SOCA (2007) 1:185-196
DOI 10.1007/s11761-007-0012-1

ORIGINAL PAPER

Multi-agent Pareto appointment exchanging in hospital

patient scheduling

Ivan Vermeulen - Sander Bohte -

Han La Poutré

Koye Somefun -

Received: 6 May 2007 / Accepted: 13 July 2007 / Published online: 16 August 2007

© Springer-Verlag London Limited 2007

Abstract We present a dynamic and distributed approach
to the hospital patient scheduling problem, in which patients
can have multiple appointments that have to be scheduled
to different resources. To efficiently solve this problem we
develop a multi-agent Pareto-improvement appointment
exchanging algorithm: MPAEX. It respects the decentral-
ization of scheduling authorities and continuously improves
patient schedules in response to the dynamic environment.
We present models of the hospital patient scheduling problem
in terms of the health care cycle where a doctor repeatedly
orders sets of activities to diagnose and/or treat a patient.
We introduce the Theil index to the health care domain to
characterize different hospital patient scheduling problems
in terms of the degree of relative workload inequality between
required resources. In experiments that simulate a broad
range of hospital patient scheduling problems, we extensively
compare the performance of MPAEX to a set of scheduling
benchmarks. The distributed and dynamic MPAEX performs
almost as good as the best centralized and static scheduling
heuristic, and is robust for variations in the model settings.

Keywords
systems

Health care - Patient scheduling - Multi-agent

A preliminary version of this work has appeared as [1].

I. Vermeulen (X)) - S. Bohte - K. Somefun - H. La Poutré
CWI, Centre for Mathematics and Computer Science,
Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands
e-mail: vermeule @cwi.nl

S. Bohte
e-mail: sbohte @cwi.nl

K. Somefun
e-mail: koye@cwi.nl

H. La Poutré
e-mail: hlp@cwi.nl

1 Introduction

The first thing that one encounters when seeking medical
assistance in a hospital is a schedule: the scheduled medical
professionals to consult, time-slots for possible diagnostic
or therapeutic machines, and availability of simple resources
like examination rooms. Depending on the available capacity,
these schedules may be more or less congested. In particu-
lar, in countries like The Netherlands and Greece, demand
regularly exceeds capacity and substantial waiting lists exist
for many medical procedures. However, even in these situ-
ations, it is not the case that resources are always used at
high efficiency. Medical professionals report many sched-
ule inefficiencies. Effective scheduling algorithms should
decrease waiting-lists significantly, while increasing hospital
efficiency [2,3].

Traditional industrial scheduling techniques are studied
in the field of operations research (OR). OR techniques are
very effective for solving well-defined centralized optimiza-
tion problems, where the algorithm can determine the optimal
schedule for all parties involved. Scheduling solutions based
on OR have been implemented in specific targeted health-
care problems, like staff planning (for an overview, see [4]).
However, OR techniques have so far found little favor in
hospital patient scheduling, in great part due to the inherent
distribution of authority in hospitals [5]. We will discuss the
relation of our work with existing OR techniques in more
detail in Sect. 6.

In hospital patient scheduling, the scheduling problem is
dynamic and in flux: operations take more or less time than
anticipated, crucial staff may not be available, equipment
breaks down, and new urgent patients arrive. Not unimpor-
tantly, hospitals are also organized around different auton-
omous departments (wards, ancillary units) each with their
own specialty, and each department essentially has authority

@ Springer

186

SOCA (2007) 1:185-196

over their own schedule. Thus, hospital scheduling has strong
decentralized characteristics.

The dynamic nature of hospital patient scheduling,
together with the decentralization of scheduling authority,
suggests that a more suitable approach to hospital patient
scheduling may be one that fits the problem domain better: a
distributed multi-agent system [6]. Here, we take a first step
toward developing a multi-agent hospital agent scheduling
solution that respects the current distribution of scheduling
authority, and that is capable of continuously adjusting the
different schedules in response to the dynamic environment.

The general idea of an agent system [7] is that each party—
e.g., doctors, patients, resources—is represented by a soft-
ware entity—the agent—that acts autonomously on behalf
of its owner. Each agent “knows” the preferences and con-
straints of its owner. The objective of a multi-agent schedul-
ing system is to design the agents and the interaction rules
such that together, the agents can arrive at effective
schedules.

Related work has studied parts of this multi-agent sched-
uling problem: Decker and Li [8] consider the problem of
resource conflicts in patient scheduling. They design a spe-
cific interaction mechanism for resource-representing soft-
ware agents to prevent such conflicts. The implementation
of such a mechanism is shown to achieve substantial produc-
tivity gains.

Some distributed constraint solving approaches are also
specifically applied to health care scheduling. In [9], resource
and patients constraints and preferences (soft constraints) are
formally represented and agents use off-the-shelf constraints
solvers locally, but a central solver to coordinate constraints
is also needed. Additionally, this is a static approach as it only
solves an initial scheduling problem and then appointments
are assumed to be fixed after that.

Given the distributed and decentralized nature of hospi-
tal patient scheduling, the use of a market mechanism for
scheduling seems a more natural fit: markets can efficiently
distribute scarce resources, they can facilitate dynamic envi-
ronments, and only price-quotes need to be exchanged
between participants, rather than complex constraints and
preferences. In [10] a first step is taken in developing a frame-
work for using virtual markets to solve distributed scheduling
problems. Different types of auction mechanisms (and addi-
tionally bidding strategies [11]) are analyzed. The results
show that it is hard to find a general solution. Alternatively
in [12] a contracting model for agent-based scheduling is
discussed. The search space in this case is very large and a
search bias must be set accurately.

In [13] amulti-agent approach is suggested to solve sched-
uling in hospitals. The authors distinguish multiple planning
steps, and consider negotiation between agents for a schedule
improvement. It provides theoretical insight, but does not dis-
cuss any implementation. A further developed market-based

@ Springer

approach to hospital patient scheduling is taken by Paulussen
et al. [5]. They introduce software agents that represent the
interests of the patients, and resources where medical actions
take place are represented by resource agents. To distribute
the resources amongst these patient agents, Paulussen et al.
use a market mechanism where patient agents communicate
their (private) utility for certain time-slots on a resource via
a price mechanism.

