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Abstract
I thank the discussants, Miguel A. Martinez-Beneito, Fedel Greco, Carlo Trivisano,
Stephan R Sain, and Reinhard Furrer, for their insightful and stimulating commentary.
The rejoinder is organized in five sections: (1) the M-based models, (2) posterior
sensitivity to prior choices for C andΣ , (3) stationary and non-stationary (M)GMRFs,
(4) various approaches tomodel formulation and related applications, and (5) statistical
computation.

1 TheM-basedmodels

Martinez-Beneito highlights two main advantages of coregionalization models: com-
putational convenience and validity by construction. In particular, he emphasizes the
computational advantages of the M-model construction. Indeed, hierarchically for-
mulated M-models and associated Bayesian computational methods are shown to be
computationally efficient in handling multivariate and multiarray spatial lattice data
of many variables.

The M-model proposal has two issues: identification and interpretation. It seems to
me that a good understanding of the two issues is important for both themethodological
and practical reasons. Here, I briefly discuss these issues and the need for additional
research.

Consider any p-variate M-model with p variable-specific spatial dependence
parameters, denoted M-model (c1, c2, . . . , cp) hereafter. It is mentioned in Botella-
Rocamora et al. (2015), MacNab (2016b), and the present paper that the spatial
parameters c1, c2, . . . , cp and theM-matrix therein are not identifiable. It seems to me
that the gain in computational efficiency for M-models comes at a price: the data loss
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Table 1 DIC results for indicated models. TheMinnesota cancer mortality data and the BC adverse medical
events data

Model Dbar pD DIC

M-model (c1, c2, c3), M[i, j] ∼ dflat() 1422 78 1501

M-model (c), M[i, j] ∼ dflat() 1424 69 1493

Separable MpCAR, Γ ∼ Wishart(diag(1), 3) 1408 99 1507

Separable MpCAR, Γ ∼ Wishart(diag(0.1), 3) 1434 67 1501

MiCAR, Γ ∼ Wishart(diag(1), 3) 1411 99 1510

MiCAR, Γ ∼ Wishart(diag(0.1), 3) 1430 68 1498

Bspline, 4 knots, M-model (c1, c2, . . . , c8), M[i, j] ∼ dflat() 3931 339 4270

Bspline, 4 knots, M-model (c), M[i, j] ∼ dflat() 3932 338 4270

control and identification of the spatial dependence parameters. An important ques-
tion arises: What are the additional benefit(s) the M-models might bring, compared
to their counterparts of separable models? Examples of competing separable models
include the M-model (c) (with a general spatial parameter c), the separable models of
the Mardia family, and the intrinsic multivariate CAR (MiCAR) models, to name a
few; see Table 1 for a brief illustrative DIC comparison. Separable models also have
similar or greater computational advantages. Additionally, data (partially) inform on
the general spatial parameter in a separable model.

Briefly illustrated here using the two data sets presented in the present paper, the
results of my recent study suggest that (i) the Markov chain Monte Carlo (MCMC)
implementation for the M-model (c) may be more stable, (ii) the spatial parame-
ter in M-model (c) is identifiable, (iii) the M-model (c) may outperform M-model
(c1, c2, . . . , cp) in terms of DIC (see Table 1), (iv) the M-model (c) may lead to less
posterior shrinkage of the marginal correlation and cross-correlation functions (see
Fig. 1), and (v) the two models can produce nearly identical posterior relative risk
smoothing, prediction, and inference (see Fig. 2).

