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It is my pleasure to contribute to the discussion of Simon’s paper on “Inference and
computation with Generalized Additive Models and their extensions” which provides
an excellent overview of the current state of the art of the class of Generalized Additive
Models in a broad sense, i.e., including several modern developments such as func-
tional effects, interaction surfaces or distributional regression. I particularly enjoyed
the brief yet very informative summaries of inferential results and statistical comput-
ing where Simon takes a delightful pragmatic perspective by focusing on the applied
and computational pros and cons of approaches such as penalized likelihood, Markov
chain Monte Carlo simulations, integrated nested Laplace approximations or func-
tional gradient descent boosting. I believe that such a pragmatic perspective is indeed
required to bring recent advances concerning statistical modeling to applied scientists
utilizing these modeling techniques.

Another necessity for the future success of extended generalized additive models,
from my perspective, is considerably more work focusing on interpretation, visual-
ization or uncertainty quantification for such models if these should be routinely used
by applied researchers. In fact, already simple generalized linear models pose consid-
erable challenges concerning interpretation. While in some cases ceteris paribus-type
interpretations are still conceivable, these are usually restricted either to transforma-
tions of the expectation of the response (e.g., log odds in logistic regression or log
expectations in Poisson regression) or to relative effects (e.g., on odds in logistic
regression or the expectation in Poisson regression). While such relations are cer-
tainly relevant and can be interpreted correctly with enough care, they can also easily
lead to misleading conclusions. For example, a significant multiplicative and there-
fore relative effect on the odds in logistic regression does not necessarily lead to a
relevant effect on the actual probability for observing the event of interest, depending,
for example, on the value of the intercept or the values of the other covariates consid-
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ered. For specific types of covariate combinations, this may easily lead to the situation
that a significant relative effect leads to basically no absolute change in the success
probability.

While this is certainly well known for generalized linear models, the situation
gets considerably more complex in case of generalized additive models and their
extensions. For example, it is a common practice (admittedly also by the author of
this comment) to show the nonlinear additive effects f j (x j ) of a generalized additive
model only on the predictor scale and centered around zero. It is then very tempting to
identify regions where the corresponding covariate has a “positive” and a “negative”
effect although this indeed depends very much on the values of the intercept and all
other covariates. In fact, all additive components can only be interpreted ceteris paribus
in terms of differences f j (x j1)− f j (x j1) where x j1 and x j2 are pre-chosen values of
the covariate.

In models that comprise more than one predictor such as the “several smooth linear
predictors” models discussed in Section 3.4 of Simon’s paper, the situation gets even
more complicated since the same covariate may impact several of the distributional
parameters of the response distribution. As a consequence, it is rather difficult to judge
the actual effect of a given covariate on the response distribution since differences in a
covariate of interest may easily compensate or reinforce each other due to their effects
on the different distributional parameters.

Given these issues, I believe that future applied research on generalized additive
models and their extensions will have to develop appropriate visualization tools assist-
ing the user in interpreting the effect of covariates on the response distribution and
in checking the adequacy of the model. Furthermore, measures of effect relevance
and possibilities to quantify uncertainty for such derived measures (or other complex
functionals of the original model output) will certainly deserve more attention. From
my perspective, Bayesian inference based on Markov chain Monte Carlo simulations
will prove particularly useful at this point due to its ease in performing finite sam-
ple uncertainty assessments via sampling-based inference. A similar, yet asymptotic
approach is to perform a parametric bootstrap based on the asymptotic normality of the
regression coefficients where the bootstrap samples can also be plugged into complex
transformations to achieve sample-based measures of uncertainty.

Two other aspects that I would like to comment on concern the posterior consis-
tency of Bayesian quantile regression with asymmetric Laplace likelihood and the
potential of other inferential approaches for generalized additive models and their
extensions. For the former, Simon states that the consideration of the asymmetric
Laplace distribution as a working likelihood “is invalid since the asymmetric Laplace
is mis-specified as a probability model, and this mis-specification tends to become
extreme as we move away from the median quantile.” This is in contrast to the work
of Sriram et al. (2013) who showed posterior consistency of Bayesian inference even
under this mis-specification. While this is certainly only an asymptotic argument and
only concerns concentration of the posterior around the true value and therefore does
not cover uncertainty quantification, it still indicates that some sensible conclusions
can be drawn from models estimated under the mis-specified asymmetric Laplace
likelihood.
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Under the topic of other inferential approaches, I would particularly be interested
in hearing Simon’s opinion on the ability of variational approximations for estimating
complex generalized additivemodels.Waldmann andKneib (2015) have utilized these
for inference in Gaussian mean regression and quantile regression (again based on the
working likelihood of the asymmetric Laplace distribution) where similar schemes as
with Gibbs sampling in Markov chain Monte Carlo simulations can be derived. On
the other hand, they also found that uncertainty quantification tends to be complicated
using simple forms of variational approximations.
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