Apart from scalability concerns of the system in [5], an
additional problem is the use of a utility-function for patient
well being. Clearly, when optimizing a schedule the question
is what metric to optimize against in a health-care setting, and
patient well being is an obvious choice [5]. Quantifying rela-
tive patient well being, however, is notoriously hard and any
choice will be controversial, with both doctors and patients.

Here, we develop a scheduling method that offers sub-
stantial gains without having to consider this difficult issue.
We observe that often patients have multiple appointments
(e.g. [14]). For instance, a patient may need to get a CT
scan and an endoscopy, and then consult with a doctor to
discuss the results. We note that the time of the last appoint-
ment effectively determines the patient’s “waiting-time” and
a scheduling algorithm can potentially move his/her other
appointments without any negative effect on the waiting time
for the patient.

Guaranteeing “not-worse” for schedule changes means
that patients actually have an incentive to cooperate. In any
practical implementation of a (re)scheduler, patient cooper-
ation will be essential to make sure that patients are actually
willing and able to come to the hospital at the new appoint-
ment time. Being able to guarantee “not-worse” schedule
changes thus gives us an opportunity to improve patient wait-
ing times while avoiding the difficult comparison of which
patient’s well-being benefits how much from an improvement
in waiting time.

Here, we present a multi-agent scheduling method that
exploits this opportunity by designing agents that exchange
appointment times such that no patient is worse off than
before. In economics such a “nobody-worse” improvement is
called a Pareto improvement [15]. Thus, we present a Multi-
agent Pareto Appointment EXchanging algorithm (MPAEX).

Agents have been proved to be an effective approach to
resource allocation, see e.g. [16]. In [17] the authors discuss
how socially optimal allocation of resources can be reached.
For the scenario similar to MPAEX, where only coopera-
tively rational deals without side payments are allowed, the
authors proof that a sequence of Pareto optimal deals will
lead to the Pareto optimal outcome. However, deals of any
structural complexity may be necessary to guarantee an opti-
mal outcome.

In the multi-agent system that we develop, patients are
assigned an initial schedule for their required treatments.
Then, agents acting on behalf of individual patients attempt

SOCA (2007) 1:185-196

187

to exchange the time-slots of the initial appointments with
better appointments occupied by other patients. The other
patient’s agent accepts a proposed exchange of appointments
if the resulting schedule is not worse for the patient.

In simulations of (many) hospital patient scheduling prob-
lems, we show that when we let patient agents try to improve
their patient’s schedule, the agents collectively improve the
overall patient waiting time.

Based on practical cases, we introduce our hospital patient
scheduling model. It represents autonomous departments and
resources, as well as individual patients and their activities.
We present a semi-dynamic hospital patient scheduling set-
ting to gain fundamental insights and allow comparison with
more standard centralized static techniques.

A robust simulation of the distribution of workloads over
the various resources in a hospital is a crucial aspect in eval-
uating scheduling solutions for hospital patient scheduling.
For example, the patient scheduling problem may be funda-
mentally different if either an MRI scan would be a very busy
resource, relative to the other resources, or all resources are
equally busy. Different hospitals will have different work-
loads, depending on patient population and the available mix
of resources and doctors/staff. To assess accurately how use-
ful different scheduling solutions are, we have to be able to
consider a large distribution of different workloads.

As a contribution of this paper, we present a measure for
characterizing different workloads: we introduce the Theil
index [18] within the hospital scheduling setting. In eco-
nomics, the Theil index is a common measure of inequal-
ity motivated by the notion of entropy. The inequality in a
workload can be interpreted as the degree to which bottle-
necks are present in the available resources. By conducting
experiments for a large range of Theil indices, we obtain a
representative sample of the problem space. The character-
ization of different workloads by their Theil index allows us
to compare MPAEX methodically with other (more central-
ized) scheduling methods.

For these hospital patient-scheduling simulations, we find
that for initial schedules generated by a pure first-come-first-
served scheduler, exchanging appointment times results in
significant improvements for the final schedule after com-
prehensive appointment exchanging. For initial schedules
with more random initial scheduling (first-come-randomly-
served), we obtain even better solutions for the final schedule.
This random initial scheduling is introduced to better capture
the fact that in current practice, the initial schedule is created
in part based on (relatively stochastic) patient and resource
availability.

We extensively compare the performance of the decen-
tralized MPAEX approach to a set of centralized heuristics
and find that MPAEX performs close to centralized schedul-
ing heuristics. Contrary to these centralized techniques, our
approach respects the distributive nature of the scheduling

authority, takes patient preferences into account, and is well
suited for the dynamic nature of hospital scheduling. Addi-
tionally, unlike centralized OR approaches and centralized
heuristics, MPAEX is suitable for dynamic environments
where patients leave and arrive, and where resources are
available or off-line.

Finally, the approach explored with MPAEX also provides
us with arobust basis: for future research, we want to consider
more complex appointment rescheduling environments, the
possible inclusion of (artificial) money to enhance exchange
possibilities, and more dynamic scheduling settings.

2 Problem
2.1 Hospital patient scheduling

Hospitals are increasingly working with databases that record
all scheduled activities. The schedules are typically planned
within rosters that are predefined by departments or individ-
ual doctors, e.g., a doctor sets specific hours for consulting
patients, and consults with patients can only be scheduled in
these hours. Authorizations regarding who can access and/or
modify the schedules (and rosters) are distributed across
the organization depending on local preferences and culture.
Most departments are reluctant to allow other departments
to make appointments in empty spots in their schedule.

Not surprisingly, many of such electronic scheduling
systems are just that: electronic versions of appointment note-
books. Intelligent (re)planning is mostly done by depart-
ments, often by hand, and schedule optimization across
departments is very hard, as each change needs coordina-
tion, usually by phone. Traditional OR techniques are not
equipped to deal with coordination between departments with
local information, authority and preferences, and fail in such
situations. Agent systems are designed for coordination
between autonomous parts with local information.

