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1 Introduction

It is very stimulating to comment on this paper, which offers a very comprehen-
sive review on multivariate GMRFs. Most of the latest developments on this field
are discussed, and connections between them are efficiently highlighted. The core-
gionalisation framework plays a prominent role over the whole paper as well as in
theory development, because it allows natural extension from a univariate setting to a
multivariate setting, providing both theoretical advances and hints for efficient com-
putational strategies. The entanglement of spatial and non-spatial components, which
generates challenges from both theoretical and computational point of view, is well
discussed, and we definitely agree with the author in claiming that it is a crucial topic
in multivariate modelling of lattice data and in spatial data modelling in general.

In this brief commentary, we focus on a couple of neglected features concerning
details that might be considered in prior specification and that may have impact on
the results, particularly when dealing with disease mapping, where the amount of
information is often very limited and posterior shrinkage is extremely sensitive to prior
assumptions: in this framework, observed differences between models can be simply
driven by different prior assumptions, and small changes to priors can cause changes
in posterior inference, favouring different models. The discussion is developed with a
notation coherentwith the one used inMacNab’s paper.Here,we briefly summarise the
models discussed in this commentary. We denote as vec(η) the np-dimensional vector
of spatially interacting latent variables and with vec(ζ ) = (A ⊗ In)vec(η) the vector
of coregionalised variables, where AAT = Σ is the p × p area-wise (non-spatial)
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covariance matrix. The joint precision matrix of the latent variables is:

Ωvec(η)(C) =
(
Ip ⊗ Dm − C ⊗ WU − CT ⊗ WT

U

)
. (1)

This delivers the following precision matrix of the coregionalised variables vec(ζ ):

Ωvec(ζ )(C, A) = (A ⊗ In)Ωvec(η)(C)(AT ⊗ In) (2)

Three different structures are considered for the spatial cross-correlation matrix C,
namely a diagonal structure denoted as Cd = cIp, a non-diagonal but symmetric
structure denoted as Cs and a non-diagonal and asymmetric structure denoted as Ca.
As regards the covariance matrix Σ , we consider both the Inverse Wishart prior and
the prior based on Givens angles (GA), as proposed in Daniels and Kass (2012). Note
that the same GA prior, with suitable modification to deal with positive definiteness
conditions for (1), is used for both Cs and Ca.

Sensitivity to prior assumption is a crucial topic inBayesian analysis, andwebelieve
that this should deserve particular care in the context of Disease Mapping, where the
noise might often be overwhelming with respect to empirical evidence, in particular
when the diseases under study are rare. We provide a short discussion of:

– the effect of priors on model selection, by means of DIC;
– the effect of using priors based on Givens angles in terms of prior weights assigned
to diagonal and off-diagonal elements of Cs.

2 Prior choice andmodel comparison in terms of DIC

DIC is the most widely used model comparison tool in Bayesian applications, also
because of its availability in BUGS. Nonetheless, DIC has been criticised as a model
comparison tool, particularly when richly parameterised models, as MGMRFs, are
involved: as an example, Chan and Grant (2016) argues that, in such cases, DIC may
favour more complex models, i.e. it may favour overfitting. This should be considered
when comparing multivariate models with univariate models in the context of Disease
Mapping. A very interesting discussion with useful insights regarding model compar-
ison is provided in Gelman et al. (2014), where WAIC is suggested as a promising
model comparison measure, but with some pitfalls in spatial modelling, since it relies
on a data partition.

