir
em

en
ts

(d
es

ir
ed

an
d

m
ar

gi
na

l
re

lia
bi

lit
y)

ar
e

de
fin

ed
in

th
e

Pr
oc

es
s

M
od

el
Te

m
pl

at
e

N
ot

co
ns

id
er

ed
Se

rv
ic

e
is

de
sc

ri
be

d
us

in
g

a
dy

na
m

ic
pr

oc
es

s
te

m
pl

at
e

in
to

w
hi

ch
th

e
su

ita
bl

e
se

rv
ic

es
ar

e
se

ar
ch

ed
H

w
an

g
et

al
.[

66
]

N
ot

co
ns

id
er

ed
N

ot
co

ns
id

er
ed

N
ot

co
ns

id
er

ed
N

o
ar

ch
ite

ct
ur

e
ex

is
ts

.F
in

ite
st

at
e

m
ac

hi
ne

is
us

ed
to

m
od

el
th

e
pe

rm
itt

ed
in

vo
ca

tio
n

se
qu

en
ce

s
of

W
eb

se
rv

ic
e

op
er

at
io

n
M

a
an

d
C

he
n

[6
7]

N
ot

co
ns

id
er

ed
N

ot
co

ns
id

er
ed

N
ot

co
ns

id
er

ed
C

om
po

si
te

se
rv

ic
e

is
de

sc
ri

be
d

as
a

ki
nd

of
w

or
kfl

ow
pr

oc
es

s
fo

r
re

lia
bi

lit
y

ev
al

ua
tio

n
Z

en
g

et
al

.[
40

]
Q

ua
lit

y
m

od
el

is
in

cl
ud

ed
in

se
rv

ic
e

on
to

lo
gy

A
se

to
f

us
er

-d
efi

ne
d

co
ns

tr
ai

nt
s

ar
e

ex
pr

es
se

d
us

in
g

a
si

m
pl

e
ex

pr
es

si
on

la
ng

ua
ge

N
ot

co
ns

id
er

ed
A

co
m

po
si

te
se

rv
ic

e
is

a
co

lle
ct

io
n

of
ge

ne
ri

c
se

rv
ic

e
ta

sk
s

de
sc

ri
be

d
in

te
rm

s
of

se
rv

ic
e

on
to

lo
gi

es
an

d
co

m
bi

ne
d

ac
co

rd
in

g
to

a
se

to
f

co
nt

ro
l-

flo
w

an
d

da
ta

-fl
ow

de
pe

nd
en

ci
es

M
ax

im
ili

en
an

d
Si

ng
h

[5
7]

Q
oS

on
to

lo
gy

is
pr

ov
id

ed
R

el
ia

bi
lit

y
re

qu
ir

em
en

ts
ar

e
de

sc
ri

be
d

in
th

e
fo

rm
of

po
lic

ie
s.

M
ea

ns
fo

r
re

lia
bi

lit
y

ve
ri

fic
at

io
n

ar
e

no
td

is
cu

ss
ed

N
ot

co
ns

id
er

ed
N

o
ar

ch
ite

ct
ur

e
ex

is
ts

123

146 SOCA (2014) 8:129–158

vices and operations of the element, and instructions of how
to compute or measure the value of the element.

The policy-based [57], SLA-based [55] and profile-based
[64] approaches in Table 2 succeeded to catch the require-
ments in a formal way. However, it is unclear how exactly the
requirements were elicited and engineered. Some approaches
had their own template or profile for requirements. For the
rest of the papers, it is unclear from where and in what form
does the information about the required quality come from
when selecting services. None of the papers considered the
means to verify and manage reliability during run-time in
requirements level. It is unclear how the requirements affect
the architecture in the selected approaches in Table 2, since
the mapping of the requirements to architecture was missing.
Furthermore, it is hard to discover how the design decisions
have been made since the requirements for the means for the
run-time reliability achievement and management have not
been defined.

The concept of “service architecture” was missing in
almost all approaches surveyed, or it varied what was meant
by architecture. In many cases, such as in the approaches
using OWL-S, the service architecture was described when
the services were already selected, and the architecture
seemed to be described in the form of processes. It seems
that the approaches assume that the requirements for service
are known, although most of them do not define how they are
achieved and mapped to conceptual services when searching
suitable candidates. Instead of describing the service archi-
tecture, the approaches concentrate on service description
technologies. The services were mainly described in a way
that can be utilized during run-time by registering, discov-
ering and binding services. Of the selected approaches in
Table 2, only in [10,64] is the composite service modeled
before service selection. In reliability model of Chawla et al.
[10], a service is described using a dynamic process tem-
plate. This kind of template supports the abstract service
description. The framework of Tari et al. [64] uses rule-based
techniques to construct a template for composition plan. The
major advantage of this approach is its ability to describe
abstract composite service architecture.

4.2.2 Discussion about the related literature

In our literature survey, we found that QoS ontologies have
been suggested recently in several works. The dispersion
among the works is large, which reveals the lack of stan-
dardization. However, it is clear that the benefits of ontologies
have been widely recognized. We found only few ontologies
that concentrate directly on reliability. In [68], a very sim-
ple Web Service Reliability Ontology (WSRO) is proposed,
whereas the approach introduced in [69] defines and uses the
reliability-metrics ontology for defining reliability require-
ments.

Several standards have been proposed for describing
semantic Web services, such as Web Ontology Language
(OWL), Web Ontology Language for Services (OWL-S),
Web Service Modeling Ontology (WSMO), Web Services
Description Language (WSDL-S) and DAML-S (DARPA
agent markup language for services). Since the existing stan-
dards do not allow description of quality properties, several
extensions have been proposed, such as [7,43,70–72]. The
approaches can be considered to be applied also in the con-
text of reliability. Several other ontologies have been sug-
gested for service discovery and matchmaking purposes,
such as [73–75]. Since there exist a multiplicity of proposed
approaches for extensions of existing standards and several
suggestions for QoS ontologies, it is hard to discover their dif-
ferences, advantages and disadvantages. However, the diver-
sity of approaches reveals that finding the services and bind-
ing them to a composition is hard due these stand-alone
solutions. Thus, more standardization is required. The dif-
ferent proposals emphasize different quality attributes, and
the definition problems, classification problems and repre-
sentation problems still exist within quality attributes. Gen-
erally, most ontology-based approaches focus on description
of static quality; they do not define dynamic quality metrics
or metrics for service status variables. So far, there seem to be
no formal framework to describe devices, but some proposals
have been suggested, such [23,76–80]. The device ontologies
enable the networked devices to discover each other’s pres-
ence on the network and establish functional network ser-
vices for data sharing, communications and entertainment.
The disadvantage of these approaches is that currently they
do not consider reliability or any other quality issues. It is still
obvious that the device ontology is a necessity to describe
capabilities of available devices in a standard way.

The need of new techniques and approaches for elicit-
ing and determining service provider and customer require-
ments has been recognized in recent research [81] but only
a few approaches have emerged. The selection of require-
ment elicitation techniques is always dependent on the sit-
uation at hand. Although there are some attempts to ratio-
nalize the selection of technique [82–84], there is no evi-
dence on that one technique is better than another. More
likely, the techniques complement each other, and the use
of two or more techniques is always better than using only
one. Formal requirements engineering methods concentrat-
ing on quality requirements exist only few. The i* framework
[85] helps to detect where quality requirements originate and
what kind of negotiations should take place, leading to the
most appropriate architectural design decision to be used in
a particular context. Extending the i* framework, the NFR
(non-functional requirements) framework [86] aims to refine
the quality requirements, consider different design alterna-
tives, perform trade-off analyses and evaluate the degree to
which the requirements are satisfied. NFR+ framework [87]

123

SOCA (2014) 8:129–158 147

extends the NFR Framework with measurable non-functional
requirements, bridging the gap between NFRs and imple-
mentation. These kinds of frameworks help to find the reli-
ability requirements and transfer them into the design deci-
sions. Sindre and Opdahl [88] suggest that use of the negative
form of use cases—misuse cases—can be applied in require-
ment elicitation. Misuse cases that embody negative scenar-
ios and malign actors can identify and analyze threats to
system operation, leading to reliability and security require-
ments. The DAM (Dependability Analysis and Modeling)
profile of Bernardi et al. [89] assists the requirements engi-
neers in determination of dependability requirements, focus-
ing on reliability and availability. The approach exploits use
cases/misuse cases [88] and the IEEE 830 standard for soft-
ware requirements specification [90], providing an iterative
workflow where the reliability and availability requirements
(R & AR) elicitation and documentation are addressed within
the unified process assisted by the DAM profile. The profile
enables specification of R & AR in terms of quantifiable
objectives or metrics and characterization of faults and fail-
ure. Based on accepted practices and worldwide standards,
such as UML, the approach is easy to apply in different con-
texts.

In our literature survey, we found few ontology-based
approaches that can be used within requirements. Xiang et
al. [91] outline the Service Requirement Elicitation Mecha-
nism (SREM), which is based on Service Requirement Mod-
eling Ontology (SRMO) [92], utilizing its main concepts.
The authors propose the Service Requirements Elicitation
Process (SREP), which helps to generate a requirements
model based on the concepts in ontology. The mechanism
integrates the users’ requirements models from different ser-
vice requestors, building a requirement knowledge repos-
itory, which offers service providers requirement knowl-
edge about the needs and preference of service requestors
with regard to the service offered by them. The require-
ments analysis method of Kaiya and Saeki [93] is based on
mapping between a requirements specification and ontolog-
ical elements. For example, the requirements document is
incomplete when not all elements in the ontology are related
to items in the requirements specification. The quality of
requirements, such as correctness and consistency, can be
estimated using a defined formula after mapping require-
ments items onto ontological elements. Both ontological
approaches enable the identification of consistent and com-
plete requirements, and also systematic requirement manage-
ment and further utilization.