This current practice of decentralized schedule authoriza-
tions in particular leads to complications when a number of
appointments across different departments need to be sched-
uled for a patient. It may very well be that simply switching
a scheduled patient in one department to a different time
may free up the combination of resources that is needed for
another patient. The “switched patient” may not even have
a preference for one time or another, but this “free” optimi-
zation is currently very hard to achieve. In practice, patients
that need resources across departments are not effectively
scheduled.

2.2 The health care cycle

To study the hospital patient scheduling problem in detail,
we consider the current (typical) health care routine.

@ Springer

188

SOCA (2007) 1:185-196

Consult
(create

partial plan)

Execute
partial plan

Fig. 1 Consult-diagnostic(s)-consult cycle

Any patient walking into a doctor’s office becomes part
of the “health care” cycle: if a medical problem is suspected,
a number of actions will be scheduled to diagnose the exact
nature of the problem and/or a treatment plan is scheduled.
Central in the health care cycle is the doctor treating the
patient: the doctor first requests diagnostics or treatments,
and upon completion, the results and patient return to the
doctor. In the consult, the doctor then decides what activities
must take place next.

We call the set of activities ordered a partial plan, see
Fig. 1. A partial plan can consists of a number of differ-
ent activities, possibly involving different resources and with
constraints between them. Scheduling patient activities is a
complex task: diagnostic tests may require the cooperation of
anumber of people and resources in the hospital, so appoint-
ments have to be scheduled at times when all these resources
are available (and the patient of course).

2.3 Patient treatment plans

The scheduling complexities for typical patient treatment
plans that need resources across departments can be illus-
trated by the workflow in two cases that are typically hard
to schedule efficiently. These cases are taken from the proto-
cols of the Oncology department of the Academic Medical
Center in Amsterdam. The consult-diagnostics-consult cycle
and the partial plans comprising of multiple diagnostics are
clearly discernable in both cases.

Diagnosis gallbladder obstruction In Fig. 2, the treatment
plan for a patient with an obstructed gallbladder pathway is
shown (taken from the protocols for gallbladder obstruction
at the Academic Medical Center, Amsterdam). It consists
of a series of successive partial plans where at each point
the doctor decides what to do next, based on the diagnostic
results. A patient with gallbladder obstruction is first diag-
nosed with an echo + Doppler for the veins to diagnose for
gallstones. If this is the case, treatment can start. Otherwise,
to consider the possibility of a tumor, one of three diagnos-
tic plans is selected: either an ERCP + Stent, a PTC/PTD
test, or a set of four diagnostics (an endo-echo, a CT-scan, a

@ Springer

start diagnostics

v

2 tests:
Doppler, Echo

consult/decision

2 tests:
ERCP, Stent

4 tests:

Endo-Echo,
CT-scan, PTC/PTD

MRI, MRCP /

1 test:
PTC/PTD

2 tests:
ERCP, Stent

start treatment

Fig. 2 Diagnostic strategy for gallbladder obstruction

MRI, and an MRCP) is ordered. From this point again, the
patient goes through progressive doctor-diagnosis cycles to
determine how to operate.

Diagnosis breast cancer Any persisting breast abnormality
requires further diagnostics: the best evaluation of (palpable)
mammolesions is through three independent examinations
by a surgeon, a radiologist, and a (cyto)pathologist (taken
from the protocols for breast cancer at the Academic Med-
ical Center, Amsterdam). Each specialist gives an indepen-
dent assessment that are then equally weighted. If this triple
diagnostic suspects a malignant tumor, further (definitive)
diagnostics are scheduled, such as a histological or cytolog-
ical needle biopsy. Upon a definitive positive diagnosis, it
is determined how to operate, where further diagnostic tests
may be considered depending on the severity of the tumor.

2.4 Model

We abstract hospitals to a set of resources (including staff),
constraints, staff preferences, budget considerations. A hos-
pital is divided into different departments. These depart-
ments have a level of autonomy in their actions, and between
them, they have common as well as self-interested goals.
Departments want to work as efficiently as possible, and they
want to take their staff’s preferences into account. We model
resources on the level of the combined requirements for a
single schedule, e.g., an entire warden, or the MRI-schedule
including the associated staff etc. From the medical cases

SOCA (2007) 1:185-196

189

described in the previous subsection, we can distill a number
of stylized facts.

Patient partial plan With respect to the patient plan, we
model a consult as consisting of a limited number of subtasks
or activities. These activities can usually be performed in any
order, in our model there are no precedence constraints (as in
the cases described in Sect. 2.3). Once all activities have been
performed, the responsible doctor determines whether addi-
tional activities are necessary. For our approach, it is irrele-
vant whether activities are new or additional; therefore, we
will not make the distinction. Henceforth we will call a num-
ber of activities issued at the same time for a single patient by
adoctor a partial plan. Based on the result of this partial plan
the doctor may issue more activities in the future. We label
this new set of activities as a new partial plan. Since most
activities within a partial plan are performed on a patient, we
assume not more than one activity can be performed at the
same time on one patient, hence the different activities in the
partial plan have to be scheduled for different times.

Duration of activities Different activities make use of dif-
ferent resources. Consequently, the standard time, which is
reserved for such an activity, may differ from one resource
to the other. For example, the time necessary for taking an
X-ray or performing an ultrasound examination may differ.
We assume that all activities on a resource require the same
type of appointment, and therefore take the same amount of
time. Between resources, the activity time varies.

Objective The hospital wants to minimize the completion
times of all patients, given the restriction that within a treat-
ment activities cannot be performed at the same time. To
achieve this objective, online decisions about scheduling and
especially rescheduling are needed that improve the through-
put of patients. Completion time of a patient is the time from
the creation of the partial plan to completion time of the final
activity from this plan.

3 Multi-agent pareto appointment exchanging

To schedule the patient activities efficiently, we use a distrib-
uted approach where software agents interact with each other
to exchange appointments where none of two interacting par-
ties is worse off: the agents are Pareto-improvers. Worse-off
is defined in subjective terms, as each agent acts according to
its individual constraints and tries to optimize preferences.
Our scheduling method thus amounts to MPAEX. We have
two types of agents: resource agents and patient agents.
Each resource agent represents one resource, and it takes
into account constraints like fixed hours, and preferences
like preferring not to require over-time. When scheduling

an activity to a timeslot on a resource, the resource agent
makes sure no constraints are violated and tries to optimize
preferences over resource schedules.