In Botella-Rocamora et al. (2015), the posterior estimates of the within-location
covariance matrix Σ are used to draw inference for (log) relative risk correlations
between diseases. Due in part to the complex “entanglement” of the spatial and non-
spatial parameters in the M-model and in MGMRFs in general, and perhaps due in
part to the area-specific scaling factors, such interpretation of Σ for inference on the
pair-wise associations between diseases should be questioned. For example, it seems
to me that there is a tendency for the posterior estimates of the correlation parame-
ters in Σ(= MM�) to overestimate the disease risk associations. For the Minnesota
cancer mortality data, the Pearson correlation coefficient (PCC) for the esophageal
and lung cancers is 0.28. But, the posterior median (and standard deviation) of the
associated correlation parameter in Σ is r13 = 0.66 (0.22) for the estimated M-model
A and r13 = 0.73 (0.21) for the estimated M-model B. Table 2 presents the esti-
mated non-spatial correlation parameters for the estimated M-model and the MiCAR,
respectively. The correlation estimates for the MiCAR A are the closest to the PCCs.

These results on theM-models warrant a further investigation. For example, assess-
ing the M-models via a simulation study may offer insights into their utility as spatial
smoothers in multivariate disease mapping. The use of the M-models (with variable-
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Fig. 1 Illustrative comparisons of the posterior estimates of correlations (corr) and cross-correlations (cross-
corr) functions between the estimated M-model (c1, c2, c3) and M-model (c). The estimates are illustrated
using the results for county 1, which has 8 first-order neighbors. Each of the plots shows a cluster of
higher estimates of correlations and cross-correlations between the county 1 and its 8 first-order neighbors,
compared to the estimates between the county 1 and its higher-order neighbors. The Minnesota cancer
mortality data

specific spatial parameters), rather than the counterparts of separable models, for
modelingmulti-way data, as presented inMartinez-Beneito et al. (2017), also warrants
practically useful motivation, interpretation, and numeric assessment and comparison.

2 Posterior sensitivity to prior choices for C and 6

In the context of multivariate disease mapping where data may contain limited infor-
mation, Greco and Trivisano raise important practical issues concerning hyperprior
choices forMCARs and effect onmodel comparison and selection. They point out that
(i) posterior sensitivity to prior specifications for C andΣ may have a complex impact
on model selection (using DIC) and (ii) the currently used prior specifications over the
reparameterizations of the matrices Cs , C , andΣ may lead to order-sensitive posterior
risk shrinkage, predictions, and inference. In disease mapping and small area estima-
tion, notable posterior sensitivities to hyperprior specifications of (M)GMRFs are not
uncommon and should be reported as important indications of statistical uncertainty.
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Fig. 2 Illustrative comparisons of posterior estimates, median and standard deviation (sd), of relative risks
between the estimated M-model (c) and M-model (c1, c2, c3). The Minnesota cancer mortality data

Table 2 Posterior median and standard deviation (sd) of correlation parameters in Σ , derived from the
estimated M-models and MiCAR

Parameter M-model A M-model B MiCAR A MiCAR B PCC

Median SD Median SD Median SD Median SD

ρ12 0.49 0.43 0.58 0.38 0.16 0.25 0.50 0.31 0.06

ρ13 0.66 0.22 0.73 0.21 0.25 0.16 0.59 0.17 0.28

ρ23 0.62 0.29 0.71 0.27 0.15 0.18 0.53 0.24 − 0.06

M-model A: the M-model with prior Mjl ∼ dflat(); M-model B: M-model with prior Mjl ∼
N (0, σ−2), σ ∼ Unif(0, 10); MiCAR A: MiCAR with Γ ∼ Wishart(diag(1), 3); MiCAR B: MiCAR
with Γ ∼ Wishart(diag(0.1), 3); PPC: Pearson correlation coefficients based on the crude SMRs. The
Minnesota cancer mortality data

In what follows, I further explain the issues raised by Greco and Trivisano with
illustrative results of additional multivariate analysis of the Minnesota cancer data.

I begin with a brief illustration and explanation of how and why the uniform priors
placed on the eigenvalues of a symmetric matrix Cs , or on the singular values of an
asymmetric C, with uniform priors on the associated Givens angles, might impose a
priori restrictions on the elements of Cs or C . Figure 3 presents the resulting element-
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560 Y. C. MacNab

wise prior distributions for all elements of Cs and C , respectively. These element-wise
histograms were calculated based on 10,000 samples of Cs = P(θ)eP(θ) or C =
P(θ L)sP(θ R), where the ordered eigenvalues e were simulated from Unif(−0.322,
0.178), the ordered singular values s from Unif(0, 0.178), and the Givens angles θ ,
θ L , and θ R from Unif(−π/2, π/2).