We found some approaches that concentrated on bring-
ing quality to architectural description. The approach intro-
duced in [94] provides the means to support reliability in
design following the principles of MDA [95], whereas [96]
suggests a UML profile for the reliability domain. Also,
the DAM (Dependability Analysis and Modeling) profile

[89] is based on UML. At this moment, several UML tools
enable the creation of quality profiles, e.g., Topcased (http://
www.topcased.org) and Enterprise Architect (http://www.
sparxsystems.com). In the quality aware software architect-
ing and analysis approach of Ovaska et al. [97], the mapping
of quality requirements with architectural elements is per-
formed in a standard way. The approach also introduces a
Quality Profile Editor (QPE) tool, which enables the user to
select the appropriate metrics from the reliability ontology
and set the desired value for each property. The architecture
is described using annotated UML.

Only few approaches considered the architectural descrip-
tion of the composite service. In the approach of Ovaska et al.
[97], the comprehensive architecture description is provided,
having two levels of abstraction: conceptual and concrete.
The conceptual level is an abstract description of architec-
ture. Although the approach is meant for component-based
software, the abstraction levels can be applied within ser-
vices as well. In [9], an extension is suggested to the OWL-S
ontology framework to support dynamic Web service compo-
sition. The extension allows defining the composite services
at the abstract service level. Each abstract service is attached
with an instance pool that includes available concrete ser-
vices for the corresponding abstract service. The candidate
services can be invoked from the pool dynamically during
run-time.

4.3 Reliability analysis

4.3.1 Evaluation results

Table 3 summarizes the selected approaches from the relia-
bility analysis viewpoint.

Of the selected approaches in Table 3, [53,57,65] man-
aged to perform the reliability analysis already in service
selection phase, before service binding. Almost all of the
approaches enable the run-time reliability analysis; thus, the
main focus seems to be on the run-time quality verification.
However, approaches that perform exclusive run-time analy-
sis cannot know the reliability of the service selection before
the composite service is deployed, its execution has been
started and the dynamic reliability analysis has been per-
formed for the first time.

The different approaches to gather reliability informa-
tion (defined in Sect. 3.3.2) were present in the inspected
approaches (Table 3), except the use of third parties. The
analyses that are based entirely on information provided by
the service provider, such as in [65], cannot be considered
trustworthy as such but require verification of this informa-
tion. It is obvious that the dynamic quality information is
required to locate some place other than the service registry
due to constant updating. Attempts to enrich the UDDI regis-
ters with semantic-enriched QoS information to enable bet-

123

http://www.topcased.org
http://www.topcased.org
http://www.sparxsystems.com
http://www.sparxsystems.com

148 SOCA (2014) 8:129–158

Ta
bl

e
3

R
el

ia
bi

lit
y

an
al

ys
is

vi
ew

po
in

t

M
et

ho
d/

ap
pr

oa
ch

A
na

ly
si

s
le

ve
l

D
at

a
so

ur
ce

fo
r

th
e

an
al

ys
is

A
na

ly
si

s
te

ch
ni

qu
e/

m
et

ho
d

A
na

ly
si

s
ou

tp
ut

W
an

g
et

al
.[

53
]

Se
le

ct
io

n
ph

as
e,

ex
ec

ut
io

n
Se

rv
ic

e
pr

ov
id

er
s

or
ev

al
ua

tio
ns

pr
ov

id
ed

by
th

e
se

rv
ic

e
br

ok
er

s
an

d
co

ns
um

er
s

D
yn

am
ic

al
ly

co
ns

tr
uc

te
d

D
T

M
C

m
od

el
Te

ch
ni

ca
la

to
m

ic
an

d
co

m
po

si
te

se
rv

ic
e

re
lia

bi
lit

ie
s

Ta
ri

et
al

.[
64

]
E

xe
cu

tio
n

M
on

ito
ri

ng
sy

st
em

co
lle

ct
s

in
fo

rm
at

io
n

fo
r

qu
al

ity
pa

ra
m

et
er

s
of

co
nc

re
te

se
rv

ic
es

M
at

he
m

at
ic

al
fo

rm
ul

a
(i

nc
lu

de
s

a
le

ar
ni

ng
m

ec
ha

ni
sm

)
R

es
po

ns
e

T
im

e,
A

va
ila

bi
lit

y
an

d
R

el
ia

bi
lit

y
of

co
nc

re
te

se
rv

ic
es

C
ar

de
lli

ni
et

al
.[

55
]

E
xe

cu
tio

n
E

xe
cu

tio
n

m
on

ito
r

co
lle

ct
s

in
fo

rm
at

io
n

ab
ou

tt
he

co
m

po
si

te
se

rv
ic

e
us

ag
e

M
at

he
m

at
ic

al
fo

rm
ul

a
(r

ec
ur

si
ve

ru
le

s)
A

ve
ra

ge
re

sp
on

se
tim

e,
co

st
an

d
re

lia
bi

lit
y

of
a

gi
ve

n
se

rv
ic

e
im

pl
em

en
ta

tio
n

C
or

te
lle

ss
a

an
d

G
ra

ss
i[

65
]

Se
le

ct
io

n
ph

as
e,

ex
ec

ut
io

n
R

el
ia

bi
lit

y
in

fo
rm

at
io

n
pu

bl
is

he
d

by
se

rv
ic

e
pr

ov
id

er
s

M
ar

ko
v

pr
oc

es
se

s
R

el
ia

bi
lit

y
of

at
om

ic
an

d
co

m
po

si
te

se
rv

ic
e

C
ha

w
la

et
al

.[
10

]
E

xe
cu

tio
n

D
at

a
is

ob
ta

in
ed

fr
om

th
e

se
rv

ic
es

us
in

g
th

e
m

on
ito

ri
ng

fu
nc

tio
n

M
at

he
m

at
ic

al
fo

rm
ul

a
(r

ec
ur

si
ve

al
go

ri
th

m
)

Se
rv

ic
e

re
lia

bi
lit

y,
co

m
po

si
te

W
eb

se
rv

ic
e

re
lia

bi
lit

y

H
w

an
g

et
al

.[
66

]
E

xe
cu

tio
n

T
ra

ns
iti

on
pr

ob
ab

ili
tie

s
fr

om
th

e
tr

an
si

tio
n

pr
ob

ab
ili

ty
m

at
ri

x
M

ar
ko

v
ch

ai
ns

A
gg

re
ga

te
d

re
lia

bi
lit

y
of

ea
ch

co
nfi

gu
ra

tio
n

in
a

W
S

co
m

po
si

tio
n

M
a

an
d

C
he

n
[6

7]
E

xe
cu

tio
n

Fe
ed

ba
ck

in
fo

rm
at

io
n

co
lle

ct
ed

fr
om

cl
ie

nt
s

T
im

e-
de

pe
nd

en
tM

ar
ko

v
m

od
el

,M
ar

ko
v

ch
ai

ns
,

re
lia

bi
lit

y
SW

R
al

go
ri

th
m

Fe
ed

ba
ck

-b
as

ed
Q

oS
(i

nc
l.

re
lia

bi
lit

y)
of

at
om

ic
se

rv
ic

es
,c

om
po

si
te

se
rv

ic
e

re
lia

bi
lit

y
Z

en
g

et
al

.[
40

]
E

xe
cu

tio
n

Pr
ov

id
er

ad
ve

rt
is

ed
Q

oS
,o

w
n

sy
st

em
co

lle
ct

s
Q

oS
da

ta
ab

ou
ts

er
vi

ce
s

A
gg

re
ga

tio
n

fu
nc

tio
ns

Q
oS

of
co

m
po

si
te

se
rv

ic
es

(e
xe

cu
tio

n
pr

ic
e,

ex
ec

ut
io

n
du

ra
tio

n,
re

pu
ta

tio
n,

re
lia

bi
lit

y,
av

ai
la

bi
lit

y)
,q

ua
lit

y
ve

ct
or

of
a

co
m

po
si

te
se

rv
ic

e’
s

ex
ec

ut
io

n
pl

an
M

ax
im

ili
en

an
d

Si
ng

h
[5

7]
Se

le
ct

io
n

ph
as

e,
ex

ec
ut

io
n

Pr
ov

id
er

ad
ve

rt
is

ed
se

rv
ic

e
po

lic
ie

s.
R

ep
ut

at
io

n:
ag

en
ts

co
lle

ct
in

fo
rm

at
io

n
on

th
ei

r
in

te
ra

ct
io

ns
w

ith
th

e
se

rv
ic

es

M
at

he
m

at
ic

al
fo

rm
ul

a
Q

ua
lit

y
re

pu
ta

tio
n

ter service selection still rely on static and subjective qual-
ity information. How “right” and up-to-date the quality val-
ues are cannot be verified. Furthermore, the UDDI server
may become outdated in a dynamic networking environment
where a service may fail or become unreachable. Solution
to static information of UDDI is provided in [67], where the
service QoS information stored in UDDI is updated each
time a service is consumed. The trustworthiness and accu-
racy of the feedback information are the major challenges of
the methods that are based on information obtained from ear-
lier users of services, such as in [67]. Most of the approaches
were based on building an own service monitoring system
that was included as part of the service composition archi-
tecture. Therefore, the approaches ensured the trustworthy of
information by acquiring it by themselves, when the informa-
tion was also stored within their monitoring and composition
architecture.

All of the inspected approaches had different kind of reli-
ability analysis method. The analysis methods were mainly
based on Markov chains types of models or applied mathe-
matical formulas. Most of the analysis methods were quite
mathematical, requiring many skills from the method user.
Therefore, the applicability of those methods by composite
service developer is quite weak, unless the guide or tool sup-
port is provided for the method. The methods were provided
only as a research level; however, some of them were vali-
dated with a prototype tool. The prototypes automate some
calculations of the methods and could also provide concrete
proofs about the functionality of the method. The model-
based analysis methods, such as [53,65,67], could be easier
to be applied if the user is familiar with common Markov
chain-based analysis. The approach described in [53] even
enabled the dynamic construction of Markov process.

Almost all of the inspected approaches reached for both
atomic and composite service reliability. The results con-
tain mainly technical reliability. However, some approaches
such as [57,67] reached for softer metrics of reliability. The
approach in [67] collects feedback from consumers after they
have consumed the service. In the approach described in [57],
the consumers’ judgments about services are aggregated into
general opinions.

