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We would like to congratulate Ruben Dezeure, Peter Bühlmann and Cun-Hui Zhang
for a stimulating and methodologically important contribution to the field of high-
dimensional statistics. They propose a bootstrap methodology to infer the distribution
of the statistic max j∈G |β̂ j −β j |/σ̂ j for any subset G ⊆ {1 . . . , p}, which particularly
allows the construction of simultaneous �∞-confidence ‘bands’ for the whole param-
eter β. Together with the suggested variance estimator this offers robustness against
misspecification of the error distribution and takes possible heteroscedasticity into
account. For the proofs multiplier bootstrap ideas from Chernozhukov et al. (2013)
are employed with technical virtuosity.

Here we discuss the potential shortfalls of this method for inference for relevant
functionals of β. Our main caveat is that one should not be misled by the fact that
one has a confidence region for the whole parameter and conclude that statistical
inference for every aspect of β is feasible. Even for simple linear functionals the
plug-in confidence set is possibly not useful. This is due to the fact that in the high-
dimensional setting not all norms are equivalent.

Let us illustrate this in the prediction problem in random design: one observes
(Y1, X1), . . . , (Yn, Xn)where for simplicity Xi are i.i.d.Gaussian with unit variance,
and is interested in predicting the linear functional E

[
Yn+1|Xn+1

] = XT
n+1β

0 for
some design vector Xn+1. The plug-in confidence set for XT

n+1β is
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Cn :=
{
XT
n+1β : β ∈ Cβ

n

}
, (1)

where the construction of the confidence set Cβ
n is given by Theorem 3 in Dezeure

et al. (2017). However, due to the use of the de-sparsified estimator in Cβ
n the set Cn

does not pick up the sparsity of β0 and can easily be seen to have width of order at
least

√
p log(p)/n with probability as close to one as desired. This is sub-optimal and

diverges to∞ in the high-dimensional setting p � n, renderingCn practically useless
compared to the minimax rate of estimation of XT

n+1β
0, which is

√
s0 log(p)/n.

We conjecture here that it is impossible to have inference procedures that both have
good �∞ and �2 behaviour simultaneously due to the need for de-sparsification in the
�∞-case and the need for sparse estimators that adapt to s0 in the �2-case.

Moreover, even when one uses a sparse estimator picking up the optimal rate√
s0 log(p)/n is in general not achievable by confidence intervals for the prediction

problem.
Using decision theoretic principles laid out in chapter 8.3 in Giné and Nickl (2016)

and carefully investigating the proofs in Nickl and Geer (2013) one can prove the
following result: we define the space of p1−γ -sparse vectors as

Θγ :=
{
β : β ∈ R

p,
∑

i :βi �=0

1 ≤ p1−γ

}
, 0 < γ < 1,

and have:

Theorem 1 Suppose that p ≥ n and that p1−γ = o(n/ log(p)) for some 0 < γ < 1.
Furthermore, assume that the Xi are i.i.d. N (0, I ) distributed, i = 1, · · · , n + 1.
Finally, assume that for some 0 < α < 1/3, the confidence set Cn is honest for XT

n+1β

over Θγ , satisfying

sup
β∈Θγ

Pβ

(
XT
n+1β /∈ Cn

)
≤ α.

Then, necessarily for any 1 > γ1 > γ ,

sup
β∈Θγ1

Eβ |Cn| ≥ C min

(
n−1/4,

√
p1−γ log(p)/n

)
. (2)

Specifically this implies that it is impossible to achieve adaptation, i.e. obtaining the
optimal rate

√
s0 log(p)/n for various values of β0 and s0, in the highly sparse region

with s0 = o(
√
n/ log(p)) assumed by Dezeure et al. (2017). Of course, one might say

that a diameter of n−1/4 ∨√
s0 log(p)/n is acceptable and is much better than the one

of (1) as it shrinks to 0. However, extending the proof of Theorem 1 using the results
from Ingster et al. (2010) one sees that even this is only attainable if one assumes that
the variance of the errors εi is known and otherwise the rate

√
p1−γ log(p)/n ∧ 1 for

an arbitrary γ > 1/2 is the best achievable rate for the prediction problem, even if the
true sparsity is much smaller.
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Other examples of functionals for which the above remarks apply include ‘dense’
functionals such as

∑p
j=1 β0

j (Cai and Guo 2017) or the �2-loss ‖β̂ − β0‖22 (Cai and
Guo 2016).

We want to point out here that for matrix inference problems with rank as unknown
parameter the situation is more favourable. For example, in (Carpentier et al. 2017)
we consider the matrix completion problem and investigate the existence of honest
and adaptive Frobenius confidence sets for the whole matrix. If ‘repeated sampling’ is
possible we give an explicit and computable construction of such a set, even when the
error variance is unknown, and thus show that in this model inference for functionals
related to the Frobenius distance is possible.

To conclude, the existenceofmeaningful confidence statements in high-dimensional
models depends highly on the statistical model, geometry of the underlying parame-
ter space and particular aspect under consideration and requires careful case by case
consideration. For practitioners the message is that extreme care has to be exercised
when constructing confidence sets. Dezeure et al. should be congratulated for singling
out a set of well-posed high-dimensional inference problems.
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