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Abstract
This article proposes an approach, based on infinite Fourier series, to constructing
tractable densities for the bivariate circular analogues of copulas recently coined ‘cir-
culas’. As examples of the general approach, we consider circula densities generated
by various patterns of nonzero Fourier coefficients. The shape and sparsity of such
arrangements are found to play a key role in determining the properties of the resultant
models. The special cases of the circula densities we consider all have simple closed-
form expressions involving no computationally demanding normalizing constants and
display wide-ranging distributional shapes. A highly successful model identification
tool andmethods for parameter estimation and goodness-of-fit testing are provided for
the circula densities themselves and the bivariate circular densities obtained from them
using a marginal specification construction. The modelling capabilities of such bivari-
ate circular densities are compared with those of five existing models in a numerical
experiment, and their application illustrated in an analysis of wind directions.
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1 Introduction

A direction observed in the plane R
2 can be represented by an angle, �, typically

in [0, 2π) or [−π, π), measured in a specified direction from a specified origin. The
natural support for such directions is the circumference of the unit circle, S1, data on
them being referred to as circular. The natural support for a bivariate circular random
vector with angular coordinates (�1,�2) is the unit torus T2 = S

1 ×S
1, data on such

vectors sometimes being referred to as ‘toroidal’.
Early constructions used to obtain models for toroidal data included maximum

(Shannon) entropy characterization (or, equivalently, exponential family distributions,
Mardia and Jupp 1999, p. 43), wrapping (Johnson and Wehrly 1977) and projection
(Saw 1983). The latter two approaches can be applied to any bivariate distribution
defined on R2, although the resulting toroidal densities generally cannot be expressed
in closed-form or are highly convoluted.

Perhaps the best-known exponential family toroidal model is the eight-parameter
bivariate von Mises distribution of Mardia (1975). Four of its parameters control the
dependence between �1 and �2, but not in easily interpreted ways. Its submodels
include the six-parameter model of Rivest (1988) and the latter’s five-parameter sine,
cosine and hybrid submodels, the properties of which are studied at length in Mardia
and Frellsen (2012). Such five-parameter models are, to some extent, toroidal ana-
logues of the bivariate normal distribution, with four of their parameters controlling
the locations and concentrations of the marginal distributions, and the fifth the depen-
dence between �1 and �2. However, their concentration and dependence parameters
also control the unimodality/bimodality of their densities. Like the bivariate normal,
the densities of their unimodal cases have contours that are elliptical around the mode.
Their normalizing constants must be computed numerically. Their conditional distri-
butions are von Mises, but their marginal distributions are generally not and, for some
parameter values, can be bimodal.

More recently, Navarro et al. (2017) conditioned a multivariate normal distribution
to obtain the twelve-parameter bivariate generalized von Mises model of order 2
(BGvM2), whose conditional distributions are second-order generalized von Mises
(GvM2), see, for example, Gatto (2008), while Hassanzadeh and Kalaylioglu (2018)
used a conditional specification approach to obtain a toroidal model with one of its
marginal distributions being GvM2. GvM2 densities can be symmetric or asymmetric
and unimodal or bimodal. A highly flexible family of toroidal models obtained by
normalizing time series spectra was proposed by Taniguchi et al. (2020). In general,
the interpretation of the parameters of these various models is difficult, and their
normalizing constants must be computed numerically.

Ameijeiras-Alonso and Ley (2022) extended the sine-skewing approach ofUmbach
and Jammalamadaka (2009) andAbe and Pewsey (2011) to generatemodels formildly
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Tractable circula densities from Fourier series 597

asymmetric toroidal data, focussing explicitly on sine-skewed extensions of the bivari-
ate uniform, sine, cosine and wrapped Cauchy models. An appealing property of such
models is that their normalizing constants are the same as those of the base models to
which sine-skewing is applied.

The construction underpinning the proposal made here is a highly flexible marginal
specification approach incorporating the circular analogues of bivariate copulas
recently termed ‘circulas’ by Jones et al. (2015). Briefly put, circulas are copulas that
are rescaled by 1/(2π) and satisfy periodicity constraints. Let (�1,�2) be a bivariate
random vector of continuous circular random variables and F its distribution function
on [0, 2π)2 defined by F(θ1, θ2) = P(�1 ∈ (ω1, ω1 + θ1],�2 ∈ (ω2, ω2 + θ2])
(0 ≤ θ1, θ2 < 2π), where 0 ≤ ω1, ω2 < 2π are arbitrary reference points. Define the
marginal distribution function of � j on [0, 2π) by Fj (θ j ) = P(� j ∈ (ω j , ω j + θ j ])
(0 ≤ θ j < 2π) for j = 1, 2. Then, an analogous result to Sklar’s theorem states that
the distribution function F can be related to the marginal distribution functions, F1
and F2, through the circula C◦ as

F(θ1, θ2) = C◦(2πF1(θ1), 2πF2(θ2)) (0 ≤ θ1, θ2 < 2π).

C◦ is itself a bivariate circular distribution function, but with the specific reference
points ω1 = ω2 = 0 and marginal distributions for �1 = 2πF1(�1) and �2 =
2πF2(�2) that are circular uniform rather than the (linear) uniform ones of their
copula counterparts. Taking partial derivatives, the density of (�1,�2) is given by

f (θ1, θ2) = 4π2 f1(θ1) f2(θ2)c◦(2πF1(θ1), 2πF2(θ2)), (1)

where f1 and f2 are the marginal densities of �1 and �2, and c◦ is the circula density
corresponding to C◦. Clearly, c◦ controls the dependence between �1 and �2, the
circula density for independence being c◦(ψ1, ψ2) = 1/(4π2) for any ψ1, ψ2 ∈
[0, 2π), where ψ1 = 2πF1(θ1) and ψ2 = 2πF2(θ2). The domain of c◦ is extended to
R
2 through the assumption c◦(ψ1 ± 2πk, ψ2 ± 2πl) = c◦(ψ1, ψ2) (k, l = 0, 1, . . .).

In addition, c◦ is usually assumed to be continuous at (2πk, ψ2) and (ψ1, 2πl) for
any ψ1, ψ2 ∈ [0, 2π) as well as all other points on the torus.