4.3.2 Discussion about the related literature

Although the third-party-based approaches were not involved
in the selected approaches, we could made a conclusion based
on our literature survey that there are multiple possibilities
for third parties to assists in data gathering and service mon-
itoring. The approach of Gouscos et al. [98] proposed that
a trusted third party is tracking, updating and publishing the
actual QoS of Web services. As an intermediate, Fei et al.
[99] provide a usable policy-driven monitoring framework
that can be used as a third-party QoS monitor for Web ser-

123

SOCA (2014) 8:129–158 149

vices. The framework includes elements for service moni-
toring and composite service adaption, providing users the
means to define monitoring models. The monitor can work
as a QoS metric value collector for a QoS registry or as a
dynamic controller in service execution to adapt service exe-
cution dynamically when QoS deviation occurs. Also, the
approach of Zeng et al. [100] allows users to define the QoS
metrics and also to define when and how the metric values are
computed. The approach introduces QoS observation meta-
model, which is then used for creating observation models
that then define the generic or domain-specific QoS met-
rics. QoS monitoring architecture includes, among others, a
metric computation engine and a Web service observation
manager, which provides interfaces that allow users to create
observation models. The approach also includes QoS data
service, which provides an interface that allows other SOA
components to access QoS information.

Most of the surveyed approaches assumed that the mon-
itoring and composition architecture also includes ele-
ments for storing of the dynamic information. Some other
approaches suggested that the environment or the extended
standards could store dynamic information. In the approach
of Yu and Reiff-Marganiec [101], the “inContext” platform
provides dynamic context information, which affects the Web
service measurement at run-time; the platform dynamically
stores the QoS metadata of registered services and allows for
updating this at any time. However, access to the data may
cost something, and the trustworthiness of the storage and the
storage provider must be ensured somehow. Lee et al. [102]
propose a dynamic service ranking extension to OSGi spec-
ification, suggesting that the contextual information can be
attached as an attribute to service instances, and it is dynam-
ically updated to keep up with changes in the environments.
The approach proposes architecture for a service composi-
tion subsystem where the availability and quality changes of
participating component services are monitored.

Most of the current quality analysis approaches are inte-
grated with service selection or monitoring approaches and
methods. The existing specifications and standards for SOA
implementations have their focus in ensuring reliable mes-
sage exchange between services [103,104]. The need for
evaluation of service-oriented architecture has been widely
recognized, but there is still a lack of common practice as to
how the evaluation should be done.

4.4 Decision making logic

4.4.1 Evaluation results

Table 4 summarizes the selected approaches from the deci-
sion making logic viewpoint.

None of the inspected approaches in Table 4 used entirely
the static information. Surprisingly, many approaches used

the most recent data in decision making when selecting ser-
vices [10,57,64,66]. These approaches can ensure the relia-
bility of the selected services at the time of service selection.
Four approaches relied entirely on the average data. Of the
selected approaches, reliability was involved almost all of
them as a selection criteria. Service reputation was involved
in two approaches [40,64], and trustworthiness of service
provider in one approach [57].

The inspected approaches had different ways of selecting
services. The approach in [57] bases on a matching algorithm
where the required QoS is matched with provided QoS. The
different kind of matching is being made in the approach
in [10] where the required service properties described in a
dynamic process template are matched with OWL-S profile
template associated with candidate services. The approach of
Wang et al. [53] introduces a pool mechanism that can rank
services according to certain criteria for selection. On the
contrast, the approach of Ma and Chen [67] did not consider
how the service is selected from the UDDI.

All of the detailed inspected approaches in Table 4, except
[65], enabled quality adaptation. Except the approach in
[10], the adaptation could occur automatically during run-
time. The run-time adaptation concentrated mainly on self-
configuration and self-healing; the services were replaced
when there was a decrease in quality of services in use, or
the services in use failed. In addition, in [55] the adaptation
occurred each time, a change was detected in the operating
environment. In the cases of [40,64], the adaptation included,
in addition to replacement of failed or unreliable services,
also the adaptation of the whole execution plan.

4.4.2 Discussion about the related literature

The non-functional-based service selection has been seen as
interesting for a while, since we found plenty of approaches
and several literature surveys of the area of quality-based
selection approaches [12,14,18,19]. Yu and Reiff-Marganiec
[12] provide first classification of non-functional-based ser-
vice selection approaches, defining three dimensions to
examine and differentiate approaches: policies- vs.
reputation-based selection information, UDDI-extensions
vs. Semantic Web Services based non-functional properties
capturing, and graphic modeling vs. ontology-based model-
ing for capturing user preferences. Sathya et al. [14] identify
criteria for quality-of-service-based service selection (QSS)
approaches; QoS modeling, QoS categorization, user pref-
erences, QoS evaluation, aggregating the evaluation of QoS,
QoS properties, level of automation, coordination distribu-
tion, agent involvement and ranking algorithm. According
to the surveys, the major lack of most of the approaches is
the representation and modeling of QoS characteristics, met-
rics and inability to evaluating the QoS parameters, the QoS
weightings, and fuzzy view on the QoS parameters between

123

150 SOCA (2014) 8:129–158

Ta
bl

e
4

D
ec

is
io

n
m

ak
in

g

M
et

ho
d/

ap
pr

oa
ch

Ty
pe

of
da

ta
fo

r
de

ci
si

on
m

ak
in

g
Se

rv
ic

e
se

le
ct

io
n

cr
ite

ri
a

Se
rv

ic
e

se
le

ct
io

n
pr

oc
es

s
Q

ua
lit

y
ad

ap
ta

tio
n

W
an

g
et

al
.[

53
]

D
yn

am
ic

av
er

ag
e

da
ta

R
el

ia
bi

lit
y

T
he

po
ol

m
ec

ha
ni

sm
ra

nk
s

th
e

se
rv

ic
es

to
en

su
re

th
at

th
e

be
st

se
rv

ic
es

w
ill

be
se

le
ct

ed
fir

st

A
llo

w
s

th
e

sy
st

em
to

be
au

to
m

at
ic

al
ly

ad
ju

st
ed

to
th

e
di

st
ri

bu
tio

n
an

d
th

e
le

ng
th

of
se

rv
ic

e
po

ol
s.

In
th

e
ca

se
of

fa
ilu

re
,t

he
sy

st
em

ca
n

dy
na

m
ic

al
ly

bi
nd

to
a

re
pl

ac
em

en
ts

er
vi

ce
in

th
e

po
ol

Ta
ri

et
al

.[
64

]
D

yn
am

ic
,m

or
e

im
po

rt
an

ce
is

gi
ve

n
to

th
e

la
st

qu
al

ity
es

tim
at

io
n

Q
ua

lit
y

of
us

er
ex

pe
ri

en
ce

an
d

re
pu

ta
tio

n
of

th
e

ab
st

ra
ct

ca
nd

id
at

e
se

rv
ic

es

T
he

co
nc

re
te

se
rv

ic
es

ar
e

se
le

ct
ed

ba
si

ng
on

th
ei

r
Q

oE
va

lu
es

E
xe

cu
tio

n
pl

an
is

au
to

m
at

ic
al

ly
ad

ap
te

d
in

ca
se

of
de

cr
ea

se
of

qu
al

ity
of

co
nc

re
te

se
rv

ic
es

.T
he

fa
ile

d
se

rv
ic

e
is

re
pl

ac
ed

lo
ca

lly
by

th
e

be
st

co
nc

re
te

se
rv

ic
e

C
ar

de
lli

ni
et

al
.[

55
]

D
yn

am
ic

av
er

ag
e

da
ta

R
es

po
ns

e
tim

e,
co

st
an

d
lo

ga
ri

th
m

of
re

lia
bi

lit
y

A
n

ab
st

ra
ct

se
rv

ic
e

is
bo

un
d

to
a

se
to

f
co

nc
re

te
se

rv
ic

es
;(

re
-)

bi
nd

in
g

to
di

ff
er

en
t

im
pl

em
en

ta
tio

ns
to

m
ee

tt
he

Q
oS

ob
je

ct
iv

es
is

co
nt

ro
lle

d
by

a
co

or
di

na
tio

n
pa

tte
rn

s

T
he

m
od

el
of

SO
A

sy
st

em
is

us
ed

to
dy

na
m

ic
al

ly
ca

lc
ul

at
e

a
re

-a
rr

an
ge

m
en

to
f

th
e

av
ai

la
bl

e
co

nc
re

te
se

rv
ic

es
ea

ch
tim

e
a

re
le

va
nt

ch
an

ge
is

de
te

ct
ed

in
th

e
op

er
at

in
g

en
vi

ro
nm

en
t

C
or

te
lle

ss
a

an
d

G
ra

ss
i[

65
]

N
ot

co
ns

id
er

ed
N

ot
co

ns
id

er
ed

N
ot

co
ns

id
er

ed
N

ot
co

ns
id

er
ed

C
ha

w
la

et
al

.[
10

]
D

yn
am

ic
,r

ea
l-

tim
e

da
ta

R
el

ia
bi

lit
y

Se
le

ct
io

n
is

m
ad

e
by

m
at

ch
in

g
re

qu
ir

ed
se

rv
ic

e
pr

op
er

tie
s

in
Pr

oc
es

s
M

od
el

Te
m

pl
at

e
w

ith
O

W
L

-S
pr

ofi
le

te
m

pl
at

e
as

so
ci

at
ed

w
ith

ea
ch

ca
nd

id
at

e
se

rv
ic

es

Se
rv

ic
es

ca
n

be
re

pl
ac

ed
w

he
n

th
ei

r
re

lia
bi

lit
y

dr
op

to
an

un
ac

ce
pt

ab
le

le
ve

l,
ad

ap
ta

tio
n

re
qu

ir
es

hu
m

an
in

fe
re

nc
e

H
w

an
g

et
al

.[
66

]
D

yn
am

ic
,r

ec
en

td
at

a
R

el
ia

bi
lit

y
A

gg
re

ga
te

d
re

lia
bi

lit
y

is
co

m
pu

te
d

fo
r

ea
ch

co
nfi

gu
ra

tio
n

in
a

W
S

co
m

po
si

tio
n,

an
d

th
en

us
ed

fo
r

se
le

ct
in

g
at

om
ic

W
Ss

R
e-

co
m

pu
tin

g
ag

gr
eg

at
ed

re
lia

bi
lit

ie
s

if
at

om
ic

se
rv

ic
es

fa
il

(u
na

bl
e

to
de

te
ct

fa
ilu

re
s)