As noted by Greco and Trivisano, element-wise prior patterns can be observed
from Fig. 3. Placing the above-mentioned priors on the eigenvalue decomposition of
Cs leads to skewed prior distributions on the diagonal elements of Cs . Heavier prior
restrictions toward zero are placed on the off-diagonal elements of Cs . The skewed
prior distributions, from right-skewed to the left-skewed (see the 9 plots on the left),
correspond to the descending order of the eigenvalues from 0.178 down to − 0.322.
Likewise, the patterns of increasing prior concentration toward zero, over the diagonal
and the off-diagonal elements of C (illustrated in the 9 plots on the right), are also
in line with the descending order of the positive singular values, from the upper limit
0.178 down toward 0.

It should be mentioned that these patterns are not due to the use of priors on the
Givens angles but are the result of eigen- or singular value decomposition with ordered
eigen- or singular values for unique decomposition of Cs or C. It is readily verified
that these patterns should disappear if the priors for Cs or C were simulated from the
same reparameterization but with un-sorted eigen- or singular values. Notice that the
descending or ascending ordering of the eigen- or singular values is necessary to enable
identification of Cs or C via its unique decomposition. Figure 3 also indicates that,
compared to placing priors on the eigenvalue decomposition of Cs , placing priors on
the singular value decomposition of C may lead to greater posterior shrinkage on the
diagonal elements {c j j ,∀ j} but less posterior shrinkage on the off-diagonal elements
{c jl ,∀ j �= l}.

In the Minnesota cancer mapping application, and for the cMpCARs of the Type II
decompositions, notable order sensitivities were observed from the resulting deviance
information measures (see Table 3) and from the posterior estimates of spatial and
non-spatial parameters (see Table 4). The posterior estimates of relative risks were
relatively unchanged for esophageal and lung cancers, respectively, with modest order
sensitivity for laryngeal cancer (see Fig. 4). Similar results are also observed from the
cMpCARs of the Type I decomposition (MacNab 2018).

Placing hierarchical priors on the elements of C , as presented in MacNab (2016b,
2018), may be one approach to order-invariant estimation of C and MGMRFs. My
recent case studies seem to indicate that placing hierarchical priors on the elements

Table 3 DIC results for
indicated models

Model Dbar pD DIC

cMpCARUC(C)†, y1, y2, y3 1423 72 1495

cMpCARUC(C)†, y3, y2, y1 1427 68 1494

cMpCARUC(C)†, y2, y3, y1 1424 56 1480

The Minnesota cancer mortality data
†: Priors are placed on singular value decomposition of C
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Rejoinder on: Some recent work on multivariate Gaussian Markov random fields 561

Table 4 Posterior estimates for
the linear coregionalization
cMpCARUC(C, A)(21), with
constraint s j ∈ (0, cmax), ∀ j , on
the singular value decomposition
of an asymmetric matrix of C,
A = P(θ)es P(θ), and for the
three ways of ordering the
variables indicated in table

Node (ζ 1, ζ 2, ζ 3) (ζ 3, ζ 2, ζ 1) (ζ 2, ζ 3, ζ 1)