Jones et al. (2015) provided an in-depth treatment of theWehrly and Johnson (1980)
class of circulas, with density

c◦(ψ1, ψ2) = 1

2π
g(ψ1 ± ψ2), (2)

where g is a circular density. See Jones et al. (2015) for details of the evolution of this
class, Shieh and Johnson (2005) and Kato and Pewsey (2015) for special cases, and
Pewsey and Kato (2016) for work on goodness-of-fit testing. The wider copula-related
literature is summarized in Jones et al. (2015), and generalizations of copulas to other
compact Riemannian manifolds have been considered in Jupp (2015); see also Jupp
and Kume (2020).

Here we propose a general, Fourier series-based, approach to constructing tractable
circula densities for use within (1) that includes (2) as a special case and focus on c◦
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generated usingfive basic patterns of Fourier coefficients. The construction is attractive
because: (i) various new circula models can be generated having simple closed-form
expressions for their densities and flexible forms of dependence structure controlled
by relatively few parameters; (ii) three well-known circular dependence measures are
simple functions of just two of the Fourier coefficients; (iii) the conditional mean
directions and mean resultant lengths depend only on a limited number of Fourier
coefficients; (iv) methods for simulation, model identification, parameter estimation
and testing goodness-of-fit and independence are available for both the c◦ and the
bivariate circular distributions generated from using them within (1).

Although any forms of f1 and f2 can be employed within (1) to generate bivariate
circular distributions, throughout the paper we illustrate the construction’s application
using marginal circular densities from the Kato and Jones (2015) family. The latter
is the most flexible four-parameter family of unimodal circular densities presently
available, has closed-form expressions for both its density and distribution functions,
and all four of its parameters have clear interpretations. As we shall see, most of the
conditional distributions of the specific circula densities considered in Sect. 3 are also
members of the Kato–Jones family.We note that the c◦ that we explore here might also
be used in a semiparametric approach to modelling in which kernel density estimates
and empirical distribution functions are used in place of f1, f2, F1 and F2 in (1).
Such an approach would inherit the tractable and interpretable parametric modelling
of dependence.

We stress that the approach based on infinite Fourier series introduced here
differs in important ways from previously proposed constructions incorporating
truncated (or partial) Fourier series. Fernández-Durán (2007) considered bivariate
circular models based on (1), the Wehrly and Johnson (1980) circula density (2) and
non-negative trigonometric sum densities (i.e. truncated Fourier series constrained
to be non-negative) for f1, f2 and g. More generally, Pertsemlidis et al. (2005)
and Fernández-Durán and Gregorio-Domínguez (2014) proposed toroidal densities
obtained from truncated bivariate Fourier series, the latter constrained to be non-
negative. When fitted to toroidal data, such models generally include large numbers of
parameters that are difficult to interpret (Mardia et al. 2007) and, due to harmonic arte-
facts, manifest modes, sometimes multiple, unsupported by the data (see, for example,
Fig. 4 of Fernández-Durán and Gregorio-Domínguez 2014). In contrast, our tractable
c◦, as well as the toroidal models generated by using them within (1) in combination
with the highly flexible unimodal circular marginal densities of Kato and Jones (2015),
have relatively few parameters, all of which have clear interpretations, and closed-
form expressions for their densities which involve no computationally demanding
normalizing constants. As an important consequence of the latter property, numeri-
cally implemented maximum likelihood estimation is swift. While truncated bivariate
Fourier series with Fourier coefficients satisfying the constraints in (6) and (4) to fol-
low might be used as circulas, they will generally not be as tractable as the ones based
on infinite Fourier series that we propose here.

The rest of the article is organized as follows. In Sect. 2, we provide the details of
our proposed construction together with general results for three circular dependence
measures and the conditional mean directions and mean resultant lengths of circulas
generated using it. In Sect. 3, we consider c◦ generated using five basic patterns of
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Fourier coefficients within the proposed construction and provide details of their basic
properties. In Sect. 4, we explain how model identification, parameter estimation and
goodness-of-fit testing can be performed, for both the considered c◦ and themodels for
toroidal data derived from using them within (1). The results from a numerical exper-
iment, designed to compare the large-sample modelling capabilities of such toroidal
models with those of five existing bivariate circular models, are presented in Sect. 5. In
Sect. 6, a newWehrly and Johnson (1980) circula density and our proposed inferential
methods are applied in the analysis of wind directions. Lastly, we offer some conclud-
ing remarks in Sect. 7. All equations, figures and tables with numbers preceded by the
letter S are contained in an accompanying online supplementary materials document.

2 Circula densities from Fourier series

2.1 Circula densities

It is well known (Mardia and Jupp 1999, Sect. 3.3.2) that any continuous circular
density, f , can be expressed in the form of a Fourier series as

f (θ) = 1

2π

∞∑

m=−∞
φ(m) e−imθ (−π ≤ θ < π),

where i = √−1, for appropriately chosen Fourier coefficients φ(m) (m ∈ Z). Now
consider the family of continuous distributions on the torus whose density can be
expressed analogously as

f (θ1, θ2) = 1

4π2

∞∑

m,n=−∞
φ(m, n) e−i(mθ1+nθ2) (−π ≤ θ1, θ2 < π), (3)

where the Fourier coefficients φ(m, n) ∈ C (m, n ∈ Z) are appropriately defined so
that f (θ1, θ2) ≥ 0 and

∫ π

−π

∫ π

−π
f (θ1, θ2)dθ1dθ2 = 1.

Proposition 1 The following hold for density (3).

(i) If a random vector (�1,�2) has density (3) then

E
{
ei(m�1+n�2)

}
= φ(m, n) (m, n ∈ Z).

(ii) A density in family (3) is a circula density if and only if

φ(m, 0) =
{
1, m = 0,
0, m �= 0,

φ(0, n) =
{
1, n = 0,
0, n �= 0,

(m, n ∈ Z). (4)
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Proof (i) It is clear from the following well-known equation that (i) holds:

∫ π

−π

eitθdθ =
{
2π, t = 0,
0, t ∈ Z\{0}. (5)

(ii) If φ(m, n) satisfies (4), the marginal density f1(θ1) can be expressed as

f1(θ1) =
∫ π

−π

f (θ1, θ2)dθ2 = 1

2π

∞∑

m=−∞
φ(m, 0)e−imθ1 = 1

2π
.

The second equality follows from (5). Similarly, f2(θ2) = 1/(2π), and thus (3) is a
circula density. Next, assume that a density in family (3) is a circula density. Since this
assumption implies that each marginal density of (3) is the circular uniform density,
the equations in (4) follow from (i). 	