,s
el

ec
tio

n
of

ne
w

se
rv

ic
es

ba
se

d
on

co
m

pu
ta

tio
n

re
su

lts
M

a
an

d
C

he
n

[6
7]

D
yn

am
ic

av
er

ag
e

da
ta

N
ot

co
ns

id
er

ed
Se

rv
ic

es
ar

e
se

le
ct

ed
in

fo
rm

al
ly

fr
om

U
D

D
I

If
se

le
ct

ed
se

rv
ic

es
fa

il
th

ey
ar

e
su

bs
tit

ut
ed

by
ba

ck
up

se
rv

ic
es

,u
nc

le
ar

w
he

th
er

dy
na

m
ic

al
ly

or
no

t
Z

en
g

et
al

.[
40

]
D

yn
am

ic
,a

ve
ra

ge
da

ta
G

lo
ba

lp
la

nn
in

g:
Q

oS
co

ns
tr

ai
nt

s
(e

xe
cu

tio
n

pr
ic

e
an

d
du

ra
tio

n,
re

pu
ta

tio
n,

re
lia

bi
lit

y,
av

ai
la

bi
lit

y)
an

d
pr

ef
er

en
ce

s

Sy
st

em
co

m
pu

te
s

a
qu

al
ity

ve
ct

or
fo

r
ea

ch
ca

nd
id

at
e

se
rv

ic
e

an
d

se
le

ct
s

se
rv

ic
es

ba
se

d
on

th
es

e
ve

ct
or

s
by

ap
pl

yi
ng

M
C

D
M

te
ch

ni
qu

e

T
he

ex
ec

ut
io

n
pl

an
is

re
vi

se
d

in
or

de
r

to
op

tim
iz

e
th

e
Q

oS
gi

ve
n

a
se

to
f

us
er

re
qu

ir
em

en
ts

an
d

a
se

to
f

ca
nd

id
at

e
co

m
po

ne
nt

se
rv

ic
es

if
se

rv
ic

es
be

co
m

e
un

av
ai

la
bl

e
or

th
er

e
is

ch
an

ge
in

th
ei

r
pr

ed
ic

te
d

Q
oS

M
ax

im
ili

en
an

d
Si

ng
h

[5
7]

D
yn

am
ic

av
er

ag
e

an
d

re
ce

nt
da

ta
Pr

ef
er

en
ce

s
of

se
rv

ic
e

co
ns

um
er

s,
tr

us
tw

or
th

in
es

s
of

pr
ov

id
er

s
A

lg
or

ith
m

s
to

se
le

ct
se

rv
ic

es
ba

se
d

on
th

e
co

ns
um

er
’s

an
d

se
rv

ic
e

pr
ov

id
er

’s
po

lic
ie

s
A

se
rv

ic
e

is
au

to
m

at
ic

al
ly

re
pl

ac
ed

at
ru

n-
tim

e
if

it
do

es
n’

tm
ee

tt
he

cu
st

om
er

’s
ne

ed
s,

be
co

m
es

un
tr

us
tw

or
th

y,
or

a
be

tte
r

se
rv

ic
e

in
st

an
ce

is
fo

un
d

123

SOCA (2014) 8:129–158 151

service consumers and service providers [12,14]. Based on
the related literature surveys considering the quality-based
service selection, we can conclude that the issue has been
inspected widely. Still, however, a standard guideline or
method of how to select a reliable service is missing.

4.5 Composition and monitoring architecture

4.5.1 Evaluation results

Table 5 summarizes the composition and monitoring archi-
tecture related issues of the selected approaches.

Of the surveyed approaches in Table 5, Wang et al. [53]
provide a promising means for fault tolerance; a service pool
mechanism providing dynamically updated run-time service
redundancy. Also, the approaches in [40,55,64,67] include
some kind list or matrix of available candidate services, but
it seems that they are not maintained dynamically. Thus,
although the list or index of candidate services exists at the
time of service selection, it is not clear what happens to the
list after selection.

The surveyed approaches used monitoring activity for
slightly different ways. The main purpose of most of the
methods was still to detect change in service composition
and quality by collecting information about the service exe-
cution and calculating the QoS values. The monitoring activ-
ity could be targeted directly to service execution or to detect
changes in system composition [53]. In addition, the moni-
toring activity was used to monitor the interactions between
the consumer and the service [57], the service usage profile
[55] or the execution plan [64]. Only the work in [55] was
based on SLAs. The SLA is used for specifying the condi-
tions for service delivery, including the quality and quantity
levels. The SLA Monitor collects information about reliabil-
ity levels experienced by the users and offered by the service
providers and notifies the adaptation manager about signifi-
cant variation of service parameters.

Of the surveyed approaches in Table 5, only two approa-
ches provide some kind of feedback system. Maximilien
and Singh introduce in [57] a reputation-based approach for
ontology-based dynamic service selection that is based on
agent framework. The services are ranked using the quality-
degree match, which is based on “what the provider adver-
tises along with the provider’s reputation for the given quality,
and how the quality in question relates to other needed quali-
ties.” Maximilien and Singh [41] extend their work and pro-
pose an interacting multiagent approach that enables appli-
cations to be dynamically configured at run-time, adapting
the changes in preferences of the participants. The approach
takes into account that the QoS will change overtime, when
the quality data must be updated regularly. The notable
remark in this approach is that the recent data matter more in
determining reputation. The approach of Ma and Chen [67]

introduces a reliability evaluation framework that is based on
collecting consumer feedback.

4.5.2 Discussion about the related literature

Other kinds of back-up plans than a list of candidates were
uncovered in our literature survey. In the service selection
approach of Kokash [105], several configurations with good
qualities are preresolved at the service selection stage. In the
case of a failure in the chosen configuration, another configu-
ration can be chosen. The agent-based approach of Maamar
et al. [63] does the concurrent composition and execution
of services; the conversations with master-service-agents of
the next Web services ensure that these next Web services
are getting ready for execution. In dependability evaluation
framework of Zheng and Lyu [106], a fault tolerance updater
module automatically adjusts the fault tolerance strategy to
the most proper configuration with optimal Web service can-
didates. The dynamic fault tolerance seems to have poten-
tial; however, currently, the QoS includes only performance.
Hamadi et al. [107] provide a formal way for fault tolerance
already in design time with extended Petri net model for
specifying exceptional behavior of business processes. The
high-level recovery policies incorporated either with a single
or a set of tasks are generic directives that model exceptions
at design time together with a set of primitive operations used
at run-time to handle the occurrence of exceptions. However,
the approaches does not discuss how the reliability of tasks,
set of task or services are analyzed and how exactly the qual-
ity issues could trigger the exceptions. Friedrich et al. [108]
propose a self-healing approach for service-based processes,
which, on the basis of the diagnosis of the functional faults,
enables that the effects of the faults on the services can be
computed and used to generate a plan to repair the process.
The approach provides plans for repairability both for design
time and run-time, including analysis of repairability, algo-
rithms for generating repair plans and repair execution sup-
port. However, the effects of exceptions on service reliabil-
ity or any other issues relating the service reliability are not
discussed; the approach concentrates only on service output
monitoring during run-time with back-up plans if exceptions
occurs.

We found several approaches that considered device qual-
ity and status monitoring. Some common protocols, such as
UPnP [23], can be used for device advertising, discovery
and also monitoring. In the UPnP-based service monitor-
ing approach of Togias et al. [76], the UPnP devices are
equipped with instances of the UPnP ontology and ontol-
ogy management software. Also, the resource description
model of Kaefer et al. [109] uses UPnP as a service discov-
ery technology, consisting of a basic set of attributes includ-
ing QoS parameters, device capabilities and the required
resource needs. The desired objective is achieved by dynamic

123

152 SOCA (2014) 8:129–158

Ta
bl

e
5

Se
rv

ic
e

co
m

po
si

tio
n

an
d

m
on

ito
ri

ng
ar

ch
ite

ct
ur

e

M
et

ho
d/

ap
pr

oa
ch

D
yn

am
ic

lis
to

f
ca

nd
id

at
e

se
rv

ic
es

R
un

-t
im

e
se

rv
ic

e
m

on
ito

ri
ng

SL
A

m
on

ito
ri

ng
Fe

ed
ba

ck
co

lle
ct

io
n

sy
st

em

W
an

g
et

al
.[

53
]

D
yn

am
ic

al
ly

up
da

te
d

in
de

x
of

av
ai

la
bl

e
se

rv
ic

es
M

on
ito

ri
ng

th
e

se
rv

ic
e

ex
ec

ut
io

n
pa

th
s

N
ot

SL
A

-b
as

ed
N

ot
in

cl
ud

ed

Ta
ri

et
al

.[
64

]
L

is
to

f
ca

nd
id

at
e

se
rv

ic
es

,n
ot

dy
na

m
ic

al
ly

up
da

te
d

M
on

ito
ri

ng
of

th
e

se
rv

ic
e

ex
ec

ut
io

n
pl

an
N

ot
SL

A
-b

as
ed

N
ot

in
cl

ud
ed

C
ar

de
lli

ni
et

al
.[

55
]

Po
ol

of
ca

nd
id

at
e

av
ai

la
bl

e
se

rv
ic

es
,n

ot
dy

na
m

ic
al

ly
up

da
te

d
M

on
ito

r
co

lle
ct

s
in

fo
rm

at
io

n
ab

ou
tt

he
se

rv
ic

e
us

ag
e

pr
ofi

le
s

SL
A

m
on

ito
r

co
lle

ct
s

in
fo

rm
at

io
n

ab
ou

tr
el

ia
bi

lit
y

an
d

in
fo

rm
s

ad
ap

ta
tio

n
la

ye
r

ab
ou

tv
io

la
tio

ns

N
ot

in
cl

ud
ed

C
or

te
lle

ss
a

an
d

G
ra

ss
i[

65
]

