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It is a pleasure to comment on this interesting article by Wang, Bhattacharya and
Gelfand. The article discusses formal Bayesian inference on topographic features such
as slope and aspect using information from GIS. The authors have nicely exploited
and extended some of the previously established results on spatial gradients to infer
on topographic slopes and aspects. Bayesian inference, and sampling-based compu-
tation of the posterior predictive distribution, is very convenient here because the
topographic functions of interest are fairly simple functions of directional spatial gra-
dients. Therefore, posterior samples for slopes and aspects are immediately obtained
from the posterior samples of the directional gradients.

The key underlying feature of such modeling is that finite difference increments of
stationary Gaussian processes are again Gaussian processes and, hence, so are their
limits as the increments become negligibly small (see, e.g., Parzen 1962). In fact,
as the authors have correctly noted, since the smoothness of the process realizations
is determined by the stationary covariance function, one only needs to specify an
appropriate covariance function to ensure the existence of the gradient process. This
leads to an elegant distribution theory for spatial gradients that can be embedded within
hierarchical modeling contexts to carry out Bayesian inference for directional rates
of change (e.g., Banerjee et al. 2003) or even spatiotemporal gradients (Quick et al.
2015).

This framework can, in fact, be generalized to infer on sufficiently smooth func-
tionals of the process. Indeed, with an appropriate specification for a spatial process
Y (s), we can derive the multivariate process {¥ (s), LY (s)}, where LY (s) is a lin-
ear functional of Y (s), and carry out posterior predictive inference on the posterior
predictive distribution [LY (s) | Y (S)], where Y (S) are observations of Y (s) over a
finite set of locations S. One example is the estimation of gradients along curves to
derive Bayesian detection rules for so-called curves of rapid change or “wombling
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boundaries” (Banerjee and Gelfand 2006). In fact, estimating maximal gradient pro-
cesses (that are central in the current paper) is a central part of “wombling” or boundary
detection problems (see, e.g., Figure 2¢ in Banerjee and Gelfand 2006). Since the joint
process {Y (s), LY (s)} is a well-defined stochastic process over the entire domain, one
can predict either of Y (s) or LY (s) at arbitrary locations, including where none of
the two processes have been observed. In full generality, we can compute the predic-
tive densities [Y (Uy), LY (Up) | Y (S1), LY (S2)], where S; and S» are sets of locations
yielding observations on Y (s) and LY (s), respectively, and Uy and U, are sets of
locations where predictions are sought for Y (s) and LY (s), respectively.

And while we are at it, why not extend even further to quantities of interest in
vector analysis or differential geometry? For example, we can express the process in
terms of the random position vector r(u, v) = (u, v, Y(s)), where s = (u, v) and
infer on the basis vectors r,(s) = dr(u, v)/du and ry(s) = 9r(u, v)/dv, spanning
so-called tangent plane. Subsequently, we can compute the “first fundamental form”
(E(s), F(s),G(s)), defined as

E(s) = (ru(s), ru(s)): F(s) = (ru(s), ry(8)); G(s) = (ry(s), ro(s)),

where (-, -) denotes an appropriate inner-product. The first fundamental form com-
pletely determines several quantities of interest including curls, surface areas and arc
lengths. For instance, the differential element of surface area, say d A(s), is approxi-
mated by the area of the local patch on the tangent plane to the surface at (s) and is
given by the cross-product of the fundamental vectors as

dA(s) = ||or/du x dr/dv|ds.
This can be shown as equivalent to dA(s) = E(s)G(s) — F (s)2. The surface area of

r(s) is the continuous sum (integral) of the areas of these infinitesimal parallelograms
on the surface and is defined as

A(D):/dA (u,v):/ VE(s)G(s) — F(s)2ds.
seD

The first fundamental form depends only upon the gradient (components of Vr), so
statistical inference on the above quantities and their functions (such as A(D)) fits well
within the framework provided in the paper. In fact, in the sampling-based framework
one would only need to compute the gradients of r(s), which would immediately
provide the posterior distributions of the components of the first fundamental form.
The inference on physical quantities in classical vector analysis involving higher-order
differentials such as the Laplacians, curvatures and divergences can also be formulated
using appropriate hypersurface parametrizations.

As is apparent from the above, one could indulge oneself with the distribution
theory available for linear functionals of Gaussian processes. But are such problems
scientifically relevant? What types of applications would demand such inference? This
is not yet clear to me. In spatial statistics, inferring on LY (s) given observations on
the response seems to have been relevant for understanding zones and boundaries
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of rapid change. However, I have not seen many applications involving information
on gradients or linear functionals. This is perhaps because reliable information on
LY (s) is difficult to gather. We usually observe elevation, not gradients. In computer
experiments, where Gaussian processes are widely used as response surface emulators
for complex functional outputs, the computer program (or the physical system) can
provide information on gradients. Such information can, then, be used as part of the
data to interpolate the response surface (see, e.g., Morris et al. 1993). I think similar
explorations on predictive performances when gradient information is available, per-
haps from DEMs or DTMs, will be an interesting exercise to pursue. The authors state
that they never observe the slope or aspect process. This is correct, but can DEMs pro-
vide such information? Will incorporating such information help enhance inferential
performance?

I conclude with a few remarks specific to the paper’s contribution. This is relevant
since a casual reader may erroneously conclude that much of the paper rehashes
established results on the theory of spatial gradients. The authors have derived two
novel results, both of which play a central role in the inference of slope and aspect
processes. The first establishes conditions for the independence between the slope and
the aspect processes. The second outlines conditions for the aspect to have, a priori,
a circular uniform distribution. The proofs are elegant, and indeed, the results help
in building intuition behind these processes. I do note that the authors have focused
on inference for the mean E[Y (s)] = wu(s) + w(s), which will require the mean
function w(s) to be smooth and admit gradients. This may not always be true: consider
settings where 14(s) = x(s) " 8 and some of the explanatory variables are categorical.
Inference for Vw(s) is still permissible. Finally, while slopes and aspects on the
mean may be most relevant in purely spatial contexts, estimating slopes and aspects
in spatiotemporal latent processes w(s, ¢) and testing for their dynamic behavior for
the underlying process may still be useful in understanding local behavior of latent
processes.
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