It follows from Proposition 1(i) that, for any φ(m, n) in (3),

φ(m, n) = φ(−m,−n), |φ(m, n)| ≤ 1, φ(0, 0) = 1, (6)

where z denotes the complex conjugate of z. The circula densities of Proposition 1(ii)
can be expressed as

c◦(ψ1, ψ2) = 1

4π2

[
1 + 2Re

{ ∞∑

m=1

∞∑

n=−∞
n �=0

φ(m, n) e−i(mψ1+nψ2)

}]

= 1

4π2

[
1 + 2Re

{ ∞∑

n=1

∞∑

m=−∞
m �=0

φ(m, n) e−i(mψ1+nψ2)

}]
. (7)

If φ(m, n) = 0 for all m, n �= 0, the density is that of the bivariate circular uniform
distribution. Circula densities of the form (7) are the main focus of the paper.

2.2 Circular dependencemeasures

Here we provide general results for three signed circular dependence measures when
applied to circula densities of the form (7). Let (�1,�2) be a bivariate circular random
vector. Then, the dependencemeasures of Fisher and Lee (1983), Jammalamadaka and
Sarma (1988) and, for a circula, that of Rivest (1982) are defined as

ρFL = det{E(X1XT
2 )}

[det{E(X1XT
1 )}det{E(X2XT

2 )}]1/2 ,

ρJS = E{sin(�1 − μ1) sin(�2 − μ2)}
[E{sin2(�1 − μ1)}E{sin2(�2 − μ2)}]1/2

,

ρR = 2λ2,
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respectively, where, for j = 1, 2, X j = (cos� j , sin� j )
T , μ j is the mean direction

of � j , and λ2 denotes the smallest singular value of E(X1XT
2 ).

For circula densities (7), it can easily be shown that the dependence measures
between the circular uniform random variables �1 and �2 reduce to

ρR = ρJS = |φ(1,−1)| − |φ(1, 1)|, ρFL = |φ(1,−1)|2 − |φ(1, 1)|2.

Clearly, when only one of φ(1,−1) and φ(1, 1) is nonzero, then ρR, ρJS and ρFL are
simple functions of either φ(1,−1) or φ(1, 1).

2.3 Conditional mean directions and resultant lengths

The first trigonometric moment of �1|�2 = ψ2 for a circula density of the form (7)
can be expressed as

E(ei�1 |ψ2) =
∫ π

−π

eiψ1c1|2(ψ1|ψ2)dψ1 =
∞∑

n=−∞
φ(1, n)e−inψ2 , (8)

where c1|2(ψ1|ψ2) denotes the conditional density of �1|�2 = ψ2. Expression (8)
implies that, in order to calculate the mean direction and mean resultant length of
�1|�2 = ψ2, it suffices to focus on the nonzero Fourier coefficients in the m = 1
column of a plot of the {φ(m, n)}m,n∈Z. Figure 1 provides examples of such plots. It
then follows that:

(a) If all the coefficients in the m = 1 column are zero, the mean resultant length of
the conditional distribution of �1|�2 = ψ2, R(�1|ψ2) ≡ |E(ei�1 |ψ2)|, is zero;

(b) If there is only one nonzero coefficient in them = 1 column, say at (m, n) = (1, d),
the mean direction of the conditional distribution of �1|�2 = ψ2, M(�1|ψ2)

≡ arg(E(ei�1 |ψ2)), is −dψ2 and R(�1|ψ2) = |φ(1, d)|;
(c) If there are two or more nonzero coefficients in the m = 1 column, M(�1|ψ2) is

nonlinear and R(�1|ψ2) is in general heteroscedastic.

Analogous results hold for the conditional distribution of �2|�1 = ψ1.

3 Circula models generated by five patterns of Fourier coefficients

3.1 Preliminaries

In this sectionwe consider examples of (7) generated byfive simple patterns of nonzero
Fourier coefficients and provide details of the basic properties of certain specific mod-
els. Given the constraints on the Fourier coefficients in (6) and (4) , unless explicitly
stated otherwise, we consider circula densities defined through nonzero Fourier coef-
ficients on the Z+ × (Z+ ∪Z

−) lattice. Figure 1 illustrates the five patterns of nonzero
Fourier coefficients. We emphasize the parametric specification of these coefficients.
In particular, the specific models generated by Patterns 2–5 are derived using geomet-
ric series of nonzero Fourier coefficients which have the added benefit of generating
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Fig. 1 The nonzero Fourier coefficients of Patterns 1–5 with q = −1 and m, n ∈ {0, 1, . . . , 6}. The values
of m appear on the horizontal axes, and those for n on the vertical axes. The area of a dot at (m, n) is
proportional to the value of φ(m, n). The panels for the five patterns are ordered from top left to bottom
right, reading from left to right

circulas with closed-form expressions for their densities. In order to obtain circula
densities exhibiting pointwise symmetry about the origin, all of the nonzero Fourier
coefficients are assumed to be real.

Since all of the patternswe consider have atmost one ofφ(1,−1) andφ(1, 1)which
is nonzero, we only quote values of ρR, those for ρJS and ρFL following from the rela-
tions identified in Sect. 2.2. The conditional mean directions and resultant lengths of
all of the models we consider can be easily calculated using the results presented in
Sect. 2.3; see Appendix A of the supplementary materials document. It follows that
the conditionals of the models considered afford uniform, linear-homoscedastic, or
nonlinear-heteroscedastic circular–circular regression. These properties and expres-
sions for modes and antimodes of the circula densities we consider can be found in
Table 1.

Appendix B of the supplementary materials document explains how data from any
c◦ or bivariate circular density of the form (1) can be simulated.

3.2 Pattern 1: single (nonzero) point

Let

φ(m, n) =
{

γ, (m, n) = (1,−q),

0, otherwise,
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Fig. 2 Planar contour plot of
circula density (9) with
parameter vector
(q, γ ) = (1, 0.3). Here and in
all other planar contour plots,
the horizontal axis represents ψ1
and the vertical axis ψ2. The
cross identifies
(ψ1, ψ2) = (0, 0)
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where 0 ≤ γ ≤ 1/2 and, here and henceforth, q ∈ {−1, 1}. Thus, this pattern includes
just a single nonzero real-valued Fourier coefficient. In this case, the circula density
(7) reduces to

c◦(ψ1, ψ2) = 1

4π2
{1 + 2γ cos(ψ1 − qψ2)} . (9)

Figure 2 portrays a planar contour plot of density (9) when q = 1 and γ = 0.3. For
this model, and all but one of the other models in this section, ρR = qγ (see Table 1).
The strength of dependence between �1 and �2 is thus controlled by γ , and its sign
by q. The conditional distributions of �1|�2 = ψ2 and �2|�1 = ψ1 are cardioid
distributions on the circle.