Algorithm 1 Initial timeslot assignment.

For every patient agent:

1: while not all activities are scheduled do

2: select an unscheduled activity from partial plan
3: ask corresponding resource agent for a timeslot
4: if the timeslot is not conflicting then

5: accept timeslot
6: else
7 goto 3

Algorithm 2 Multi-Agent Pareto Appointment EXchanging
(MPAEX)

For every patient agent: (until no more exchanges can be made)

1: select an activity to reschedule

2: ask the corresponding resource agent for a feasible prospective time-
slot

. if there are no alternative prospective timeslots then

goto 1

. else if the timeslot is empty then

accept and reschedule

goto 1

: else

get identity of patient agent occupying timeslot

propose the exchange to patient agent occupying timeslot

if the resulting schedule of patient agent occupying timeslot is

not worse than its current schedule then

12: both agents reschedule

VRN RWw

—_
—_ o

13: inform resource agent of exchange
14: goto 1

15: else

16: goto 2

Each patient is also represented by a software agent—
the patient agent—that has knowledge of the patient’s needs
(activities that need to be scheduled, availability) and prefer-
ences (when, which doctor, own schedule). We envision that
the medical priorities and partial plans in this agent are deter-
mined by the consulting doctor, whereas the patient’s pref-
erences, like his/her schedule, are set by the patient. Patient
agents make sure none of their activities overlap and try to get
the best possible schedule given the patient’s individual con-
straints and preferences. To get an initial schedule for their
patient, patient agents interact with resource agents to get
timeslots for the activities in their partial plan. To improve
their schedules, patient agents interact with each other to
exchange time-slots. Resource agents do not interact with
each other.

In general there are two processes of scheduling: ini-
tial timeslot assignment (Algorithm 1), and patient agents
improving their schedules by MPAEX (Algorithm 2). In real-
life dynamic settings, these processes run together. Patients

@ Springer

190

SOCA (2007) 1:185-196

arrive one by one and are initially scheduled over the day.
Patient agents individually try to improve their patient’s
schedule, continuously, or at certain events (such as cancel-
lations, lifted resources constraints, passing deadlines).

Algorithm 1 describes patient agents asking the different
resource agents one by one an initial timeslot for the activities
of their partial plan. The timeslots cannot be conflicting.

Algorithm 2 is implemented by MPAEX: patient agents
try to improve their schedule by exchanging appointments
for activities. First, the resource agent is contacted to get
a feasible prospective timeslot for the selected activity. If
this timeslot would improve the schedule but is occupied
by another agent, both agents have to agree to exchange the
timeslots. No agent will agree to an exchange that will worsen
its schedule.

With the approach thus outlined, the scheduling problem
can be solved completely distributed. Initial scheduling, as
well as MPAEX rescheduling, is done purely by interaction
between individually rational agents. In the next section, we
discuss how we simulate the patient scheduling problem, and
how we generate problem instances.

4 Simulating hospital patient scheduling
4.1 Online hospital patient scheduling

Here, we focus on a semi-dynamic model of hospital patient
scheduling instead of a fully dynamic model. The most
important dynamic aspect of our semi-dynamic model is that
partial plans are scheduled in order of arrival, one partial
plan at a time, without knowledge of what partial plans are
to be scheduled next (see [19] for this dynamic property of
online scheduling). Once all partial plans for all patients are
initially scheduled, patient agents will then try to improve
their schedule by MPAEX.

Studying this semi-dynamical model first gives us funda-
mental insights in the performance of our distributed
approach relative to alternative approaches. Notably, many
state-of-the-art scheduling heuristics are not suitable for fully
dynamic and/or distributed scheduling where patients are
continuously scheduled and rescheduled. Furthermore, cre-
ating a fully dynamic model requires many ad hoc decisions,
making the models representative only for very specific sit-
uations from which it is not straightforward to generalize to
other dynamic scheduling instances.

In practice, the separation between initial scheduling and
rescheduling can be more gradual. Our semi-dynamic setting
can be thought of as a single iteration of a dynamic system
where rescheduling is done periodically after a number of
patients are initially scheduled.

Studying this stylized hospital patient scheduling model
gives us fundamental insights in the performance of our

@ Springer

distributed approach relative to alternative approaches.
Although an MPAEX approach can be run continuously as
patients are arriving, many state-of-the-art scheduling heuris-
tics are not suitable for such fully on-line and/or distributed
scheduling.

To analyze the different scheduling approaches in a gen-
eral way, and to compare with centralized and static bench-
marks, constraints and preferences in our simulation model
are as follows: activities can not overlap on a resource sched-
ule, activities of a partial plan must all be scheduled and can
not overlap, patient preferences are such that schedules with
earlier completion time (C) are preferred.

We use two fundamental methods for initial timeslot
assignment (Algorithm 1): First-come-first-served (FCFS),
and first-come-randomly-served (FCRS). In FCFS, patients
arrive over time and their planned activities are scheduled
on the first available time-slot on each required resource.
In FCRS, patients arrive over time and their planned activi-
ties are scheduled to a random time-slot within a fixed time-
window on the required resources.! Whereas at first sight
FCFS seems to relate most closely to current hospital prac-
tice, it ignores the fact that many treatments have limited
medical urgency, and the exact date for the appointment is
determined both by the patient’s schedule and the first avail-
ability of the required resources. To reflect this stochastic
element of patient and resource availability, we introduce the
FCRS schedule. Note that changes in resource schedules may
open up new, better appointment opportunities for patients
that fit in their schedule (Algorithm 2), so attempting to re-
schedule still makes sense. Current practice will fall some-
where between FCFS and FCRS, depending on the actual
hospital situation.