N
ot

in
cl

ud
ed

M
on

ito
ri

ng
of

th
e

se
rv

ic
e

ac
tiv

ity
is

su
gg

es
te

d
(n

ot
in

cl
ud

ed
)

N
ot

SL
A

-b
as

ed
N

ot
in

cl
ud

ed

C
ha

w
la

et
al

.[
10

]
D

yn
am

ic
se

rv
ic

e
di

sc
ov

er
y,

no
ca

nd
id

at
e

se
rv

ic
e

lis
te

xi
st

s
Se

rv
ic

e
ex

ec
ut

io
n

m
on

ito
ri

ng
to

de
te

ct
ch

an
ge

s
in

qu
al

ity

N
ot

SL
A

-b
as

ed
N

ot
in

cl
ud

ed

H
w

an
g

et
al

.[
66

]
N

ot
in

cl
ud

ed
N

ot
in

cl
ud

ed
N

ot
SL

A
-b

as
ed

N
ot

in
cl

ud
ed

M
a

an
d

C
he

n
[6

7]
B

ac
ku

p
se

rv
ic

e
po

ol
ex

is
ts

,n
ot

dy
na

m
ic

al
ly

up
da

te
d

N
ot

in
cl

ud
ed

N
ot

SL
A

-b
as

ed
A

ft
er

cl
ie

nt
ha

s
be

en
co

ns
um

ed
a

W
eb

se
rv

ic
e,

th
e

fe
ed

ba
ck

in
fo

rm
at

io
n

is
se

nt
to

U
D

D
I

Z
en

g
et

al
.[

40
]

Q
ua

lit
y

ve
ct

or
s

of
al

lc
an

di
da

te
se

rv
ic

es
ar

e
m

er
ge

d
in

a
m

at
ri

x.
U

nc
le

ar
w

he
th

er
th

es
e

ar
e

up
da

te
d

Se
rv

ic
e

ex
ec

ut
io

n
m

on
ito

ri
ng

to
de

te
ct

ex
ce

pt
io

ns
or

ch
an

ge
s

N
ot

SL
A

-b
as

ed
N

ot
in

cl
ud

ed

M
ax

im
ili

en
an

d
Si

ng
h

[5
7]

N
ot

in
cl

ud
ed

M
on

ito
ri

ng
of

in
te

ra
ct

io
ns

be
tw

ee
n

se
rv

ic
e

an
d

co
ns

um
er

N
ot

SL
A

-b
as

ed
A

ge
nt

s
co

lle
ct

in
fo

rm
at

io
n

on
th

ei
r

in
te

ra
ct

io
ns

w
ith

th
e

se
rv

ic
es

th
at

th
ey

se
le

ct
ed

on
be

ha
lf

of
co

ns
um

er
s

123

SOCA (2014) 8:129–158 153

composition process, comprising functionality-based service
lookup, resource tree generation, policy-based selection and
resource-based optimization. The monitoring and analysis
framework of Truong et al. [110] is based on sensors that
monitor QoS and status of disparate Grid services by using
a peer-to-peer Grid monitoring middleware, which stores
monitoring data in distributed monitoring services. For each
type of resource, e.g., machine, network path, middleware or
application, the different monitoring mechanism is applied to
evaluate QoS attributes. The QoS knowledge base contains
analysis rules for specific metrics and resources, dependen-
cies between monitored resources, and historical QoS data
resulted from previous analyses. In the middleware-based
approach of Zhang and Hansen [111], the dynamic context
information is encoded in a set of self-management context
ontologies. However, although some promising approaches
for device monitoring already exist, they are not yet mature
for reliability analysis. For example, the approach in [76] is
hard to apply, since all the devices must be equipped with
ontological elements. Furthermore, the approach does not
consider quality issues at any level. Although the selection
process in [109] takes into account the reliability and avail-
ability of the services, the recent or dynamic quality and sta-
tus of the services cannot be verified. The approach relies on
static information about the services, since it does not provide
a method for updating the resource description model. Fur-
thermore, it does not support dynamic re-planning if some
change occurs, for example, in service execution or quality.
Use of the method in [110] is very costly since each service
needs a sensor to monitor it; thus, it is only suitable for small
systems.

We found some other service discovery and selection
approaches that were based on SLAs. The standard service-
oriented architecture suggested by Janicke and Solanki [112]
includes observer components that observe the interaction
between services, and a policy engine that constantly eval-
uates the policies against the information that is provided
by the observers to verify the fulfillment of QoS specified
in SLA. Cardellini et al. [113] extend their work presented
in [55] and introduce a brokering service that dynamically
adapts at run-time the composite service configuration to ful-
fill the SLAs. The SLAs are negotiated with each candidate
concrete service in the service pool. The approach includes
WS Monitor that notifies if some services in the pool become
unavailable or some relevant changes occur in the composite
service environment. However, it cannot detect if new candi-
date services become available. Even though the new services
could be discovered dynamically, the SLA negotiation still
requires human inference, which restricts the dynamicity and
availability of the composite service.

We found several approaches that based on user’s feed-
back in quality analysis. The approach of Li et al. [114] uses
the consumers’ feedback to define both the service reputa-

tion and service provider’s reputation. The approach uses
intelligent agents to handle the changing environment and
submit feedback to the semantic registry. The approach dis-
cusses also QoS in general, but it is hard to understand what
is meant by that since it does not give any definitions or
metrics. The approaches in [56,115] both extend UDDI to
accommodate the QoS information and introduce a reputa-
tion manager to assign reputation scores to the services based
on customer feedback and a discovery agent to facilitate the
service discovery. Thangavel and Palanisamy [115] suggest
a dynamic Web service discovery framework with QoS sup-
port, in which a reputation manager assigns reputation scores
to the services based on customer feedback on performance.
The approach uses the Certifier described in [116] to verity
the quality of service for a Web service before its registra-
tion. However, the changes in quality after service registra-
tion cannot be detected. In the approach of Xu et al. [56],
consumers rate the various QoS attributes of the Web ser-
vices they use. These ratings are then published to provide
new customers with valuable information that can be used to
rank services for selection. Reputation is the only dynamic
quality information, and it is entirely based on the opinions
of earlier users.

Some approaches integrated the user feedback-based
approaches with the quality monitoring. Zeng et al. [39] pro-
pose an extensible set of quality criteria that can be applied
to all Web services. In their approach, the consumer feed-
back activities and monitoring activities are merged; repu-
tation is achieved by average ranking given to the service
by end users, and reliability is achieved using historical data
about past invocations by calculating the number of times
that the service is successfully delivered within the maxi-
mum expected timeframe. The extensible QoS model of Liu
et al. [44] achieves the adequate data using the user feed-
back and execution monitoring. Reputation can be reached
by recording the difference between the actual quality criteria
and the advertised quality criteria from the service provider.
Each end user is required to update QoS for the service he/she
has just consumed.

4.6 Applicability of the approach

Although an enormous amount of approaches exist that con-
sider the subject of this survey, and also several promising
approaches, no accurate conclusions could be made about
their maturity. In many cases, the validation of methods
is based only on the authors’ experiments and evaluations
under laboratory circumstances, and only a prototype usually
existed. It is obvious that there is a great lack of large-scale,
industrial applications of these approaches.

To be applicable, the approaches require tool support for
several phases. It should be carefully estimated whether
the approach/method can be applied and integrated with

123

154 SOCA (2014) 8:129–158

the development method and tools of the composite ser-
vice developer. Generally, all the approaches lacked tool
support; however, some parts of the approaches could be
supported by existing tools. For example, currently, there
are several tools available that support at least the analysis
that is based on Markov chains [117]. For service monitor-
ing, some tools exist, such as Nagios (http://www.nagios.
com/), which is a computer system monitor, network moni-
toring and infrastructure monitoring software application and
Keynote system (http://www.keynote.com), which is a prod-
uct family of tools for testing and monitoring of mobile con-
tent applications and services. Nagios is available as open
source and used commonly in the industry, whereas Keynote
system provides commercial third-party monitors. It is obvi-
ous that the different phases of the composite service design
and run-time provide several opportunities for third parties.
The third parties can assist in monitoring services, collect-
ing feedback from users, analyzing reliability, providing data
storages, providing trustworthy information about candidate
services, ect.

The fact that the approaches surveyed exist only at the
research level and that they lack tool support hinders their
applicability in the industry. Since the publications cover-
ing industrial applications of the methods were missing, the
cost estimation of using the approaches and methods could
not be defined. It can be assumed that although the initial
cost when introducing the approach is quite large, the cost
of using the approach is small. However, introduction of the
approaches requires a comprehensive change in composite
service engineering, e.g., introducing monitoring architec-
tures and quality verification methods. Furthermore, accord-
ing to our knowledge, at this moment no public service reg-
istries exist where the candidate services can be searched.
Some attempts to kind of sort out this problem exist, such
as Xmethods (http://www.xmethods.com) that lists publicly
available Web services and their publishers, and Rackspace
Service Registry (http://www.rackspace.com) that is built in
Cloud Monitoring service enabling service tracking and easy
service discovery. The approaches surveyed have their own
registries, or they are applicable to certain service descrip-
tions in standard service registries, such as UDDI. More pub-
lic registries, possibly maintained by third parties, are needed
for service providers to advertise their services.

5 Discussion

Traditionally, a significant part of the research on achiev-
ing quality goals has been focused on software development
and its internal quality attributes as in the ISO 9126-1 qual-
ity model [118]. In recent years, there has been increasing
demand on verifying quality at service execution time. There
exists a huge amount of papers in the literature considering

quality-based service selection, monitoring of service execu-
tion and quality adaptation. This reveals that recently quality
issues and quality verification have been seen as more and
more crucial in development of service-oriented systems.

In our literature survey, we found many papers that
matched with several criteria in our framework. However,
the diversity of approaches highlights the importance of stan-
dardization, since at this moment, all these approaches repre-
sent stand-alone solutions. It is clear that more standardiza-
tion is still required in several phases, such as in the defini-
tion of terms, requirement description, architecture modeling
and reliability analysis, to enable fluent engineering of reli-
able composite services. For example, at this moment, there
exist a multiplicity of proposed approaches for extensions
of existing service description standards and several sugges-
tions for QoS ontologies; still, it is hard to discover their
applicability and usability, since they exist in the research
level only. Despite the lack of standardization, other problems
still remain that hinder the applicability of the approaches in
industry.