3.3 Pattern 2: diagonal line

Consider circula densities generated using nonzero Fourier coefficients on a diagonal
of the Z+ × (Z+ ∪ Z

−) lattice. Specifically, let

φ(m, n) =
{

ϕ(m), n = −qm,

0, n �= −qm,

where the ϕ(m) are the Fourier coefficients of any circular distribution, for which
ϕ(0) = 1. Then, the circula density is of the form

c◦(ψ1, ψ2) = 1

2π
g(ψ1 − qψ2), (10)

where g(ψ) = (2π)−1[1 + 2Re{∑∞
m=1 ϕ(m)e−imψ }] is a density on the unit circle.

This is theWehrly and Johnson (1980) class of circula densities discussed in Jones et al.
(2015). For all but the case when g is circular uniform, (10) has linear contours parallel
to the qπ/4 diagonal. Density (10) reduces to (9) when ϕ(1) = γ and ϕ(m) = 0
otherwise, and 0 ≤ γ ≤ 1/2.
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When ϕ(m) = γρm−1 (m = 1, 2, . . . , 0 ≤ γ < 1, 2γ − 1 ≤ ρ < 1), density (10)
can be expressed in closed form as

c◦(ψ1, ψ2) = 1

4π2

{
1 + 2γ

cos(ψ1 − qψ2) − ρ

1 + ρ2 − 2ρ cos(ψ1 − qψ2)

}
. (11)

For this model, all three parameters, γ = φ(1,−q) = ϕ(1), ρ and q, affect the
dependence between ψ1 and ψ2 although, as elsewhere, ρR = qγ . Figure S8 presents
planar contour plots of density (11) for q = −1, γ = 0.7 and three values of ρ.
The parameter ρ regulates the concentration of the wrapped Cauchy-like distribution.
Both conditional distributions are special cases of the unimodal circular distributions
of Kato and Jones (2015) which are two component mixtures with circular uniform
and wrapped Cauchy components.

3.4 Pattern 3: vertical line

Consider the pattern formed by nonzero Fourier coefficients on the vertical line of the
Z

+ × (Z+ ∪ Z
−) lattice given by

φ(m, n) =
{

ϕ(n), m = 1, qn ≤ −1,
0, otherwise,

for some nonzero Fourier coefficients ϕ.
For example, if ϕ(n) = γρ|n|−1 (0 ≤ γ ≤ 1/2, 0 ≤ ρ ≤ 1 − 2γ ), then

c◦(ψ1, ψ2) = 1

4π2

{
1 + 2γ

cos(ψ1 − qψ2) − ρ cosψ1

1 + ρ2 − 2ρ cosψ2

}
. (12)

Panels (a) and (b) of Fig. S3 present planar contour plots of density (12) with q = 1
and two (γ, ρ) combinations. The dependence between�1 and�2 is clearly regulated
by all three parameters: q, γ and ρ. In particular, γ regulates the strength of the
dependence between �1 and �2, and ρ the degree of deformation of the density’s
shape around the main diagonal. The conditional distribution of �1|�2 = ψ2 is a
cardioid distribution and that of �2|�1 = ψ1 is a special case of the Kato–Jones
family.

Generalizations of Patterns 1–3, for which the nonzero Fourier coefficients are posi-
tioned more generically, are considered in Appendix C of the supplementary materials
document.

3.5 Pattern 4: square

Now consider a square pattern of nonzero Fourier coefficients. As an attractive three-
parameter example of this, let

φ(m, n) =
{

γρm−1
1 ρ

|n|−1
2 , m,−qn ∈ Z

+,

0, otherwise,
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where 0 < ρ1, ρ2 < 1. Density (7) then becomes

c◦(ψ1, ψ2) = 1

4π2

{
1 + 2γ

cos(ψ1 − qψ2) − ρ2 cosψ1 − ρ1 cosψ2 + ρ1ρ2

(1 + ρ2
1 − 2ρ1 cosψ1)(1 + ρ2

2 − 2ρ2 cosψ2)

}
,

(13)
where the range of γ (≥ 0) is γ ≤ ρ1ρ2/[{(1−ρ2

1 )(1−ρ2
2 )}−1−1] if |ρ1−ρ2| ≤ ρ1ρ2,

γ ≤ (1−ρ1)(1+ρ2)/2 if |ρ1−ρ2| > ρ1ρ2 and ρ1 > ρ2, and γ ≤ (1+ρ1)(1−ρ2)/2 if
|ρ1−ρ2| > ρ1ρ2 andρ1 < ρ2. Figure S9 presents a contour plot of themaximumvalue
of γ as a function of ρ1 and ρ2. The maximum of γ tends to 0.5 as (ρ1, ρ2) → (0, 0).

The mode of density (13) occurs at (ψ1, ψ2) = (0, 0). If |ρ1 − ρ2| > ρ1ρ2,
then there is only one antimode of (13) which occurs at (ψ1, ψ2) = (0,−π) for
ρ1 > ρ2 and (ψ1, ψ2) = (−π, 0) for ρ1 < ρ2. When |ρ1 − ρ2| ≤ ρ1ρ2, there
are two antimodes which occur at (ψ1, ψ2) = ±(α1,−qα2), where α j = arg{ρ j +
(1 − ρ2

j )/(ρ j + eix j )} = atan2{−(1 − ρ2
j ) sin x j , 2ρ j + (1 + ρ2

j ) cos x j }, x j =
arccos{(ρ2

j − ρ2
jρ

2
k − ρ2

k )/(2ρ jρ
2
k )} ( j, k = 1, 2, j �= k) and atan2(y, x) returns the

angle measured anticlockwise from the x-axis to the vector connecting the origin with
(x, y). The conditional densities of �1|�2 = ψ2 and �2|�1 = ψ1 are special cases
of the Kato–Jones family.