To show sensitivity of model selection on prior assumptions, we present an appli-
cation referred to multivariate modelling of p = 3 diseases: acute ischaemic heart
diseases (D1), hypertension (D2) and chronic ischaemic heart disease (D3). Data
refer to death counts observed from 1998 to 2001 in n = 95 municipalities of the
Emilia-Romagna Region (Italy). The diseases show very different incidence, with
total observed counts equal to 4315, 1670 and 171, respectively.
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Table 1 Model comparison (DIC) with two different priors on Σ

IW Givens

Cd Ca Cs Cd Ca Cs

D1 611.9 610.2 610.3 608.6 605.8 600.7

D2 494.7 491.7 492.6 496.5 495.4 491.8

D3 245.1 243.3 245.7 242.1 240.0 241.1

Total 1351.7 1345.2 1348.6 1347.2 1341.2 1333.6

2.1 Effect of prior on 6

Table 1 reports model comparison in terms of DIC obtained with two different prior
choices for Σ , namely Σ ∼ IW(Ip, p) and the GA prior specification. The latter
starts by the spectral decomposition Σ = PΛPT where P is the orthogonal matrix of
the eigenvectors of Σ , and Λ is a diagonal matrix with ordered eigenvalues along the
diagonal. Matrix P is parameterised in terms of p(p − 1)/2 Givens angles θi j , i =
1, . . . , p−1, j = i+1, . . . , p. Hence, P = G12G13 . . . G1p . . . G(p−1)p whereGi j

is the p× p identity matrix with the i-th and j-th diagonal entries replaced by cos(θi j )
and elements i j and j i replaced by ± sin(θi j ), respectively. A Uniform(−π/2, π/2)
prior is selected for the Givens angles, while a Uniform(0, 10) is specified for the
eigenvalues.

Table 1 shows that, not surprisingly,DICvalues change under the two specifications.
Most importantly, a different model is selected in the two scenarios, with the model
using the asymmetric Ca matrix preferred when using the IW prior and the model
using the symmetric Cs matrix selected when using the GA prior. For a comprehensive
discussion on the differences between IW andGA priors, see Daniels and Kass (2012).

2.2 Effect of Givens angles prior on C

In this section, we discuss some issues related to the GA prior when it is employed
for the Cs matrix, but the same rationale applies to the specification of the prior on
Ca, which is based on singular value decomposition Ca = PSQT. This requires a
second set of priors on Givens angles to be specified for Q. Matrix S is a diagonal
matrix of singular values: the prior on singular values needs to be specified such that
matrix (1) is positive definite (see Greco and Trivisano 2009). The prior on Cs has
been employed in the context of disease mapping by Jin et al. (2007) in the so-called
order-free model. The prior is built following the same procedure outlined in Sect. 2.1,
with the difference that diagonal elements of the eigenvalue matrix are specified as
uniform distributions with their range fixed in order to be in compliance with positive
definiteness conditions for the joint covariance matrix (1). In our case study, such
range is (−1.585, 1), where −1.585 is the reciprocal of the smallest eigenvalue of
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Fig. 1 Prior distribution on the diagonal entries of Cs when p = 3

Fig. 2 Prior distribution on the diagonal entries of Cs when p = 8

As can be seen by simulation, the prior induces different prior distributions on
the diagonal entries of Cs, as well as on out-of-diagonal elements; in this sense, the
prior is not completely order-free. This is shown in Fig. 1, where simulations from
the prior are reported for the diagonal entries of Cs: it can be seen that the prior is
not exactly equivalent for such elements, with a left-skewed prior for Cs(1, 1) and a
right-skewed prior for Cs(3, 3). Again, this might affect estimation results in a context
where information provided by data is weak, as is the case in our application. As
regards disease D3, results show a different amount of shrinkage, as measured by the
standard deviation of the posterior means, when data on this disease are considered in
the model as the first or the third data vector. We note that this pattern becomes more
and more evident, for both diagonal (Fig. 2) and off-diagonal elements (not shown),
when p increases.

3 Computational tools

As a concluding remark, we suggest that estimation of MGMRFmodels in the context
of Disease Mapping would take great advantage from carefully programmed MCMC
algorithms collected in an R package. While it is true that BUGS offers a very friendly
interface for estimating Bayesian models accessible to practitioners, BUGS coding of
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MGMRFmodels can become cumbersome and, more importantly, it does not allow to
take full advantage of the sparseness of matrix (1). Such sparseness and the availability
of very efficient packages for matrix algebra as RcppArmadillo could broaden the
scope of MCMC algorithms coded in BUGS, allowing for both faster computation
and the possibility to manage larger n and p.
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