In our literature survey, we found out that the early
phases of composite service development were not supported
well in the selected approaches. QoS ontologies were rarely
used. Reliability requirements and means for achieve and
manage reliability were not formally defined, and there-
fore, also the influence of these requirements to architecture
design decision could not be detected. The service archi-
tecture was described only in few approaches in a concep-
tual or abstract level that supported service selection. How-
ever, all the selected approaches succeeded to perform reli-
ability analysis. This was quite confusing, since the main
purpose of the analysis is to verify that the requirements
are being met, and in several cases, the requirements were
missing. All approaches performed dynamic analysis, and
some approaches managed to perform the analysis even
when selecting services. The common problems with many
approaches were that the analysis method lacks tool support,
or the method cannot be used as such but require special
analysis models or familiarity with mathematical models.
As being mathematical and lacking tool support, the relia-
bility analysis methods currently require much special skills
and knowledge from the method user. Also, the effort for
user is great as these mathematical methods may be difficult
to integrate with current tools. However, the model-based
analysis methods could enable the automatic transformation
from service architectural description to analysis models.

Almost, all the selected approaches based their decision
making on dynamic information, which enabled them to ver-
ify the actual reliability of the service. The current reliabil-
ity, i.e., the reliability at the time of selection, was resolved
in several approaches. The approach had different selec-
tion processes for atomic services. Almost, all of them sup-
ported quality adaptation, mainly in a form of replacing the

123

http://www.nagios.com/
http://www.nagios.com/
http://www.keynote.com
http://www.xmethods.com
http://www.rackspace.com

SOCA (2014) 8:129–158 155

failed or unreliable services. Some of the approaches enabled
automatic adaptation. Most of the surveyed approaches suc-
ceeded to reach and manage reliability each in their own
way. The monitoring architecture as such can be understood
as a means for fault tolerance. Almost, all of the selected
approaches included service monitoring function. A list or
pool of candidate services existed in several approaches.
Only one of the selected approaches was SLA based; the
SLA monitoring was included only in this approach. The
user feedback collection mechanism was included only in
two approaches that were aiming at trustworthiness.

All of the approaches would be hard to apply at this
moment. First of all, they denote a big change in the whole
composite service RE and design processes, requiring the
design of a composition and monitoring architecture and reli-
ability analysis methods and models. The lack of tool support
complicates the introduction of the approaches. Finally, the
approaches are very small-scaled and restricted; some stan-
dards may be referred but the implementation is based on
stand-alone solutions. The diversity of different approaches
concerning service selection and monitoring, and quality
adaptation reveals that the concept of how to conduct these
issues is not mature. Therefore, more applied research is
needed to create standard methodology and related tools for
industry use.

In addition to standardization, some kind of new actors
are needed, possible third parties, which facilitate the work
of composite service developers by rationalizing the required
activities. First of all, these third parties could maintain the
public registries of available services from where everybody
could search services. Reliable composite service design
and execution opens other opportunities for third parties;
they could provide monitoring support, information storages
and analysis support. This means that the composite service
developer is not obligated to implement all the issues dis-
cussed in Sect. 3. However, when using third parties, the cost
and trustworthiness issues emerge as an important.

6 Conclusions

Recently, there has been an increasing demand for quality-
based service selection and verification of quality at service
execution time. A large amount of research papers in the lit-
erature exist that considers service selection based on QoS,
dynamic service composition, monitoring of service execu-
tion and dynamic quality adaptation. The purpose of our
work was to detect the current status of the research liter-
ature aiming to reliable composite service engineering. We
first defined and described the different phases and elements
in reliable composite service modeling and execution. These
phases are described from the composite service developer
and provider viewpoints when developing and managing reli-

able composite service. Then, we developed and presented
an evaluation framework with the criteria derived from these
phases. We performed a literature survey to discover the sta-
tus of research fields of the criteria. The papers that covered
the criteria of our framework best were selected for further
examination, and the way of how they consider the criteria
was evaluated. In addition, we also discussed the status of the
work in the literature and other related approaches that are
applicable to certain subset of framework criteria bringing
new viewpoints, thoughts or ideas.

The main purpose of our framework is to assist in reveal-
ing how the criteria are taken into account in the current
approaches in the research literature. Thus, it exposes the
potential and shortcomings of the approaches considering
each of the criteria. The criteria of the framework are pur-
posely high level to be applicable to different context, being
therefore domain and implementation independent. The
composite service developer requires means, methods and
techniques for each phase of engineering reliable services.
The criteria of our framework can be easily refined to more
detailed level, if taken into a certain domain and technological
context. Thus, the framework can also be thought as a domain
and implementation independent “tool” for developers for
evaluating different approaches for their own cases. The
developer can utilize the framework for detecting the poten-
tial of approaches and for creating a collection of methods
and a tool chain supporting the methods (or parts of them), to
be applicable in his/hers domain and technological context.

Our literature survey revealed that none of the approaches
fully cover all the criteria of our framework. We found out that
several promising approaches exist that claim to enable reli-
able, fault-tolerant or self-adaptable composite service, but
they still have some shortcomings. Special attention should
be paid to the early phases of composite service develop-
ment, since those were supported the weakest. There still
exist no agreed customs of how to define reliability and reli-
ability requirements, how to transform these requirements to
design and how to verify whether they are met. Generally,
the approaches surveyed did not agree on what information
is required for service selection, how to achieve this infor-
mation and how the services should be described to attain
reliability. The service monitoring and quality adaptation,
however, were supported quite well, and thus, most of the
approaches succeeded to reach reliability at some level. How-
ever, the diversity of approaches highlights the importance
of standardization in several phases in composite service
design and run-time. Several issues restrict the applicability
of the surveyed approaches in common use at this moment.
The approaches are often isolated and also not compatible
with the existing standards and practices. Most of all, they
lack tool support. The required changes in the composite
service RE and design phases also hinder the applicability
of the approaches in industrial use. None of the surveyed

123

156 SOCA (2014) 8:129–158

approaches could provide any validation or proof about their
maturity. However, the amount of research in the area of reli-
able service engineering reveals that common interest in the
topic is high at the moment. It is obvious that the development
of standard methodology and tools is inevitable to encour-
age industry to change their service engineering methods and
practices for engineering reliable composite services.

References

1. OASIS (2008) Reference architecture for service oriented
architecture 1.0. OASIS SOA reference model. https://www.
oasis-open.org/

2. Erl T (2007) SOA principles of service design. Prentice Hall,
Englewood Cliffs, NJ

3. Lyu MR (1996) Handbook of software reliability engineering.
Mcgraw-Hill, New York, NY

4. Liu F, Tong J, Mao J, Bohn R, Messina J, Badger L, et al. (2011)
NIST cloud computing reference architecture, recommendations
of the National Institute of Standards and Technology, vol 500,
p 292. NIST Special Publication. National Institute of Standards
and Technology, Gaithersburg, MD

5. Barry DK (2003) Web services and service-oriented architectures:
the savvy manager’s guide. Morgan Kaufmann Publishers, San
Francisco, CA

6. Parliamentary Office of Science and Technology (2006) Pervasive
computing (postnote). No. 263. Parliamentary Office of Science
and Technology, London

7. Thomson G, Bianco S, Mokhtar SB, Georgantas N, Issarny V
(2008) Amigo aware services. In: Constructing ambient intelli-
gence, part 7, communications in computer and information sci-
ence, 1, vol 11, pp 385–390

8. Mokhtar SB, Georgantas N, Issarny V (2007) Cocoa:
conversation-based service composition in pervasive computing
environments with QoS support. J Syst Softw 12:1941–1955

9. Dong J, Sun Y, Yang S (2006) OWL-S ontology framework exten-
sion for dynamic web service composition. In: Proceedings of the
eighteenth international conference on software engineering &
knowledge, engineering (SEKE’2006), pp 544–549

10. Chawla H, Xu H, Zhou M (2011) A real-time reliability model
for ontology-based dynamic web service composition. In: 23rd
international conference on software engineering & knowledge
engineering (SEKE’2011), pp 153–158. Miami Beach

11. Zhang L (2008) EIC editorial: introduction to the body of knowl-
edge areas of services computing. IEEE Trans Serv Comput
1(2):62–74

12. Yu HQ, Reiff-Marganiec S (2008) Non-functional property-based
service selection: a survey and classification of approaches. Non-
Funct Prop Serv Lev Agreem Serv Oriented Comput Workshop
411:13–25

13. Papazoglou M, Traverso P, Dustdar S, Leymann F (2008) Service-
oriented computing: a research roadmap. Int J Coop Inf Syst
17(2):223–255

14. Sathya M, Swarnamugi M, Dhavachelvan P, Sureshkumar G
(2011) Evaluation of QoS based web- service selection techniques
for service composition. Int J Softw Eng (IJSE) 1(5):73–90

15. Rao J, Su X (2004) A survey of automated web service com-
position methods. First international workshop on semantic web
services and web process composition. SWSWPC, San Diego,
California, pp 43–54

16. Dustdar S, Schreiner W (2005) A survey on web services compo-
sition. Int J Web Grid Serv 1(1):1–20

17. Alamri A, Eid M, El Saddik A (2006) Classification of the state-
of-the-art dynamic web services composition techniques. Int J
Web Grid Serv 2(2):148–166

18. Urbieta A, Barrutieta G, Parra J, Uribarren A (2008) A survey of
dynamic service composition approaches for ambient systems. In:
Proceedings of the 2008 Ambi-Sys workshop on software organ-
isation and MonIToring of ambient systems (SOMITAS ’08). (1),
8 p

19. Stavropoulos TG, Vrakas D, Vlahavas I (2011) A survey of service
composition in ambient intelligence environments. Artif Intel Rev,
pp. 1–24

20. Ibrahim N, Le Mouël F (2009) A survey on service composition
middleware in pervasive environments. Int J Comput Sci Issues
(IJCSI) 1:1–12