Planar contour plots of circula density (13) designed to illustrate the roles of ρ1
and ρ2 are displayed in Fig. 3. When ρ1 = ρ2, the density is symmetric about the
main diagonal and increasingly concentrated in the neighbourhood of the origin as
ρ1 = ρ2 increases. For a fixed value of ρ1, as ρ2 increases the main axis of the central
elliptical contour tilts increasingly away from the main diagonal towards ψ2 = 0
and the dispersion increases in the neighbourhood of (−π,−π) = (π, π). Due to
the symmetry of (13), for a fixed value of ρ2 the main axis tilts increasingly towards
ψ1 = 0 as ρ1 increases.

3.6 Pattern 5: triangle

As a final basic pattern, consider an arrangement of nonzero Fourier coefficients
forming a triangular pattern. In particular, the pattern of nonzero Fourier coefficients
underpinning circula density (11) can be extended to

φ(m, n) =
{

γρm−1λ−(m+qn), 1 ≤ m ≤ −qn,

0, otherwise,

where 0 < ρ < 1, 0 ≤ λ < 1 . The constraints on γ (≥ 0) are γ ≤ ρ(1 − ρ2)(1 −
λ2)/[1−ρ2(1−λ2)] if λ ≥ (1−ρ)/ρ and γ ≤ (1−λ)(1+ρ)/2 otherwise. A contour
plot of the maximum value of γ as a function of ρ and λ is presented in Fig. S10. The
maximum of γ tends to 1 as (ρ, λ) → (1, 0). For this model, the circula density is

c◦(ψ1, ψ2) = 1

4π2

[
1 + 2γ

cos(ψ1 − qψ2) − λ cosψ1 + ρλ cosψ2 − ρ

{1 + ρ2 − 2ρ cos(ψ1 − qψ2)}(1 + λ2 − 2λ cosψ2)

]
.

(14)
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The mode of the density is located at (ψ1, ψ2) = (0, 0), and the antimode(s) at
(ψ1, ψ2) = (−π, 0) if λ < (1 − ρ)/ρ or at (ψ1, ψ2) = ±(α1,−qα2) if λ ≥ (1 −
ρ)/ρ. Here α1 = −α2 + atan2{(1 − ρ2) sin x1, ρ(2 + ρ cos x1)}, α2 = atan2{−(1 −
λ2) sin x2, 2λ + (1 + λ2) cos x2}, x1 = arccos{(−1 − ρ2 + ρ2λ2)/(2ρ)}, and x2 =
arccos{(1 − ρ2 − ρ2λ2)/(2ρ2λ)}. The conditional distribution of �1|�2 = ψ2 is a
special case of the Kato–Jones family, while that of �2|�1 = ψ1 does not seem to be
a well-known distribution in general.

Figure 4 presents planar contour plots of circula density (14) for q = 1, ρ = 0.6 and
three combinations of λ and γ . When λ = 0 the contours are straight lines because
(14) reduces to (11). As λ increases, the axis of the central elliptical contour tilts
increasingly away from the main diagonal towards ψ2 = 0 and the other contours
tend to be increasingly asymmetric about the main diagonal. Although the conditional
distribution of �2|�1 = ψ1 can have more than one mode, the joint distribution of
(�1, �2)with this unique dependence structure, as well as the conditional distribution
of �1|�2 = ψ2, is always unimodal.

Appendix D of the supplementary materials document briefly discusses the shapes
of bivariate circular densities obtained using (1) with circula densities generated by
Patterns 2 and 5.

4 Model fitting

4.1 Circula densities

Let {(ψ1k, ψ2k); k = 1, . . . , n} denote an i.i.d. sample of random vectors from a
circula density c◦ where, from here onwards, n denotes sample size. If the form
of c◦ is unknown and n is moderate to large, an inspection of a planar scatter-
plot of the data will usually be sufficient to identify q and provide insight as to
the form of c◦. However, the absolute values of the empirical Fourier coefficients,
φ̃(r ,−qs) = 1

n

∑n
k=1 e

i(rψ1k−qsψ2k ), for r , s = 1, 2, . . . , 6, say, represented graphi-
cally in a level plot, will generally prove more revealing, showing patterns, like those
in Fig. 1, indicative of the structure of the Fourier coefficients of c◦. Computation of
the empirical Fourier coefficients is extremely fast. In practice, a range of potential c◦’s
might be explored and the best fitting model established using information criteria,
model reduction based on likelihood ratio testing and formal goodness-of-fit testing.

All of the densities of the five specific circula models in Sect. 3 have, by design,
relatively simple closed-form expressions involving no computationally demanding
normalizing constants, so computation of their log-likelihood functions is straight-
forward. Maximum likelihood (ML) estimation is then conducted using standard
constrained optimization techniques. Method of moments (MM) estimates, calcu-
lated sequentially using the relations in Table 2, q = sgn(|φ(1,−1)|− |φ(1, 1)|), and
φ̃(r ,−qs) substituted for φ(r ,−qs), can be used as starting values.

The distribution function of a circula can be represented as C◦(ψ1, ψ2) =
C1|2(ψ1|ψ2)C2(ψ2), whereC2(ψ2) = ψ2/(2π) is the marginal, uniform, distribution
function of �2 and C1|2 is the conditional distribution function of �1|�2 = ψ2. It fol-
lows that �2 and 2πC1|2(�1|�2 = ψ2) are independent and follow circular uniform
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Table 2 Relations between parameters and Fourier coefficients for five specific models

Model Relations

Equation (9) γ = |φ(1, −q)|
Equations (11), (12) γ = |φ(1, −q)|, ρ = |φ(1,−2q)|/γ
Equation (13) γ = |φ(1, −q)|, ρ1 = |φ(2, −q)|/γ , ρ2 = |φ(1,−2q)|/γ
Equation (14) γ = |φ(1, −q)|, ρ = |φ(2, −2q)|/γ , λ = |φ(1, −2q)|/γ

distributions. Similar results hold for�1 and 2πC2|1(�2|�1 = ψ1). When the param-
eters of the conditional distributions are estimated, {(ψ2k, 2πĈ1|2(ψ1k |ψ2k)); k =
1, . . . , n} and {(ψ1k, 2πĈ2|1(ψ2k |ψ1k)); k = 1, . . . , n} will be samples of pseudo-
uniform vectors on the torus. Systematic patterns in scatterplots of such samples are
indicative of lack-of-fit. To test goodness-of-fit, we apply the obvious adaptation of
the parametric bootstrap approach described in Sect. 3.2 of Pewsey and Kato (2016)
to the two pseudo-uniform samples.