Given the patient preferences for the schedule of a partial
plan (finish as early as possible) we implement Algorithm 2
in MPAEX as follows: Patient agents always select their last
activity for rescheduling. Resources agents will then pro-
pose an alternative time-slot, starting from the earliest pos-
sible timeslot, and the patient agent will try to exchange
his/her time-slot with the patient—agent occupying that time-
slot. The deal will be accepted if neither patient is worse off
according to their preferences, which here means that com-
pletion time will not increase. If not accepted, the patient
agent will request another prospective time-slot from the
resource agent, and will continue doing so until there are
no more prospective time-slots, or a proposed exchange is
accepted. The process is repeated for all patient agents iter-
atively until no exchanges can be made any more.

! To determine duration of the time-window, FCRS requires a predic-
tion of the number of activities that can be expected on resources so
that after randomly handing out time-slots, the capacity available on
the resource will be efficiently used; these data are usually available in
hospitals.

SOCA (2007) 1:185-196

191

Table 1 Four schemes of standard activity times for m = 8

Scheme name On 8 resources

Equal 1,1,1,1,1,1,1,1
Small difference 1,1,2,2,334,4
Reasonable difference 1,2,3,4,5,6,7,8

Large difference 1,3,5,7,9,11,13,15

We found that experiments where an exchange can have
more than one activity at a time show very little gain in per-
formance. Itis also possible to consider multilateral multiple-
activities exchanges. The complexity of these types of
exchanges quickly becomes intractable. Because of the small
complexity, and good performance, of bilateral one-activity
appointment exchanges, we only show these results.

4.2 Modeling hospital resource usage

To evaluate the performance of MPAEX fairly, we evaluate
hospital patient scheduling performance for a broad distribu-
tion of possible hospital characteristics (e.g. [2]).

An important aspect of our model is the workload of the
resources relative to each other. In practice, not all resources
in a hospital are as busy as others, usually there are a num-
ber of crowded resources. The number of patients on the
resource, and the time needed for each patient determine the
workload of a resource. Different relative workloads influ-
ence the problem characteristics, and the performances of
scheduling algorithms. Next, we discuss a means to method-
ically vary these parameters such that we can evaluate a
representative cross-section of these properties.

Fartial plan We define the distribution over all possible par-
tial plans by a set of the probabilities (P;) for all resources
(7). Let for resource j the probability for a patient to have an
activity on this resource, as part of his partial plan, be denoted
by P;. This captures the fact that partial plans can consist of
a various number of activities, and that some activities are
planned more often than others. The sum over all P; deter-
mines the expected average number of activities per patient.
For n patients n * P; is the expected number of patients on
resource j.

Standard activity time We model all activity times on the
same resource as equal (standard), however, activity times
between resources can vary. Given m resources, we design
four schemes of various standard activity times. The schemes
range from equal activity times on all resources, to large dif-
ferences: see Table 1.

In the “equal” scheme all activities on all resources take
the same time (unit length). In the other schemes, activities

Theil =0.2

[Theil = 0.5]

Theil = 0.01

Workload
I

] WWT ==L]

[Ordered Resources| [Ordered Resources | [Ordered Resources |

Fig. 3 Examples of Theil index values for three different workload
distributions, with m = 8. Each bar represents the workload on a
resource, which are here presented ordered from low to high

on some resources take (much) more time then activities on
other resources. We carry out experiments with these four
different schemes.

Unequal workload distribution The workload of a resource
is determined by the number of patients on the resource,
and the time needed for each patient (see previous two para-
graphs). In our experiments we vary the probabilities P; and
the standard activity times, to create instances with varying
unequal workload distributions.

‘We introduce the use of the Theil index [18] as used in eco-
nomics, to systematically investigate scheduling performance
for various settings of relative workload. In our methodology,
the Theil index expresses the inequality of the workload dis-
tribution. The Theil index is a value between 0 and log(m),
which is calculated based on the individual workloads of the
resources with the formula:

w i w
T =— —J*lo—], 1
m;u_) % M

where m is the number of resources, w; the workload of
resource j and w the average workload of all resources. This
value is a measure of entropy; equal workload corresponds to
values near 0, very unequal distributions go towards In(m). In
Fig. 3 we show three distributions of workload of resources
for different Theil index values.

In our experiments, we generate workload distribution
instances to sample configurations with different Theil index
values. We present our results averaged over a large num-
ber of runs with varying Theil index values. The values P;
determine the skewness of the workload. They are gener-
ated using two functions: an exponential function of the form
P; = B’/ > ™), with o to vary the skewness, and j
to vary the sum over P;; a step function, where y (< m)
number of resources resources have a high P; of (1 4 §) *
(B/(m 4+ y % 6)), and m — y number of resources have a
low P; of (8/(m + y % §)), with § to vary the high relative
workloads.

@ Springer

192

SOCA (2007) 1:185-196

4.3 Benchmark

We benchmark the performance of MPAEX relative to
centralized and static schedule optimization methods. The
semi-dynamical hospital patient scheduling model of
Sect. 4.1 allows us to explicitly compare and contrast with
more traditional centralized techniques. Importantly, these
centralized heuristics do not have the restriction that patients
must be scheduled in order of arrival, nor that the final
schedule must be a Pareto improvement considering all
patients.

Scheduling problems can be solved with exact solvers
or heuristics [20]. Exact solutions like Branch and Bound
(B&B) [21] require exponential time and solving large
instances (like 200 patients on 8 resources) optimally is
intractable. In practice, we could only run B&B on small
problems: i.e., up to 10 patients on 4 resources.

Since we are interested in problems of more realistic size,
we turn to well established scheduling heuristics to get good
performance in reasonable time. From the literature, we used
three centralized heuristics: two local search algorithms: a
hill climber (HC) and simulated annealing (SA) [22], and
least increment dispatching (LI) where priority is based on
least increment in the overall objective [23]. All three
heuristics (LI, HC, SA) need centralized information.
Although that means they are not algorithms applicable in
practice, we used them as a comparison for our distributed
approach. In our experiments, SA and LI perform very
close to each other for all instances, and better than our
HC approach. Because of this, and the reasonable running
time of LI (compared to SA) we only compare to LI in our
results.