21. Satyanarayanan M (2001) Pervasive computing: vision and chal-
lenges. IEEE Pers Commun 8(4):10–17

22. Weiser M (1991) The computer for the 21st century. Sci Am
256(3):94–104

23. ISO/IEC (2008) ISO/IEC 29341–1:2008–UPnP device
architecture–part 1: UPnP device architecture version 1.0

24. (2003) OSGi service platform–release 3. IOS Press, Amsterdam
25. ISO (2008) ISO 9001:2008 quality management systems–

requirements. International Organization for Standardization.
http://www.iso.org/

26. Papazoglou M, Traverso P, Dustdar S, Leymann F (2007) Service-
oriented computing: state of the art and research challenges. IEEE
Comput 40(11):38–45

27. Liu L, Yu ESK, Mei H (2009) Guest editorial: special section on
requirements engineering for services - challenges and practices.
IEEE Trans Serv Comput 2(4):318–319

28. Bucchiarone A, Cappiello C, Nitto ED, Kazhamiakin R, Mazza
V, Pistore M (2009) Design for adaptation of service-based
applications: main issues and requirements. In: Proceedings of
ICSOC/ServiceWave workshops, pp 467–476

29. OMG (2003) Unified modeling language (UML) 2.0 specification.
Object Management Group. http://www.omg.org/spec/ML/2.0/

30. OMG (2003) UML profile for schedulability, performance, and
time specification. Object Management Group. http://www.omg.
org/spec/SPTP/

31. Aagedal JO, de Miguel MA, Fafournoux E, Lund MS, Stolen
K (2004) UML profile for modeling quality of service and fault
tolerance characteristics and mechanisms, technical report 2004–
06-01. Object Management Group

32. Reussner RH, Schmidt HW, Poernomo IH (2003) Reliability pre-
diction for component-based software architectures. J Syst Softw
66(3):241–252

33. Grassi V (2005) Architecture-based dependability prediction for
service-oriented computing. In: Architecting dependable systems
III, p 299. Springer, Berlin

34. Dai YS, Xie M, Poh KL, Liu GQ (2003) A study of service reli-
ability and availability for distributed systems. Reliab Eng Syst
Saf 79(1):103–112

35. Goseva-Popstojanova K, Mathur AP, Trivedi KS (2001) Compar-
ison of architecture-based software reliability models. In: Pro-
ceedings of the 12th IEEE international symposium on software
reliability engineering (ISSRE 2001), pp 22–31

36. Immonen A, Niemelä E (2008) Survey of reliability and availabil-
ity prediction methods from the viewpoint of software architec-
ture. Softw Syst Model 7(1):49–65

37. Lee K, Jeon J, Lee W, Jeong S-H (2003) QoS for web services:
requirements and possible approaches. W3C notes

38. Zhou T, Zheng X, Song WW, Du X, Chen D (2008) Policy-based
web service selection in context sensitive environment. In: IEEE
congress on services 2008–part I, pp 255–260

39. Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng QZ (2003)
Quality driven web services composition. Proceedings of the 12th

123

https://www.oasis-open.org/
https://www.oasis-open.org/
http://www.iso.org/
http://www.omg.org/spec/ML/2.0/
http://www.omg.org/spec/SPTP/
http://www.omg.org/spec/SPTP/

SOCA (2014) 8:129–158 157

international conference on World Wide Web (WWW). Budapest,
Hungary, pp 411–421

40. Zeng L, Benatallah B, Ngu A, Dumas M, Kalagnanam J, Chang
H (2004) QoS-aware middleware for web services composition.
IEEE Trans Softw Eng 30(5):311–327

41. Maximilien EM, Singh M (2004) A framework and ontology for
dynamic web services selection. IEEE Internet Comput 8(5):84–
93

42. Mani A, Nagarajan A (2002) Understanding quality of service for
web services. IBM white paper

43. Garcia D, Toledo M (2006) Semantics-enriched QoS policies for
web service interactions. WebMedia 06:35–44

44. Liu Y, Ngu AHH, Zeng L (2004) QoS computation and policing
in dynamic web service selection. In: Proceedings of the 13th
international conference on World Wide Web (WWW), pp 66–73

45. Amoroso E, Watson J, Marietta M, Weiss J (1994) A process-
oriented methodology for assessing and improving software trust-
worthiness. In: Proceedings of the 2nd ACM conference on com-
puter and communications, security, pp 39–50

46. Jøsang A, Ismail R, Boyd C (2007) A survey of trust and repu-
tation systems for online service provision. Decis Support Syst
43(2):618–644

47. Horn P (2001) Autonomic computing: IBM’s perspective on the
state of information technology. Technical report. IBM Corpora-
tion, NY, USA

48. Avizienis A, Laprie J, Randell B, Landwehr C (2004) Basic con-
cepts and taxonomy of dependable and secure computing. IEEE
Trans Dependable Secur Comput 1(1):11–33

49. Salehie M, Tahvildari L (2009) Self-adaptive software: landscape
and research challenges. ACM Trans Auton Adapt Syst 4(2):
1–42

50. Yau SS, An HG (2011) Software engineering meets services and
cloud computing. Computer 44(10):47–53

51. OASIS (2005) Web services distributed management (WSDM).
http://www.oasis-open.org/committees/wsdm

52. Delgado N, Gates AQ, Roach S (2004) A taxonomy and catalog of
runtime software-fault monitoring tools. IEEE Trans Softw Eng
30(12):859–872

53. Wang L, Bai X, Zhou L, Chen Y (2009) A hierarchical reliability
model of service-based software system. In: 33rd annual IEEE
international computer software and applications conference, vol
1, pp 199–208

54. Keller A, Ludwig H (2003) The WSLA framework: specifying
and monitoring service level agreements for web services. J Netw
Syst Manag 11(1):57–81

55. Cardellini V, Casalicchio E, Grassi V, Lo Presti F, Mirandola R
(2009) QoS-driven runtime adaptation of service oriented archi-
tectures. ESEC/SIGSOFT FSE, pp 131–140

56. Xu Z, Martin P, Powley W, Zulkernine F (2007) Reputation-
enhanced QoS-based web services discovery. In: IEEE interna-
tional conference on web services (ICWS), pp 249–256

57. Maximilien EM, Singh MP (2004) Toward autonomic web ser-
vices trust and selection. In: Proceedings of the 2nd international
conference on service oriented, computing, pp 212–221

58. Wang Y, Vassileva J (2007) Toward trust and reputation based web
service selection: a survey. Trans Syst Sci Appl 3(2):118–132

59. Manikrao US, Prabhakar TV (2005) Dynamic selection of web
services with recommendation system. In: International confer-
ence on next generation web services practices, p 117. Seoul,
Korea

60. Vu L, Hauswirth M, Aberer K (2005) QoS-based service selection
and ranking with trust and reputation management. In: Meersman
R, Tari Z (eds) CoopIS/DOA/ODBASE 2005 LNCS, vol 3761.
Springer, Heidelberg, pp 466–483

61. Tsai WT, Jin Z, Wang P, Wu B (2007) Requirement engineering in
service-oriented system engineering. In: Proceedings of the IEEE

international conference on e-business engineering (ICEBE ’07),
pp 661–668

62. Roman M, Campbell RH (2002) A user-centric, resource-aware,
context-sensitive, multi-device application framework for ubiqui-
tous computing environments. No. UIUCDCSR-2002-2282

63. Maamar Z, Mostefaoui SK, Yahyaoui H (2005) Toward an agent-
based and context-oriented approach for web services composi-
tion. IEEE Trans Knowl Data Eng 17(5):686–697

64. Tari K, Amirat Y, Chibani A, Yachir A, Mellouk A (2010) Context-
aware dynamic service composition in ubiquitous environment.
In: IEEE international conference on communications (ICC),
pp 1–6. Cape Town

65. Cortellessa V, Grassi V (2007) Reliability modeling and analysis
of service-oriented architectures. In: Test and analysis of web
services, pp 339–362

66. Hwang S, Lim E, Lee C, Chen C (2008) Dynamic web service
selection for reliable web service composition. IEEE Trans Serv
Comput 1(2):104–116

67. Ma J, Chen H (2008) A reliability evaluation framework on com-
posite web service. In: IEEE international symposium on service-
oriented system, engineering, pp 123–128

68. Wang X, Li B, Liao L, Xie C (2011) Ontology-based reliabil-
ity evaluation for web service. In: IEEE 35th annual computer
software and applications conference (COMPSAC), pp 348–349

69. Zhou J, Ovaska E, Evesti A, Immonen A (2011) OntoArch
reliability-aware software architecture design and experience.
In: Dogru A, Bicer V (eds) Modern software engineering con-
cepts and practices: advanced approaches. IGI Global, USA, pp
48–74

70. Wang X, Vitvar T, Kerrigan M, Toma I (2006) A QoS-aware selec-
tion model for semantic web services. Service-oriented computing
ICSOC 2006:390–401

71. Zhou C, Chia L, Lee B (2004) DAML-QoS ontology for web
services. In: Proceedings of the IEEE international conference on
web services, pp. 472–479

72. Chaari S, Badr Y, Biennier F (2008) Enhancing web service selec-
tion by QoS-based ontology and WS-policy. In: 23rd ACM sym-
posium on applied computing (SAC 2008). Ceará, pp 2426–2431

73. Galizia S, Gugliotta A, Domingue J (2007) A trust based method-
ology for web service selection. In: Proceedings of international
conference on semantic, computing, pp 193–200

74. Dobson G, Lock R, Sommerville I (2005) QoSOnt: a QoS ontol-
ogy for service-centric systems. In: EUROMICRO-SEAA, pp 80–
87

75. Yu C, Junyi S, Yang Y, Zhizhong L (2009) A QoS ontology for
semantic service discovery. In: International conference on net-
working and digital society, pp 108–111

76. Togias K, Goumopoulos C, Kameas A (2010) Ontology-based
representation of UPnP devices and services for dynamic con-
textaware ubiquitous computing applications. In: Third interna-
tional conference on communication theory, reliability, and qual-
ity of service, pp 220–225