4.2 Bivariate circular densities

The shapes of the bivariate circular densities obtained using density (1) depend on the
reference points from which the marginal densities are integrated in the definitions of
the marginal distribution functions F1 and F2. Traditionally, the reference point used
has been the origin, 0. However, for this choice, changes in the location parameters
of the marginal distributions result in shape changes, not just location shifts, in the
densities obtained using Eq. (1). To avoid such shape changes, we define Fj (θ) ( j =
1, 2) as Fj (θ) = ∫ θ

ωA
j
f j (ϕ)dϕ (ωA

j ≤ θ < ωA
j +2π),whereωA

j denotes the antimode

of the circular density f j .
We advocate the following sequential approach to modelling i.i.d. samples of ran-

dom vectors {(θ1k, θ2k); k = 1, . . . , n} exploiting the three-component structure of
density (1). If the distributional forms of the marginal densities, f1 and f2, are not
specified beforehand, histograms and/or kernel density estimates can provide insight
into forms for them. Then, their parameters are initially estimated separately using
ML. Denoting the marginal distribution functions corresponding to those parameter
estimates by F̂ s

1 and F̂ s
2 , next the ‘pseudo-sample’ {(�̂s

1k, �̂
s
2k); k = 1, . . . , n} =

{(2π F̂ s
1(θ1k), 2π F̂ s

2(θ2k)); k = 1, . . . , n} is computed. The procedures described in
Sect. 4.1 are then applied to this pseudo-sample to obtain initial estimates of the form
of the underlying circula density and its parameters. Finally, the estimates from the
previous two stages are used as starting values in the maximization of the full log-
likelihood function derived from (1). We denote the marginal distribution functions
corresponding to the parameter estimates obtained in this final estimation stage by F̂1
and F̂2.

When the parameters of (1) are estimated as above, the samples {(2π F̂2(θ2k),
2πĈ1|2(2π F̂1(θ1k)|2π F̂2(θ2k))); k = 1, . . . , n} and {(2π F̂1(θ1k), 2πĈ2|1(2π F̂2(θ2k)|
2π F̂1(θ1k))); k = 1, . . . , n}will be pseudo-uniformly distributed on the torus, and the
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goodness-of-fit of the fitted bivariate circular density can be tested using the parametric
bootstrap approach referred to in Sect. 4.1.

Appendix E of the supplementary materials document explains how data from a
circula density or a bivariate circular density of the form (1) can be tested for inde-
pendence using the permutation approach proposed in Sect. 3.3 of Kato and Pewsey
(2015).

5 Numerical experiment

As part of our investigations into the performance of the modelling approach based
on (1) and our proposed circula densities, we performed an experiment designed to
compare its large-sample modelling capabilities with those of five existing bivariate
circular models. We simulated single samples of size n = 2000 from each of the
six models in Table 3, ranging from the 6-parameter pointwise symmetric model of
Rivest (1988) to models capable of describing very varied distributional shapes. The
parameter values in the same table were selected to produce representative unimodal
cases of each model.

For each simulated sample we fitted all six models by ML, without pursuing model
reduction, using R code developed by us and the CircNNTSR package of Fernández-
Durán and Gregorio-Domínguez (2016) to fit the bivariate non-negative trigonometric
sum (BNNTS) models. Table 4 contains the results obtained, the AIC values for the
BNNTS models being those for the BIC-adjudged best fits, BIC being the model
selection criterion advocated by Fernández-Durán and Gregorio-Domínguez (2014).

Using the column-wise sum of the ranks of the off-diagonal row-wise BIC values in
Table 4 as a simple measure of overall performance, the following ordering, from best
to worst, is obtained, with the sums of the ranks appearing between square brackets:
BGvM2 [7], BNNTS [15], FBvM [15 ], KJ2Circ [16], R [18], SsS [19]. The analogous
ordering for the AIC values is: BGvM2 [7], BNNTS [11], FBvM [16], KJ2Circ [17],
R [19], SsS [20]. Both orderings identify the BGvM2 model as having the best overall
performance.TheBIC-basedmeasure identifies theKJ2(13)model as having anoverall
performance similar to those of the BNNTS and FBvM models, with a marginally
better overall performance than the R and SsS models. According to the AICmeasure,
BNNTS models perform second best, with the KJ2(13) model performing similarly
to the FBvM model and, again, marginally better than the R and SsS models.

We note that, for the samples from all five alternative models, the best-fitting case
of (1) with Kato–Jones marginal densities and one of our proposed circula densities
(KJ2Circ) was the one incorporating circula model (13) (KJ2(13)). This fact indicates
that the circula structure underpinning the five alternativemodels can be approximately
matched using just one of the circula models considered. Figures S11 and S12 present
planar scatterplots of the six simulated data sets with contour plots of the best-fitting
alternative and KJ2Circ densities superimposed. They provide insight into the ability
of the KJ2Circ models to mimic the alternative models, and vice versa.

As the number of parameters of the underlying model increases, the performance
of the KJ2Circ and BNNTS models becomes increasingly competitive, although the
latter generally have far more parameters than their KJ2Circ counterparts. Also, while
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Table 3 Densities and parameter values of the six models used in simulations: Rivest (R); sine-skewed
Sine (SsS); full bivariate von Mises (FBvM); bivariate generalized von Mises of order 2 (BGvM2); (1)
with Kato–Jones f j (θ j ) and (14) as circula density (KJ

2(14)); bivariate non-negative trigonometric sum of
order (1,2) (BNNTS(1,2)). Throughout, c j = cos(θ j − μ j ), s j = sin(θ j − μ j ) and j = 1, 2. The models
are ordered, from top to bottom, by increasing number of parameters

Model Bivariate density, or marginal densities, and parameter values

R f (θ1, θ2) ∝ exp(κ1c1 + κ2c2 + α11c1c2 + α22s1s2)

μ1 = 0, μ2 = π , κ1 = 2, κ2 = 1, α11 = −3, α22 = 2

SsS f (θ1, θ2) ∝ (1 + λ1s1 + λ2s2) exp(κ1c1 + κ2c2 + α22s1s2)