For instances of the equal activity times scheme, as defined
in Sect. 4.2, we can calculate a lower bound for the optimal
summed completion times of a schedule instance. To do so,
we reduce each partial plan P P;, each with varying number
of activites {a;o, . . ., a;j}, to a partial plan PPi* with exactly
one activity a;x € {ajo, ..., a;j}, where a; is the activity
in P P; that requires the resource with the highest relative
workload relative to the other resources required by P P;.
Determining the optimal summed completion of all P P is
then easily computed as

=M,

LBequal =), > %1(1+ D),

m =1

with m a resource, and M,, the number of activities
after reduction that are to be carried out on resource m.
This value is a lower bound the for summed completion
time of all P P; (original), because changing the P P*’s back
into PP;’s by adding activities will never reduce the
objective.

@ Springer

5 Experiments

In this section, we present the results of computer experi-
ments to evaluate the performance of our distributed MPAEX
approach. We compare the scheduling performance of
MPAEX to the centralized static heuristic LI described in
Sect. 4.3 for a wide range of settings. Additionally, we
compare the performance of LI and the calculated lower
bound of Sect. 4.3.

In the experiments, we use MPAEX for schedule improve-
ment, with FCFES as well as with FCRS for initial schedul-
ing. This gives us four distributed approaches [FCFS, FCRS,
MPAEX(FCFS), MPAEX(FCRS)] and one centralized
heuristic (LI) as benchmark. We let each of these five algo-
rithms solve the same generated hospital patient scheduling
instance, for a large number of scheduling instances. The
overall objective is to minimize the unweighted sum of all
individual patients’ objectives (min »_; C;). We measure per-
formance for each instance by comparing the final sched-
ule (0°92PP) of the four distributed approaches, with the final
schedule (o) from the centralized heuristic (LI). The per-
formances of the approaches are presented relative to LI,
computed as »; C; (CAY; > Ci (092PP) per instance and
averaged over 50 instances for each presented data point.
Thus, higher values represent better performance, and LI has
a value of 1.

We calculate instances of the hospital patient schedule
problem as developed in Sect. 4.1. The inequality of the rela-
tive resource workloads is characterized by the Theil index as
discussed in Sect. 4.2. In each instance 200 patients, with an
average of 2.5 activities per patient, need to be scheduled on
eight resources. We motivate these numbers from the cases
of Sect. 2.3: patients are usually issued a partial plan with
a small number of activities selected from a limited set of
resources. Furthermore, we will present robustness results
for variations on this setting.

5.1 Relative workload

We present results for different Theil index values, for each
of the four activity time schemes. We vary the Theil index
of problem instances by setting the values of partial plan
probabilities P;, while keeping the average number of activ-
ities per patient constant (see Sect. 4.2, we use as sampling
parameters B = 25,1 <a <1.6,1 <y <8,2<6§ <6).
We group the instances created into different Theil index
ranges (six equal ranges between 0 and 0.6) and the average
result and variance per Theil index range (50 instances) is
presented. We present the results in Fig. 4. The four graphs
on the left present the performances of MPAEX(FCRS) and
FCRS relative to LI (performance of 1), and similarly for
MPAEX(FCFS) and FCFS and the right. The respective left

SOCA (2007) 1:185-196

193

Fig. 4 Performances for

Equal Activity Times

Equal Activity Times

different Theil index ranges e e e o e L ! T T 7T
relative to LI (performance 0.9 - P o 09 ‘ -
of 1). Error bars indicate one 8 x T e
standard deviation on either side g 08~ ‘ N g 08 "]
of the calculated average ’g 07k . | L o7k " _
) X ; ; o
o i i o
06 MPAEX (FCRS) — 0.6 |- MPAEX (FCFS) ———
FCRS ------- FCFS -------
05 | | | | | 0.5 | | | | |
0 0.1 02 03 04 05 06 0 0.1 02 03 04 05 06
Theil index Theil index
Small Diference Activity Times ‘ Small Diference Activity Times
° C ° 0.9 —
e ‘ 2
- © 0.8 -
£ £ e
5 | S IS N
S < 0.7
Q o
0.6 MPAEX (FCRS) — 0.6 MPAEX (FCFS) --+--'—
FCRS ------- FCFS i3t
05]]]]] 05]]]]]
0 0.1 02 03 04 05 06 0 0.1 02 03 04 05 06
Theil index Theil index
Reasonable Difference Activity Time] Reasonable Difference Activity Times
L —F & 1 T T - T T
© 09 - A ° 09 -
o o
c & 08 !
€ E |
S o :
— t 0.7 ..
g |- g
0.6 - MPAEX (FCRS) B 0.6 -
FCRS -------
05 | | | | | 05 | | | | |
0 0.1 02 03 04 05 06 0 0.1 02 03 04 05 06
Theil index Theil index
Large Difference Activity Times ‘ Large Difference Activity Times
— — T T T T T T -
© 0.9 - - ° 0.9 -
o Q
c] % 08 T
g g osf 7
S (<] :
= - € 0.7 i
& &
0.6 - MPAEX (FCRS) B 0.6 -
FCRS -------
05 | | | | | 05 | | | | |
0 0.1 02 03 04 05 06 0 0.1 02 03 04 05 06
Theil index Theil index

and right graphs can be compared directly, as the perfor-
mances are compared against the same LI benchmark values
(the separation between left and right graphs is strictly for
presentation purposes).

From our results, we observe that the relative perfor-
mances are robust for a wide range of problem settings.
In all settings, our distributed MPAEX(FCRS) approach
performs very close (between 96 and 100%) to LI, which
needs centralized information. These results show that
bilateral Pareto improvements can achieve very high sched-
uling performance. Furthermore, MPAEX(FCRS) performs
much better than FCFS, where each patient in turn is sched-
uled optimally.

The results also show that the quality of the final
schedule obtained by MPAEX is dependent on the initial
scheduling: MPAEX(FCFS) has a performance lower than
MPAEX (FCRS) and LI. However, MPAEX(FCES) still
improves on FCFS. The initial scheduling method FCRS has
a performance lower than that of FCFS.