77. Bandara A, Payne T, de Roure D, Clemo G (2004) An ontological
framework for semantic description of devices. In: International
semantic web conference (ISWC). Hiroshima, 2 p

78. W3C (2004) Composite capability/preference profiles (CC/PP):
structure and vocabularies 1.0. http://www.w3.org/TR/2004/
REC-CCPP-struct-vocab-20040115/

79. Foundation for Intelligent Physical Agents (2002) FIPA device
ontology. Foundation for Intelligent Physical Agents, Geneva,
Switzerland. http://www.fipa.org/

80. Driscoll D, Mensch A (2009) Devices profile for web services
(DPWS).OASIS standard. https://www.oasis-open.org/standards

81. Lichtenstein S, Nguyen L, Hunter A (2005) Issues in IT
service-oriented requirements engineering. Australas J Inf Syst
13(1):176–191

123

http://www.oasis-open.org/committees/wsdm
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.fipa.org/
https://www.oasis-open.org/standards

158 SOCA (2014) 8:129–158

82. Zhang Z (2007) Effective requirements development–a compari-
son of requirements elicitation techniques. Software quality man-
agement XV: software quality in the knowledge society.British
Computer Society, pp 225–240

83. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a
roadmap. In: Future of software engineering, ICSE ’00, pp 37–46

84. Maiden N, Rugg G (1996) ACRE: selecting methods for require-
ments acquisition. Softw Eng J 11(3):183–192

85. Chung L, Gross D, Yu E (1999), Architectural design to meet
stakeholders requirements. In: Proceedings of the TC2 first work-
ing IFIP conference on software, architecture (WICSA1), pp 545–
564

86. Chung L, Nixon B, Yu E, Mylopoulos J (2000) Non-functional
requirements in software engineering. Kluwer Academic Publish-
ers, Boston, Dordrecht

87. Yrjönen A, Merilinna J (2009) Extending the NFR framework
with measurable non-functional requirements. In: Proceedings of
the 2nd international workshop on non-functional system proper-
ties in domain specific modeling languages, NFPinDSML2009.
Denver, Colorado

88. Sindre G, Opdahl AL (2000) Eliciting security requirements by
misuse cases. In: Proceedings of the 37th international conference
on technology of object-oriented languages and systems, TOOLS-
Pacific 2000, pp. 120–131

89. Bernardi S, Merseguer J, Lutz RR (2010) Reliability and avail-
ability requirements engineering within the unified process using
a dependability analysis and modeling profile. In: European
dependable computing conference, pp 95–104

90. IEEE (1998) IEEE std 830–1998, IEEE recommended practice
for software requirements specifications. IEEE, New York

91. Xiang J, Liu L, Qiao W, Yang J (2007) SREM: a service require-
ments elicitation mechanism based on ontology. In: 31st annual
international computer software and applications conference,
COMPSAC 2007, pp 196–203

92. Liu L, Chi C, Jin Z, Yu E (2006) Strategic capability modelling
of services. In: The 2nd workshop of service-oriented computing
consequences and experience of requirements (SOCCER 2006).
Paris

93. Kaiya H, Saeki M (2005) Ontology based requirements analy-
sis: lightweight semantic processing approach. In: Fifth interna-
tional conference on quality software (QSIC’05), pp 223–230.
Melbourne, Australia

94. Rodrigues GN, Roberts G, Emmerich W, Skene J (2003) Reliabil-
ity support for the model driven architecture. In: Proceedings of
the 2nd IEEE-ACM-SIGSaFT ICSE workshop on software archi-
tectures for dependable systems (WADS”03), pp 79–98

95. Miller J, Mukerji J (2003) MDA guide version 1.0.1. Object Man-
agement Group. http://www.omg.org/mda/

96. Cortellessa V, Pompei A (2004) Towards a UML profile for
QoS: a contribution in the reliability domain. in: Proceedings of
the fourth international workshop on software and performance,
pp 197–206

97. Ovaska E, Evesti A, Henttonen K, Palviainen M, Aho P (2010)
Knowledge based quality-driven architecture design and evalua-
tion. Inf Softw Technol 52(6):577–601

98. Gouscos D, Kalikakis M, Georgiadis P (2003) An approach to
modeling web service QoS and provision price. In: Fourth interna-
tional conference on web information systems engineering work-
shops (WISEW’03), pp 1–10. Italy, Rome

99. Fei L, Fangchun Y, Kai S, Sen S (2008) A policy-driven distributed
framework for monitoring quality of web services. IEEE interna-
tional conference on web services (ICWS 2008), pp 708–715.
Beijing, China

100. Zeng L, Lei H, Chang H (2007) Monitoring the QoS for web
services. In: Service-oriented computing–ICSOC 2007, pp 132–
144

101. Yu HQ, Reiff-Marganiec S (2008) A method for automated web
service selection. In: IEEE congress on services–part I, pp 513–
520

102. Lee WLC, Ko S, Lee S, Helal A (2007) Context-aware ser-
vice composition for mobile network environments. In: 4th inter-
national conference on ubiquitous intelligence and computing
(UIC2007), pp 941–952

103. Iwaza K, Durand J, Rutt T, Peel M, Kunisetty S, Bunting D (2004)
Web services reliable messaging WS-reliability 1.1. OASIS stan-
dard. https://www.oasis-open.org/standards

104. Fremantle P, Patil S (2009) Web services reliable messag-
ing WS-ReliableMessaging 1.2. OASIS standard. https://www.
oasis-open.org/standards

105. Kokash N (2006) A service selection model to improve composi-
tion reliability. In: International workshop on artificial intelligence
for service composition (AISC), pp 9–14. Riva del Garda, Italy

106. Zheng Z, Lyu MR (2009) A runtime dependability evaluation
framework for fault tolerant web services. In: Workshop on proac-
tive failure avoidance, recovery and maintenance (PFARM 2009)
at the 39th annual IEEE/IFIP international conference on depend-
able systems and networks (DSN), pp A9–A14. Estoril, Portugal

107. Hamadi R, Benatallah B, Medjahed B (2008) Self-adapting
recovery nets for policy-driven exception handling in business
processes. Distrib Parallel Databases 23(1):1–44

108. Friedrich G, Fugini M, Mussi E, Pernici B, Tagni G (2010) Excep-
tion handling for repair in service-based processes. IEEE Trans
Softw Eng 36(2):198–215

109. Kaefer G, Schmid R, Prochart G, Weiss R (2006) Framework for
dynamic resource-constrained service composition for mobile ad
hoc networks. In: UBICOMP, workshop on system support for
ubiquitous computing

110. Truong HL, Samborski R, Fahringer T (2006) Towards a frame-
work for monitoring and analyzing QoS metrics of grid services.
In: 2nd IEEE international conference on e-science and grid com-
puting, p 65. Amsterdam, Netherlands

111. Zhang W, Hansen KM (2008) SemanticWeb based self-
management for a pervasive service middleware. In: Second IEEE
international conference on self-adaptive and self-organizing sys-
tems, SASO ’08, pp 245–254

112. Janicke H, Solanki M (2007) Policy-driven service discovery. In:
Proceedings of the 2nd european young researchers workshop on
service oriented, computing, pp 52–62

113. Cardellini v, Casalicchio E, Grassi V, Lo Presti F (2010) Adaptive
management of composite services under percentile-based ser-
vice level agreements. In: 8th international conference on service
oriented computing (ICSOC, 2010), pp 381–395. California, San
Francisco

114. Li J, Ma D, Han J, Long X (2009) Toward trustworthy seman-
tic web service discovery and selection. In: Proceedings of the
6th international conference on autonomic and trusted comput-
ing, ATC 2009, pp 209–220. Brisbane

115. Thangavel R, Palanisamy B (2009) Efficient approach towards an
agent-based dynamic web service discovery framework with QoS
support. In: International symposium on computing, communica-
tion, and control (ISCCC), pp 74–78

116. Ran S (2003) A model for web services discovery with QoS.
SIGecom Exch 4(1):1–10

117. Fugua NB (2003) The applicability of markov analysis methods to
reliability, maintainability, and safety. Reliab Anal Cent START
Sheet 10:8

118. ISO/IEC (2001) ISO/IEC 9126–1 international standard: software
engineering–product quality. Part 1: quality model. International
Organization for Standardization. http://www.iso.org/

123

http://www.omg.org/mda/
https://www.oasis-open.org/standards
https://www.oasis-open.org/standards
https://www.oasis-open.org/standards
http://www.iso.org/

	A survey of methods and approaches for reliable dynamic service compositions
	Abstract
	1 Introduction
	2 Overview of reliable composite service design and execution
	3 Evaluation framework
	3.1 Context of the approaches
	3.2 Reliability requirements and service architecture design
	3.2.1 Reliability ontology
	3.2.2 Reliability requirements and means for achieve and manage reliability
	3.2.3 Transforming reliability requirements into service architecture design
	3.2.4 Composite service architecture description

	3.3 Reliability analysis
	3.3.1 Analysis level
	3.3.2 Data source for the analysis
	3.3.3 Analysis method
	3.3.4 Analysis output

	3.4 Decision making logic
	3.4.1 Type of data for decision making
	3.4.2 Service selection criteria
	3.4.3 Service selection process
	3.4.4 Quality adaptation

	3.5 Composition and monitoring architecture
	3.5.1 Dynamic list of candidate services
	3.5.2 Run-time service monitoring
	3.5.3 SLA monitoring
	3.5.4 Feedback collection system

	3.6 Applicability of the approach

	4 The results of the survey
	4.1 Context of the approaches
	4.1.1 Introduction of the selected approaches
	4.1.2 Comparison of the context of approaches

	4.2 Reliability requirements and service architecture design
	4.2.1 Evaluation results
	4.2.2 Discussion about the related literature

	4.3 Reliability analysis
	4.3.1 Evaluation results
	4.3.2 Discussion about the related literature

	4.4 Decision making logic
	4.4.1 Evaluation results
	4.4.2 Discussion about the related literature

	4.5 Composition and monitoring architecture
	4.5.1 Evaluation results
	4.5.2 Discussion about the related literature

	4.6 Applicability of the approach

	5 Discussion
	6 Conclusions
	References