μ1 = 0, μ2 = π/8, κ1 = 1, κ2 = 1.5, α22 = 1, λ1 = −0.5, λ2 = 0.5

FBvM f (θ1, θ2) ∝ exp(κ1c1 + κ2c2 + α11c1c2 + α21c2s1 + α12c1s2 + α22s1s2)

μ1 = 0, μ2 = −π/16, κ1 = 1.8, κ2 = 1,

α11 = 0.5, α12 = 0.6, α21 = −0.5, α22 = −1

BGvM2 f (θ1, θ2) ∝ exp{κ11c1 + κ12c2 + κ21 cos(2(θ1 − ν1)) + κ22 cos(2(θ2 − ν2))

+ η1 cos(θ1 − θ2 − ω1) + η2 cos(θ1 + θ2 − ω2)}
μ1 = 0, μ2 = −0.3, ν1 = −0.9, ν2 = 0.9, ω1 = −1.3, ω2 = 0,

κ11 = 1.9, κ12 = 1, κ21 = 0.3, κ22 = −0.7, η1 = −0.7, η2 = 0.8

KJ2(14) f j (θ j ) = 1
2π

[
1 + 2γ 2

j
γ j c j−ᾱ2, j

γ 2
j +ᾱ22, j+β̄2

2, j−2γ j {ᾱ2, j c j+β̄2, j s j }

]

μ1 = 0, μ2 = −π/4, γ1 = 0.58, γ2 = 0.4, β̄2,1 = 0.16, β̄2,2 = −0.11,

ᾱ2,1 = 0.16 , ᾱ2,2 = 0.11, ρ = 0.6, λ = 0.4, γ = 0.48

BNNTS(1,2) f (θ1, θ2) = | ∑1
j=0

∑2
k=0 τ jk exp{i( jθ1 + kθ2)}|2

τ00 = 0.09659105, τ01 = 0.06458246 − 0.00823441i ,

τ02 = 0.01863562 + 0.01807478i , τ10 = 0.06865395 + 0.01224350i ,

τ11 = 0.06970889 + 0.00037061i , τ12 = 0.02990480 + 0.02169680i

the interpretation of the parameters of KJ2Circ models is straightforward, the interpre-
tation of BNNTS parameters is generally impossible. The percentage increase in BIC
for the best-fitting KJ2(13) model above that for the best-fitting alternative model is
largest for the sample from Rivest’s 6-parameter pointwise symmetric model (4.6%)
and lowest for the data from the 10-(free)parameter BNNTS(1,2) model (0.6%).

6 Illustrative application

In contrast with the large sample size employed in Sect. 5, our illustrative analysis
considers a much smaller sample of n = 80 pairs of wind directions, {(θ1k, θ2k), k =
1, . . . , n}, recorded daily at a Milwaukee meteorological station at 4am and 6am,
respectively, during the last three months of 2020. (This analysis was inspired by
a related data analysis in Wehrly and Johnson (1980), which we have updated and
expanded.) The data were extracted from the vast Milwaukee Met Data Archive
series for 2020 available at https://www.glerl.noaa.gov/metdata/mil/archive/mil2020.
01t.txt, andfiles containing themare included in the zip file linked to the supplementary
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Table 4 AIC (top) and BIC (bottom) values of the specified fitted models for samples of size n = 2000
simulated using the model and parameter combinations in Table 3. The lowest off-diagonal values are
highlighted in bold. The circula density of the best-fitting case of (1) with Kato–Jones marginal densities
and one of our proposed circula densities (KJ2Circ) is identified as (cd). The number of (free) parameters
(np) for each fitted BNNTS model is that for the BIC-adjudged best fit

Simulated
model

Fitted model

R SsS FBvM BGvM2 KJ2Circ (cd) BNNTS np

R 10871.5 11757.1 11052.1 10877.6 11340.7 (13) 10938.6 38

10905.1 11796.4 11096.9 10944.8 11402.3 11151.4

SsS 11923.2 11861.0 11874.9 11873.5 12105.7 (13) 11949.1 22

11956.8 11900.2 11919.7 11940.7 12167.3 12072.3

FBvM 10645.7 10548.1 10501.3 10509.2 10672.3 (13) 10589.8 22

10679.3 10587.3 10546.1 10576.4 10733.9 10713.0

BGvM2 10516.4 10376.8 10410.1 10099.4 10245.3 (13) 10180.6 38

10550.0 10416.0 10454.9 10166.6 10306.9 10393.4

KJ2(14) 11862.4 12025.1 11680.1 11372.9 10829.5 (14) 11118.7 58

11896.0 12064.3 11724.9 11440.1 10891.1 11443.5

BNNTS(1,2) 12372.8 12380.6 12376.6 12235.3 12178.2 (13) 12105.2 10

12406.4 12419.8 12421.4 12302.6 12239.8 12161.2

materials document. Note that the archive does not include pairs of observations for
the other 12 days of the trimester.

Given the two-hour separation between the measurements in each pair, one would
expect them to be correlated. However, as the pairs span a trimester, it is not necessar-
ily obvious what form of relation might exist between the pairs, nor what shapes the
marginal distributions might exhibit. For the univariate time series, the only sample
autocorrelation coefficient identified as being significantly different from 0 using the
randomization version of the approach of Fisher (1993, Sect. 7.2.2) was the lag 1
coefficient for the 6am series, with an estimated p-value of 0.03 based on 9999 ran-
domizations. However, the value of that autocorrelation coefficient is low (0.11) and
in our analysis of the pairs of observations we treat them as forming an i.i.d. sample
of toroidal data. Figure 5 includes a planar scatterplot of the data converted to radians
in [−π, π), and Fig. 6a linear histograms of the θ1 and θ2 values. In the latter, the
superimposed circular densities are those of Kato–Jones ML fits.