Median SD Median SD Median SD

c11 0.15 0.36 0.46 0.41 0.42 0.46

c22 0.10 0.41 0.37 0.33 0.38 0.32

c33 0.67 0.22 0.67 0.22 0.61 0.20

c12 0.04 0.39 0.01 0.39 0.09 0.39

c21 0.00 0.37 0.01 0.38 0.07 0.39

c13 0.28 0.28 0.20 0.30 0.11 0.32

c31 0.37 0.27 0.31 0.29 0.23 0.29

c23 0.17 0.30 0.15 0.29 0.18 0.28

c32 0.24 0.28 0.28 0.29 0.31 0.28

ρ12 0.31 0.29 0.16 0.23 0.30 0.30

ρ13 0.43 0.22 0.44 0.23 0.37 0.19

ρ23 0.22 0.21 0.36 0.27 0.44 0.28

σ1 0.25 0.09 0.24 0.08 0.26 0.09

σ2 0.31 0.13 0.27 0.12 0.24 0.12

σ3 0.19 0.03 0.18 0.03 0.19 0.03

The Minnesota cancer mortality data

of C may impose less posterior shrinkage to C, perhaps less shrinkage to the diago-
nal elements of C (MacNab 2016b, 2018). The plots (a)–(d) in Fig. 5 illustrate that
the estimated correlation and cross-correlation functions of the cMpCARUC(C, A)

with positive definiteness constraint (PDC) and associated priors on the singular
value decomposition (SVD) of C are similar to, but overall lower than, those of the
cMpCARUC(c, A), the MGMRF with a diagonal matrix C = diag(c). Note that the
PDC and associated priors on the SVD of C may impose considerable shrinkage
to both the diagonal and off-diagonal elements of C, which might be a reason that
the estimated correlation and cross-correlation functions of the cMpCARUC(C, A), in
Fig. 5, plots (a)–(d), are overall lower than those of the cMpCARUC(c, A). In contrast,
the plots (e)–(h) in Fig. 5 seem to suggest that element-wise HPs on C may lead to
notably less posterior shrinkage to the correlation and cross-correlation functions.

Greco and Trivisano also comment and illustrate the impact of sensitivity to prior
specification for Σ on model comparison and selection. I agree with them that in
the present paper the observed differences between the models may be influenced by
the different prior specifications for Σ or Γ . Briefly illustrated in Table 1, when data
contain limited information, posterior sensitivity can be observed from the same (and
relatively simple) model but different (Wishart) prior specifications for Γ .

3 Stationary and non-stationary (M)GMRFs

Sain and Furrer comment that Markov random fields do not, in general, lead to sta-
tionary models. This would be true for the coregionalization models. In general, the
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so-called edge effects lead to latent (M)GMRFs with marginal correlations that dif-
fer by location. While not discussed in the present paper, formulations of stationary
(M)GMRFs for rectangular lattice-neighborhood schemes (with appropriate boundary
conditions/adjustments) are discussed in Besag (1972, 1974) andMardia (1988). Sim-
ilar approaches can be taken to formulate stationary latent fields that lead to stationary
coregionalization models. As mentioned by Sain and Furrer, stationary (M)GMRFs
may be motivated and formulated by problem-driven considerations of neighborhood
structures. Compared to non-stationary (M)GMRFs, these models typically involve
smaller number of unknown parameters and often have computational advantages,
say, in terms of scalability and efficiency.

In the present paper, some non-stationary (M)GMRFs with locally varying (adap-
tive) spatial and/or scale parameters are briefly outlined. These models are indeed
complex and containmany parameters. Brieflymentioned in the paper, locally adaptive
(M)GMRFs may be considered for their flexibility of modeling complex multivari-
ate interaction and dependence structures, perhaps facilitated by additional data for
covariates and explanatory variables.

I agree with Sain and Furrer that “it would be interesting to see if the different
types of coregionalization models are stationary and how they compare with each
other in this respect.” While a stationary coregionalization model may be built by
formulating stationary latent fields, an interesting question would be whether or how
a stationary coregionalization model may be built from non-stationary latent fields. In
addition, it would be interesting to knowwhether the “entanglement” of the spatial and
non-spatial parameters in the coregionalization models, say the models of the Type
II decomposition with full matrices C and A or their SVC counterparts, may give
the MGMRFs the flexibility to model or approximate stationary or nearly stationary
Gaussian fields.