5.2 Lower bound
Although the computation of optimal schedules is intracta-
ble, we can compare the effectiveness of our benchmark LI

to lower bound LB.qual for the specific equal activity times
scheme developed in Sect. 4.2. Averaged over instances with

@ Springer

194

SOCA (2007) 1:185-196

different Theil index values, we find that LB.qual has on
average a value at 95£4% of the objective value of the sched-
ule of LI. For settings with the equal activity times scheme,
LI clearly performs close to the optimal performance.

5.3 Setting variations

We find that the performance of MPAEX scales well for the
number of patients. We could only compare instances with
less than 400 patients to LI, because of the long running time
of LI. We therefore use the lower bound calculation with the
equal activity times scheme, as a optimal performance (value
of 1), and present performances relative to this value in Fig. 5.
Relative performances are also robust in the other standard
activity time schemes.

We also find that for a higher average of number of activi-
ties per patient, MPAEX performs even better. By varying the
sum of the probabilities P;, see Sect. 4.2, we vary the aver-
age number of activites per patient. The created instances
are grouped into different ranges: given our setting of eight
resources, we define seven equal ranges between 1 and 8. A
value between 7 and 8 means that almost all patients have
activities on all resources. The average result per range (50
instances) is presented in Fig. 6.

As the number of activities increases, MPAEX performs
even slightly better than our centralized LI. All approaches,

Equal Activity Times
T T

09 T -]
S o8|
=
5 N .)) S
507 Se- E
© e TN L
2 06l L — n
- MPAEX (FCRS) ----
MPAEX (FCFS) - - - -
FCFS -
0.5 - FCRS -~ b
1 1 1 1
0 200 400 600 800 1000

Number of Patients

Fig. 5 Performances for varying number of patients, relative to LBegual
calculation (performance of 1)

Reasonable Difference in Activity Times

T T
1 r—— T -
.'><' °
09 F . ol |
- g
() ege.. -
€ o8l N g 7
< o
g Gememmmm Bmmemm . S
g e Dmemimemea Beme
g o7} L o
> MPAEX (FCRS) ——+~
o MPAEX (FCFS) - - X- -
06 FCFS % - |
FCRS --&--
05 : : ‘ : ‘ ‘
1 2 3 4 5 6 ! ?

Average Number of Activities per Patient

Fig. 6 Performances for varying average number of activities per
patient (grouped) relative to LI (performance of 1)

@ Springer

except FCRS, achieve similar performances for higher aver-
age number of activities per patient. The low performance
of FCRS is caused by the fact if the number of activities
increases the chance for a patient to get all his activities on
only early timeslots decreases dramatically. With FCFS this
chance is only dependent on the order of arrival, and not on
the number of activities.

6 Discussion

As in general queuing theory, due to the stochastic nature
of actual hospital scheduling practice, short waiting times
has to be traded-off against efficient resource usage [24].
In our model, this is not an issue because the resources are
always efficiently used. Instead, we recognize that there is
a secondary efficiency measure in terms of waiting time for
patients with multiple appointments. By using a reschedul-
ing approach, like MPAEX, efficient resource usage can be
achieved with the initial scheduling method, while patient
waiting times are improved by rescheduling.

Waiting time, as we defined it, is of course not necessarily
the single important issue for the patient. For some patients
the certainty of a fixed appointment is of greater value than
a better schedule, although rescheduling might be necessary
for medical reasons. Other patients may be more flexible,
and guaranteeing not-worse rescheduling can be very attrac-
tive to them. In practice, patients could express whether they
would like to be considered for rescheduling.

The scheduling problem we consider in this paper is a
type of “open shop” scheduling problem from the traditional
OR literature [20]. In open shop problems, all jobs (here
patients’ partial plans) consists of as many activities as there
are resources. Our patient scheduling problem therefore cor-
responds to an open shop problem with processing times
including values of zero: Olp;; = {0, saty,; }| > C; (stan-
dard scheduling notation), with p;; the processing time of
activity a;;, and sat,; is the standard activity time of resource
m;;. The general open shop problem is NP-hard [25]. Differ-
ent to most OR approaches, we do not consider performance
guarantees, but average performances, given the stochastic
parameters and for large number of patients.

Compared to FCFS and FCRS, one would wonder whether
more efficient initial schedules could be achieved, of qual-
ity comparable to the rescheduling results presented here. In
related work [26] we investigate efficient methods for online
initial scheduling. Approaches for effective scheduling solu-
tions we explore include adaptive methods of resource usage,
and multilateral coordination between resources. In all, we
find online initial scheduling to be a very complex prob-
lem, where successful approaches depend considerably on
the particular resource characteristics and patient properties.
In future research, we aim to integrate the two approaches to

SOCA (2007) 1:185-196

195

obtain both highly efficient schedules and reduce the num-
ber of appointments that need rescheduling, thus improving
patient service level.

7 Conclusions

We have presented a multi-agent Pareto appointment
exchanging algorithm, MPAEX, as a robust, dynamic and
distributed solution for patient activity scheduling and
rescheduling that actively exploits the Pareto improving
scheduling opportunities that are present in hospital patient
schedules where patients undergo multiple activities.

Models of the hospital patient scheduling problem were
discussed in terms of the “health care cycle” where a doctor
repeatedly orders sets of activities to diagnose and/or treat a
patient. Additionally, we presented two models for the cur-
rent practice of initial patient scheduling.

We introduced the Theil index to the hospital patient
scheduling domain, to capture the degree of inequality in
terms of relative workload between resources that are needed
for patient scheduling. In this manner, we demonstrate how
a broad range of possible scheduling problems with different
relative workloads can be generated.

To compare against existing scheduling solutions, we
presented a stylized semi-dynamical version of the actual
dynamic problem: first, we schedule patients in order, and
then we improve on that schedule with MPAEX.

In experiments over a broad range of such semi-dynamic
hospital patient scheduling problems, we show that the
MPAEX algorithm arrives at scheduling solutions that are
almost as good as a centralized benchmark. Furthermore, by
use of a calculated lower bound, we show that performances
are close to the optimum. The high performance of MPAEX
is robust for variations in the model settings.

Unlike centralized heuristics for solving scheduling prob-
lems, our multi agent approach can straightforwardly be used
in a dynamic environment. Agents can interact concurrently,
with local dynamic information (such as cancellations, dis-
ruptions, expired resource constraints).

