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In Some recent work on multivariate Gaussian Markov random fields, author Ying
C. MacNab unifies several lines of research focused on multivariate formulations of
Gaussian Markov random field (MRF) models through a coregionalization framework.
MRFs are natural models for data on regular or irregular lattices, and, as the author
has noted, they have found application in a wide range of scientific areas. There are
significant computational advantages to MRFs that allow consideration of much larger
datasets, but there are also a number of other challenges that arise with such models.
The author specifically addresses two of these, namely the entanglement of spatial and
non-spatial components and the enforcement for positivity condition.

Multivariate Gaussian MRFs involve the specification of a precision matrix that
encompasses both the dependence between variables and the spatial dependence
across location. This precision matrix is often sparse, which enables the use of sparse
matrix methods to improve computational performance. However, these precision
matrices have very complex structure and parameterizations, which leads to the noted
issues with entanglement of the spatial and non-spatial components and difficulty with
ensuring these matrices are positive definite. While the paper yields a great deal of
information about these issues, there are some practical concerns for those interested
in using such models that are also important. We comment on those in the following
section. Next, against a statement made in the paper, the model of Sain et al. (2011)
does allow a separable structure as we show.

This comment refers to the invited paper available at https://doi.org/10.1007/s11749-018-0605-3.
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Practical issues

Much of the paper involves unifying the different types of multivariate MRFs through
coregionalization, and a number of different model types are presented. This is an
impressive undertaking and yields some interesting insights with respect to the entan-
glement of the spatial and non-spatial components. However, it seems that there is
still not one unified model formulation that allows movement between the different
approaches through some set of parameters. Thus, an analyst is stuck with choosing
one model and will often not try different alternatives. Or, the analyst is tasked with
implementing a number of different formulations and then trying to choose objectively
in a manner similar to what was done in the examples in the paper. It is still important
to provide guidance to analysts with the practical implications of the different models
and, in particular, encourage the analyst to seek out different options. Of course, it
remains an active research area to develop objective procedures to choose between
competing models.

One important reason to consider using MRFs is the ability to capitalize on sparse
matrix methods, particularly for larger datasets. The two examples discussed are useful
illustrations, but they have less than 100 locations each, which, for many applications,
particularly in climate and weather, remote sensing, etc., is really quite small. If the
ability to use sparse methods is lost, then it is a serious drawback to this approach.
While Section 6 of the paper deals with some of the computational issues, it seems
that the focus was on enforcing positivity of the precision matrix. While computation
for fairly small sample sizes such as those in the examples does not really need sparse
methods, computational approaches that are able to handle larger datasets are critically
important.

Another key issue with MRF models is that they do not, in general, lead to stationary
models. More importantly, this is often due to the configuration of the lattice, which
is often completely unrelated to the underlying physical process. Further, different
model formulations lead to different nonstationarities. Sain and Furrer (2010) used
a Kronecker product of two univariate stationary MRFs for a regular (rectangular)
lattice. While stationary and very computationally efficient for larger sample sizes,
the resulting covariance function has some less than desirable properties. It would be
interesting to see if these different types of coregionalization models are stationary
and how they compare with each other in this respect.

The paper also presents only first-order neighborhood models. For smoother fields
or when approximating Gaussian random fields with a Gaussian MRF, higher-order
neighborhood structures are needed (Rue and Tjelmeland 2002). Such neighborhood
structures are conceptually similar for the different models presented in the paper, but
we presume that they lead to different practical implications. Different neighborhood
structures add another level of complexity to what are already fairly complex statistical
models. However, it would be useful to see whether such models fit into a ready-to-use
Bayesian software environment. Further, a discussion of likelihood estimation would
also be useful to help address issues such as choice of parameterization or the impact
of transformations or constraints for parameters to improve estimation.
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Separability

The author notes in Section 3.2 that, “The Sain et al. (2011) framework does not
contain separable models in its family of MGMRFs.” This is not generally the case.
Consider the bivariate example outlined in the Sain et al. (2011) paper with depen-
dency connections defined to capture: (1) dependence between variables at a particular
location, (2) spatial dependence within a variable, and (3) cross-spatial dependence.
After some simplification, Eq. (5) of Sain et al. (2011) is written as
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where T = [11, ..., tp]/ is a p-vector of scale parameters where p is the multivariate

dimension, A is a p x p symmetric matrix with 1s on the diagonal and representing
the “within-location” dependence structure, B is a p X p matrix of spatial dependence
parameters, and §;; representing neighborhood structure (i.e., §;; = 1 location i and
location j are neighbors and §;; = 0 otherwise). Further restricting B to be symmetric
(and removing potential for asymmetric cross-dependence) and setting B = ¢ A where
¢ can now be thought of as a general spatial dependence parameter, Eq. (5) from Sain
et al. (2011) can be simplified to
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With some rearranging, this becomes [I,, ® rl/z] (I, —dH) ® A]*1 [1 ® rl/z],
where H is an n x n matrix with diagonal elements /;; = 0 and off-diagonal elements
hij = §;;. This gives the necessary Kronecker form, effectively separating the spatial
component (I, — ¢ H) and the non-spatial component (A).

The Sain et al. (2011) framework requires the specification of connections both
within and across the lattices associated with the different variables. It also requires
different assumptions and constraints on what values the parameters associated with
those connections can take on. Together, these two steps are ultimately controlled by
the modeler or analyst and specify the model structure, and it is up to the modeler or
analyst to carefully consider these two steps to span the desired model types. There
are different model structures under this formulation that would have a separable form
[such as the example discussed in Sain et al. (2011) and its extension to more than two
variables], and there are lattice structures and different specifications of connections
(or no connections, which is equivalent to forcing certain parameters to have a zero
value) that can easily be seen to not have a separable form.
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