The computational advantages of (stationary) GMRFs also motivated recent con-
siderations of fitting (stationary) GMRFs to (stationary) Gaussian fields formulated
through specifications of the covariance functions (Rue and Tjelmeland 2002; Cressie
and Verzelen 2008; Lindgren et al. 2011). In this context, both the local and global
properties of the GMRFs are important (Rue and Tjelmeland 2002). As noted in Rue
and Tjelmeland (2002), one important question is whether a GMRF with a small
neighborhood can approximate a Gaussian field with long correlation length. Figure 5
seems to indicate that the linear coregionalization MGMRF with element-wise HPs
for an asymmetricmatrix C of spatial parameters, which control for conditional spatial
dependencies and cross-dependencies in the latent MGMRF, may have the flexibility
to approximate smooth multivariate Gaussian fields. A follow-up and more rigorous
research into this perceived flexibility is necessary.

Rue and Tjelmeland (2002) indicate that local Markov random fields are able to
fit global properties to some extent. Sain and Furrer mention the need of higher-
order neighborhood structures for smoother fields. I agree with Sain and Furrer that
extensions of the MGMRFs to higher-order neighborhood structures and associated
Markovian dependence and independence may be conceptually straightforward but
analytically and computationally complex. Nevertheless, formulation and implemen-
tation of coregionalization MGMRFs of higher-order neighborhood structures are
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more manageable for p-variate GMRFs with p variable-specific spatial parameters or
for separable MGMRFs with a general spatial parameter.

4 Various approaches tomodel formulation and related applications

Sain and Furrer comment on the fact that, while the coregionalization framework
unifies several lines of MGMRF development, “there is still no one unified model
formulation that allows movement between the different approaches through some
set of parameters.” They rightly correct me and show that the Sain et al. (2011)
framework contains separable models. Indeed, if we free ourselves to allow the off-
diagonal blockmatrix elementsβ ik (when i ∼ k) in the Sain et al.MGMRF framework
to be parameterized with both the spatial and non-spatial dependence parameters, the
Sain et al. family of MGMRFs actually contains the MGMRFs of both Type I and II
decompositions. To put it differently, the following joint precision matrix

ΩMGMRF

vec (ζ�)
= Dm ⊗ Γ − (WU ⊗ B + W�

U ⊗ B�) (1)

(Equation (14) in the paper) represents a general formulation of the MGMRFs
contained within the Sain et al. (2011), the Mardia (1988), and the linear coregional-
ization (MacNab 2016a, b) frameworks. Through various parameterizations of B (eg.
B = B(C, τ ) or B = B(C,Γ ) or B = B(C,Σ1/2) or B = B(C, A)), specific
MGMRFs of the Type I or II decomposition could be derived to have a precision
matrix (1).

Martinez-Beneito comments on the need to better understand whether models pro-
duced from one approach can be reproduced from another approach. He also calls for
better understanding of the different features of the models produced by the different
approaches. The Sain and Furrer commentary and the above discussion offer some rel-
evant new insights. For example, if we define a MGMRF by its joint precision matrix
(1), the MGMRFs produced by the Mardia (1988) approach can be reproduced by the
Sain et al. (2011) approach, and vice versa.

The models with a precision matrix (1) but with different parameterizations of B
are different MGMRFs with different partial correlation and cross-correlation matrix
functions. They can also represent different conditionally formulated MGMRFs, one
based on univariate conditionals and the other multivariate conditionals. For MGMRF
estimation and inference, the different lines ofmodel development and different model
constructions also have had considerable influence on our choice for positive definite-
ness constraint and for hyperprior specification. As pointed out byGreco and Trivisano
and discussed earlier, the observed differences between the various models, say, those
presented in the present paper, may due in part to the different prior specifications
for the model parameters. I agree with Martinez-Beneito on the appeal of casting
the coregionalization MGMRFs within a matrix algebraic framework. For example,
the spatially varying coregionalization MGMRFs presented in the paper can be seen
as being built within a matrix algebraic framework. Indeed, the advantages of the
Martinez-Beneito (2013) framework are well illustrated in Martinez-Beneito et al.
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(2017), where the use of matrix theory and algebra for the formulations of complex
M-models, and the associated statistical computations, is presented.