In health care preferences on resource utilization (such
as rosters, staff preferences) and of patients (combination
appointments, online patient calendars) are inherently dis-
tributed. Multi-agent systems can capture such distributed
preferences: agents try to optimize the schedule for their
owner according to the preferences within the rules of sched-
uling. They will not accept a schedule that is worse than its
current one. This is of great value to get collaboration of
patients and system acceptance.

We have shown results on a semi-dynamic model to pro-
vide fundamental insights in the character of hospital patient
scheduling and the performance of decentralized dynamic
approaches versus traditional centralized static approaches.

The setup we developed also provides a proper setting for
future approaches and solutions. On the other hand, it is clear
that real life problems are fully dynamic. Modeling such fully
dynamic scheduling problems involve many more parame-
ters that need to be set and fit to an actual case. In practice,
much care has to be taken to obtain generic results from such
fully dynamic models. In future research, we will develop
dynamic cases in our studies in actual hospitals.

Acknowledgements
number 634.000.021).

This research is part of ToKeN (NWO grant

References

1. Vermeulen I, Bohte S, Somefun K, La Poutré H (2007) Improv-
ing patient activity schedules by multi-agent pareto appointment
exchanging. In: Proceedings of the IEEE international conference
on E-commerce technology, CEC/EEE, pp 56-63

2. Vissers JM (1998) Patient flow-based allocation of inpatient
resources: a case study. Eur J Oper Res 105:356-370

3. Marinagi C, Spyropoulos CD, Papatheodorou C, Kokkotos S
(2000) Continual planning and scheduling for managing patient
tests in hospital laboratories. Artif Intell Med 20(2):139-154

4. Spyropoulos CD (2000) Ai planning and scheduling in the medical
hospital environment. Artif Intell Med 20(2):101-111

5. Paulussen TO, Jennings NR, Decker K, Heinzl A (2003) Distrib-
uted patient scheduling in hospitals. In: Proceedings 18th interna-
tional joint conference on Al

6. Nealon J, Moreno A (2003) Agent-based applications in health
care. In: Nealon J, Moreno A (eds) Applications of software agent
technology in the health care domain. Birkhueser, pp 3-18

7. Weiss G (ed) (1999) Multiagent systems: a modern approach to
distributed artificial intelligence. MIT Press, Cambridge, MA

8. Decker K, Li J (2000) Coordinating mutually exclusive resources
using gpgp. Auton Agent Multi Agent Syst 3(2):133-157

9. Hannebauer M, Miiller S (2001) Distributed constraint optimi-
zation for medical appointment scheduling. In: AGENTS ’01:
Proceedings of the fifth international conference on autonomous
agents, ACM Press, New York, pp 139-140

10. Wellman M, Walsh W, Wurman P, MacKie-Mason J (2001) Auc-
tion protocols for decentralized scheduling. Games Econ Behav
35:271-303

11. Reeves DM, Wellman MP, MacKie-Mason JK, Osepayshvili A
(2005) Exploring bidding strategies for market-based scheduling.
Decis Support Syst 39(1):67-85

12. Sen S, Durfee E (1996) A contracting model for flexible distributed
scheduling. Ann Oper Res 65:195-222

13. Czap H, Becker M (2003) Multi-agent systems and microeconom-
ic theory: a negotiation approach to solve scheduling problems in
high dynamic environments. In: Proceedings of 36th annual Hawaii
international conference on system sciences, pp 83

14. Maruster L, Weijters T, de Vries G, van den Bosch A, Daelemans
W (2002) Logistic-based patient grouping for multi-disciplinary
treatment. Artificial Intelligence Med 26(1-2):87-107

15. Mas-Colell A, Whinston M, Green JR (1995) Microeconomic the-
ory. Oxford University Press, Oxford

16. Chevaleyre Y, Dunne PE, Endriss U, Lang J, tre ML, Maudet N,
Padget J, Phelps S, guez Aguilar JAR, Sousa P (2006) Issues in
multiagent resource allocation. Informatica 30:3-31

17. Endriss U, Maudet N, Sadri F, Toni F (2006) Negotiating socially
optimal allocations of resources. J Artif Intell Res 25:315-348

@ Springer

196

SOCA (2007) 1:185-196

18.

19.

20.
21.

22.

23.

24.

Theil H (1967) Economics and information theory. North-Holland,
Amsterdam

Sgall J (1996) On-line scheduling. In: Fiat A, Woeginger GJ (eds)
Online algorithms. Springer, Berlin, pp 196-231

Brucker P (2001) Scheduling algorithms. Springer, Berlin

Land AH, Doig AG (1960) An automatic method for solving dis-
crete programming problems. Econometrica 28:497-520

Aarts E, Lenstra J (2003) Local Search in Combinatorial Optimi-
zation. Princeton University Press, NJ

Haupt R (1989) A survey of priority rule-based scheduling. OR
Spect 11(1):3-16

Porter ME, Teisberg EO (2004) Redefining competition in health
care. Harv Bus Rev 82:64-76

@ Springer

25.

26.

Hoogeveen H, Schuurman P, Woeginger GJ (1998) Non-
approximability results for scheduling problems with minsum cri-
teria. In: Proceedings 6th international integer programming and
combinatorial optimization conference. Lecture notes in computer
science, vol 1412. Springer, Berlin, pp 353-366

Vermeulen I, Bohte S, Elkhuizen S, Lameris J, Bakker P, La Poutré
H (2007) Adaptive optimization of hospital resource calendars.
In: Proceedings of the 11th conference on artificial intelligence in
medicine, AIME 07. Lecture notes in computer science. Springer,
Berlin

	Multi-agent Pareto appointment exchanging in hospitalpatient scheduling
	Abstract
	Introduction
	Problem
	Hospital patient scheduling
	The health care cycle
	Patient treatment plans
	Model
	Multi-agent pareto appointment exchanging
	Simulating hospital patient scheduling
	Online hospital patient scheduling
	Modeling hospital resource usage
	Benchmark
	Experiments
	Relative workload
	Lower bound
	Setting variations
	Discussion
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