The pseudo-sample {(2π F̂ s
1(θ1k), 2π F̂ s

2(θ2k)); k = 1, . . . , n} is portrayed in
Fig. 6b. From an inspection of it, the dependence between the pseudo-circular uni-
form variates is positive, i.e. q = 1. Figure 6c is a level plot of the absolute values
of the empirical Fourier coefficients for that pseudo-sample and q = 1. The largest
absolute values can be seen to form a diagonal pattern, indicative of circula density
(11) as a potential model for the underlying c◦. Figure 6d presents a planar scatterplot
of {(2π F̂1(θ1k), 2π F̂2(θ2k)); k = 1, . . . , n} superimposed upon a contour plot of the
circula density from the fitted KJ2(11) model.
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Fig. 5 Planar scatterplot of
{(θ1k , θ2k ), k = 1, . . . , n}
superimposed on a contour plot
of the ML-fitted density for the
full model (1) with marginal
Kato–Jones densities and the
circula density (11) with q = 1
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Table 5 Components of model (1) fitted to the wind direction data, parameters of the two marginal Kato–
Jones densities and the circula density (11), MM and ML estimates for the parameters of the Kato–Jones
densities fitted separately to the θ1 and θ2 values (MMs and MLs), MM and ML likelihood estimates for
the parameters of the circula density (11) with q = 1 fitted to the values of {(2π F̂s

1(θ1k ), 2π F̂s
2(θ2k )); k =

1, . . . , n} (MMc◦ and MLc◦ ), and ML estimates for the full model (MLf)

Component f1(θ1) f2(θ2) c◦
Parameter μ1 γ1 β̄2,1 ᾱ2,1 μ2 γ2 β̄2,2 ᾱ2,2 γ ρ

MMs −1.89 0.49 −0.07 0.12 −1.70 0.50 −0.05 0.12

MLs −1.89 0.50 −0.06 0.14 −1.72 0.50 −0.06 0.16

MMc◦ 0.75 0.07

MLc◦ 0.73 0.72

MLf −1.77 0.39 0.00 0.03 −1.73 0.43 0.00 0.05 0.78 0.76

The point estimates from the different stages of the fitting process are given in
Table 5. Table 6 contains the AIC and BIC values for the KJ2(11) model and the
five alternative bivariate circular models employed in Sect. 5. Both criteria select the
KJ2(11) model, a member of theWehrly and Johnson (1980) class with Kato and Jones
(2015) circular marginal distributions and circula density (11), as being best. Contour
plots of all six fitted densities are presented in Fig. S13. The densities of the models
with the highest BIC-values, SsS and BNNTS, are bimodal.

The contour plot of the ML-fitted KJ2(11) density included in Fig. 5 appears to
describe the distribution of the observations well, and the scatterplots of the pseudo-
toroidal uniform values in panels (e) and (f) provide little evidence of systematic
departures from toroidal uniformity. Also, the goodness-of-fit testing approach of
Pewsey and Kato (2016), using the Bingham-type test statistic for toroidal uniformity
of Wellner (1979) and B = 999 parametric bootstrap samples, returned a test statistic
value of 2.63 and an estimated p-value of 0.33. Thus, there is no significant evidence
against the KJ2(11) model being a good model for the data.
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Fig. 6 a Linear histograms of the wind directions with ML-fitted Kato–Jones circular densities
(dashed curves) superimposed. Planar scatterplots of: b {(2π F̂s

1(θ1k ), 2π F̂s
2(θ2k )); k = 1, . . . , n}, d

{(2π F̂1(θ1k ), 2π F̂2(θ2k )); k = 1, . . . , n} superimposed on a contour plot of the fitted circula den-
sity (11) from the full model fit, e {(2π F̂2(θ2k ), 2πĈ1|2(2π F̂1(θ1k )|2π F̂2(θ2k ))); k = 1, . . . , n}, f
{(2π F̂1(θ1k ), 2πĈ2|1(2π F̂2(θ2k )|2π F̂1(θ1k ))); k = 1, . . . , n}. c Level plot of the absolute values of the
empirical Fourier coefficients for the pseudo-sample in b and q = 1
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Table 6 AIC (top) and BIC (bottom) values of the specified fitted models for the n = 80 pairs of wind
directions. The number of (free) parameters (np) for the BNNTS model is that for the BIC-adjudged best
fit. The lowest values are highlighted in bold

Fitted model

R SsS FBvM BGvM2 KJ2(11) BNNTS np

402.1 454.2 402.5 407.4 380.6 441.2 16

416.4 470.9 421.5 435.9 404.4 479.3

The KJ2(11) model identified in our structured sequential analysis postulates the
underlying marginal circular distributions of the wind directions at 4am and 6am to
be symmetric cases of the unimodal Kato–Jones family with very similar parameter
values. Given the 2-hour separation between the two wind direction measurements,
the similarity between the marginal distributions is perhaps to be expected. The fitted
model also postulates that the positive dependence between the pairs ofwind directions
can be modelled using a circula with density (11) and q = 1. From the results in Jones
et al. (2015), this implies that �2 = 2πF2(�2) is the result of a random rotation,
�, from �1 = 2πF1(�1), � being independent of �1 and having circular density
g(ω) = 2π×(11) with ψ1 − ψ2 = ω.

7 Conclusion

As the specific models introduced in Sect. 3 illustrate, the proposed general Fourier
series construction provides a means of generating tractable parametric circula den-
sities with simple closed-form expressions and wide-ranging distributional shapes.
Moreover, when combined with Kato and Jones (2015) circular densities through (1)
they provide highly flexible models for toroidal data for which the marginal distribu-
tions are unimodal. Multimodal toroidal data can be modelled using mixtures of such
models.

The flexibility of the circula densities can be further enhanced by allowing the
Fourier series coefficients to be complex. The main effect of such an extension is to
skew the circula distributions in various ways.

Stationary Markov models for circular time series can be defined from our circula
densities using an analogous approach to that of Wehrly and Johnson (1980).

In principle, our bivariate circula construction can be extended to produce d-
dimensional circula densities using the multivariate analogue of (3) and patterns of
nonzero Fourier coefficients distributed in d dimensions. Another possibility is, as
mentioned in Jones et al. (2015), to model multivariate circular data using the circular
analogues of pair copulas.

Our proposedmethodologymakes use of level plots of the absolute values of empir-
ical Fourier coefficients computed from pseudo-samples as a highly successful model
identification tool. We stress again that such plots are generally easier to interpret than
scatterplots of the pseudo-samples themselves because they usually provide insight
into the structure of the Fourier coefficients of the underlying circula density.
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The advantage of the modelling approach based on (1) is that it facilitates the
separate modelling of the circular marginals and a circula density in a structured
sequential way. Also, as we have illustrated, it accommodates formal goodness-of-fit
testing, an issue neglected in the literature related to the application of existing models
for toroidal data.
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