In general, the challenges in constructing, constraining, and estimating a MGMRF
differ considerably depending on whether we pursue a separable or non-separable
model. If a non-separable model is considered, then a model with a diagonal matrix
of spatial parameters is, in general, more readily constrained and estimated, compared
to its counterparts with a full matrix of spatial parameters. My own experiences, and
the results presented in recent literature, also correspond with Martinez-Beneito’s
comment that, at least in the context of multivariate disease mapping, MGMRFs with
a full matrix of spatial parameters may not be necessary ormay be over-parameterized,
particularly for data of rare events.

MGMRFs with a full matrix of spatial dependence parameters may be useful when
the goal is estimation and inference on multivariate spatial dependencies. For exam-
ple, in the Sain et al. (2011) study, the motivating example for their bivariate MGMRF
proposal was to model and draw inference on asymmetric local dependencies between
two climate variables: temperature and precipitation. The pair-wise conditional asym-
metric spatial dependencies are quantified in relation to the variables and to the site
labeling. In some applications, this may be an appealing feature of the MGMRFs.
For example, complex and diverse interaction structures may be modeled by varying
the neighborhood structures, the labeling of the neighbor sets, and the parameters in
the MGMRFs. In the contexts of image analysis and restoration, computer vision,
social network analysis, and spatial data fusion, these MGMRFs may be potentially
useful for modeling and learning complex and varied local patterns and features of
dependencies and interactions.

Indeed, there is a lot to learn about the various MGMRF constructions. A good
understanding of the various approaches to formulating MGMRGs should enable us
to develop subject-matter-specific models that provide principled ways to express
dependency and interaction structures. I agree with Sain and Furrer that developing
objective procedures and practical guidance for choosing between competing models
is an area of ongoing and necessary research and progress. Potential utilities of the
various MGMRF constructions may be better explored as we succeed in tackling the
computational challenges in statistical estimation and inference. Overcoming these
challenges may also open new frontiers for MGMRF development and application.

5 Statistical computation

As mentioned in the paper, the currently available computational methods and tools
for Bayesian hierarchical MGMRFmodels primarily use Gibbs or Metropolis-within-
Gibbs sampling algorithms that capitalize on the conditional probability formulations
of (latent) Markov random fields (Besag et al. 1991; Besag and Green 1993). The full
conditionals facilitate relatively simple programming for location-wise or variable- and
location-wise posterior sampling, often requiring little or no matrix algebra. The main
disadvantage of these component-wise Gibbs sampling methods is that the MCMC
simulations can be impractically slow and the computational costs may be prohibitive
for datasets with a large number of sites (i.e., areal units) and/or a large number of vari-
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ables. Nevertheless, these computational tools are useful for modestly sized datasets
and have enabled us to gain deeper knowledge about the conditionally formulated
models discussed in the present paper.

While it contains limited mathematics tools, the WinBUGS (or OpenBUGS) free-
ware offers a user friendly and accessible interface forBayesian analysis of themajority
of the MGMRFs available to date. As illustrated in the recent literature and in the
present paper, WinBUGS may still be quite useful to statisticians and practitioners
who wish to use, learn, and test these MGMRFs in real-life applications, at least in
the near future.

I agreewithGreco–Trivisano and Sain–Furrer that writing computer code and pack-
ages outside WinBUGS, say, for a “ready-to-use Bayesian software environment,”
would be a worthwhile effort and can be essential for computational flexibility, effi-
ciency, and scalability. In the pursuit of this effort, alternative computational methods
and tools may be developed by tapping into sparse matrix methods that are available
in software of high-level programing language, such as the R (https://www.r-project.
org), Python (https://www.python.org), andMATLAB (https://www.mathworks.com/
products/matlab.html). For example, an R-package may be developed for existing
computational methods and traditional component-wise or block Gibbs samplers (Rue
2001; Rue and Held 2005). New Gibbs updating strategies for computationally effi-
cient posterior sampling on large lattices (Brown et al. 2017; Marcotte and Allard
2018) may also be explored by programing in R, Python, or MATLAB.

There are also several less-explored computational options that can take the advan-
tage of sparse MGMRF precision matrix. For example, instead of using the Gibbs
sampler for fully Bayesian hierarchical inference involvingMGMRF, we may explore
the possibility of developing an R-package for the so-called hybrid Monte Carlo algo-
rithm, also known as the HMC or the HamiltonianMC algorithm (Neal 1996;MacNab
2003a, b; MacNab et al. 2004; Gustafson et al. 2004; Girolami and Calderhead 2011).
If successful, the R-package may provide a tool for MCMC sampling of complex
multivariate posteriors, say, for the generalized linear mixed (GLMM) models with
the SVC priors discussed in the paper. In the context of Bayesian disease mapping
and ecological regression, my earlier works in this direction (MacNab 2003a, b; Mac-
Nab et al. 2004; Gustafson et al. 2004) explored GMRF estimation for modestly
large datasets (MacNab 2003a, b). Compared to the component-wise Gibbs sampler,
an adequately tuned HMC algorithm may facilitate computationally more efficient
joint posterior sampling of correlated (latent) components, such as correlated random
effects in GLMMs. For MGMRFs, a computational challenge is again the tuning of
user-specified parameters that (i) control the step size for proposal distribution and (ii)
determine a desired number of Monte Carlo runs. Recent works considered optimal
tuning (Beskos et al. 2013) or automatic tuning of the HMC parameters (Hoffman
and Gelman 2014). These lines of research are important and should make the HMC
algorithm more accessible.

We may also tap into the existing tools for Bayesian or approximate Bayesian
estimation and inference. For example, the Hamiltonian Monte Carlo sampling tools
offered by Stan interfaces (StanDevelopment Team2016), such as rstan for R,PyStan
for Python, and MatlabStan for MATLAB, may be explored and utilized. The R-
package for stochastic gradientMCMC, sgmcmc, may also be considered or expanded
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as a computational option for large datasets. Another option is to access and improve
the well-known Integrated Nested Laplace Approximations (INLA) tool in R, the R-
INLA, for approximate Bayesian inference, perhaps for MGMRFs of small or modest
p and a modest number of hyperparameters; see Rue et al. (2017) for a recent review
on approximate Bayesian computing with INLA.

Sain andFurrer comment on likelihood estimation as ameans to explore and address
issues concerning (i) choice of parameterization and (ii) potential impact of transfor-
mations or constraints for parameters on estimation. These and similar issues may
also be explored and addressed within a Bayesian hierarchical inferential framework
using efficient Bayesian tools. Nevertheless, likelihood-based estimation methods,
such as the pseudolikelihood approach (Besag 1974, 1975), (penalized) maximum
likelihood methods (Dempster 1977; Fessler and Hero 1995; Descombes et al. 1999;
Zammit-Mangion and Rougier 2018), penalized quasi-likelihood methods (Breslow
and Clayton 1993; Guha et al. 2009; Huque et al. 2018), or suitable variations, may
indeed be useful options. Likelihood approaches to hierarchical MGMRF estimation
typically involve (i) manipulations of sparse MGMRF precision matrices, (ii) itera-
tive procedures, and (iii) careful and adequate quantification of estimation uncertainty
(Ainsworth and Dean 2006; MacNab et al. 2004; MacNab and Lin 2009; Guha et al.
2009).

Variational inference (de Freitas et al. 2001; Kucukelbir et al. 2015, 2017; Blei et al.
2017 (a recent review); Zhang et al. 2018), composite likelihood methods (see Varin
et al. 2011; Larribe and Fearnhead 2011 for recent reviews), and parallel computing
(Gonzalez et al. 2011; Brown et al. 2017; Castruccio and Genton 2018) are also
potential options to be explored and utilized for analyzing data on large lattices.
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