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The comments all underline the importance of random forests and of the connected
topic of variable selection. Of special interest is the diversity of perspectives, which
include theoretical, practical, and computational issues. To summarize, there are five
main points in the discussions that are quite recurrent:

(i) How can the results on “simplified” random forests be used to gain access to the
complex machinery of Breiman’s forests?

(ii) Do the existing results on Breiman’s forests extend to the non-i.i.d. setting?
(iii) What is the best randomization scheme? (feature selection at each node? at the

beginning of tree construction?)

This rejoinder refers to the comments available at: doi:10.1007/s11749-016-0482-6;
doi:10.1007/s11749-016-0483-5; doi:10.1007/s11749-016-0484-4; doi:10.1007/s11749-016-0485-3;
doi:10.1007/s11749-016-0487-1.
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(iv) How does the correlation between features impact the forest procedure and the
variable importance?

(v) Which splitting criterion is the most adapted to a given learning task?

It is unfortunately not possible to address all these exciting issueswithin the confines
of this rejoinder. In effect, eachof them is a research area in its own, and they all together
define an ambitious multi-year research program. We would like instead to add a sixth
item to the list above, regarding the out-of-bag (oob) error estimate properties (which
is defined in Sect. 2 of the manuscript).

Consider a forest in the classification regime, where each pair (Xi ,Yi ) takes its
values in, say, [0, 1]d × {0, 1} and n ≥ 2. Assuming that the resampling prior to the
j th tree construction is done with bootstrap (so, an = n and replacement is allowed),
we endupwith twodata sets: the original observationsDn = ((X1,Y1), . . . , (Xn,Yn)),
and the bootstrapped data set D ( j)

n = ((X( j)
1 ,Y ( j)

1 ), . . . , (X( j)
n ,Y ( j)

n )), with possible
repetitions. In the notation of the article, the j th tree classifier is mn(X;Θ j ,Dn). In

the sequel we set Θ( j) ≡ Θ j and use the more explicit notation mn(X;Θ( j),D
( j)
n ),

which highlights the fact that the tree is grown with the resampled data D ( j)
n .

The oob error estimate is defined as follows. For any observation Xi , let

B(i)
n = {

j ∈ {1, . . . , M} : (Xi ,Yi ) /∈ D
( j)
n

}

be the set of indices j such that the j th tree does not use Xi in its construction (i.e.,
Xi is not selected in the j th bootstrap step). Accordingly, let moob

M,n(Xi ;Dn) be the
majority vote among trees that do not use Xi in their construction, that is

moob
M,n(Xi ;Dn) =

{
1 if 1

|B(i)
n |

∑
j∈B(i)

n
mn(Xi ;Θ( j),D

( j)
n ) > 1/2

0 otherwise.

Then, the oob error estimate is but the error of themoob
M,n(Xi ;Dn) averaged over all

Xi :

L̂oob
M,n = 1

n

n∑

i=1

1
moobM,n (Xi ;Dn) �=Yi

.

Then, if mM,n(X;Θ1, . . . , ΘM ,Dn) denotes Breiman’s random forest, an interest-
ing open problem is to compare L̂oob

M,n with the natural target

LM,n = P[mM,n(X;Θ1, . . . , ΘM ,Dn) �= Y |Dn],

where the probability is taken with respect to both (X,Y ) and Θ1, . . . , ΘM . The
random quantity LM,n measures the effectiveness of the forest, and since it cannot be
computed, the immediate need of the statistician is to estimate it by L̂oob

M,n as accurately
as possible. Therefore, the challenge that we put on the sixth position of the list is the
following one:
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(vi) Derive an exponential inequality for P[|L̂oob
M,n − LM,n| ≥ ε].

Let us now describe another stimulating challenge. Letting

A( j)
n = {

i ∈ {1, . . . , n} : (Xi ,Yi ) /∈ D
( j)
n

}

and denoting by α
( j)
n its cardinality, we may define the j th individual oob error

estimate as

L̂( j)
n = 1

α
( j)
n �=0

× 1

α
( j)
n

∑

i∈A( j)
n

1
mn(Xi ;Θ( j),D ( j)

n ) �=Yi
.

L̂( j)
n is the estimation of the j th tree error evaluated over the data that are left out by

the j th bootstrap. We note that the event [α( j)
n = 0] has probability n!/nn , which by

Stirling’s approximation behaves as
√
2πne−n as n → ∞.

Logically, the global oob error estimate is the average of the individual error esti-
mates. Thus, for a forest with M trees, we have

L̂M,n = 1

M

M∑

j=1

L̂( j)
n .

Let

Ln = P[mn(X;Θ,Dn) �= Y |Dn]

be the error of a random tree. The following lemma is proved at the end of the discus-
sion.

Lemma 1 For all ε > 0 and n ≥ 2,

P
[|L̂M,n − Ln| ≥ ε

] ≤ 2Me
−nmin

(
ε2
160 , 2

25

)

+ Me
√
ne−n + 2e−Mε2/2.

In particular, with the choice M = 
n/80�, regardless of the distribution of (X,Y ),

P
[|L̂M,n − Ln| ≥ ε

] ≤
(

n

40
+ 4 + e

)
e
−nmin

(
ε2
160 , 2

25

)

.

Lemma 1 shows that L̂M,n and Ln are asymptotically exponentially close, provided
M = 
n/80�. This distribution-free result is not surprising since, given the data setDn ,
Ln is but the error of a single random tree averaged over the randomization parameter
Θ .

Observe that Θ is of the form Θ = (Θ1,Θ2), where Θ1 describes the bootstrap
subset selection prior to the tree growing, and Θ2 encapsulates the random feature
selection in action at the nodes of the tree. So, for each tree of the forest, Θ( j)

1 chooses
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with replacement n items within the list {1, . . . , n} and the j th tree is grown with the
bootstrapped data subset D ( j)

n . On the other hand, if this tree were to be grown with
the original data set Dn instead of D ( j)

n —that is, if we used all available data—then
we would measure its prediction performance via the criterion

L̄n = P[mn(X;Θ2,Dn) �= Y |Dn].

The second challenge that we pose is as follows:

(vi)′ Derive an exponential inequality for P[|L̂M,n − L̄n| ≥ ε].
Put differently, we would like to know under which conditions on the distribution of

(X,Y ) the global oob error estimation process is smart enough to accurately estimate
the average error of a tree grown with the whole data set, without any prior bootstrap
randomization. A possible route to follow is to note that each tree of the forest is
a Layered Nearest Neighbor estimate (LNN, see Sect. 3 of the article) and adapt
stability arguments given by Devroye and Wagner (1969) for the holdout estimate of
the classification error of k-local rules. We believe however that the analysis is more
involved in the case of forests, since the tree rests upon the highly nonlocal cart
program.

Appendix: Proof of Lemma 1 Let, for fixed j ,

L( j)
n = P[mn(X;Θ( j),D

( j)
n ) �= Y | Θ( j),Dn]

and observe that
E[L̂( j)

n | Θ( j),D
( j)
n ] = 1

α
( j)
n �=0

L( j)
n . (1)

Also notice that

P
[|L̂( j)

n − L( j)
n | ≥ ε

]

≤ P
[|L̂( j)

n − 1
α

( j)
n �=0

L( j)
n | ≥ ε/2

] + P
[|1

α
( j)
n =0

L( j)
n | ≥ ε/2

]

≤ P
[|L̂( j)

n − 1
α

( j)
n �=0

L( j)
n | ≥ ε/2

] + P[α( j)
n = 0]

= P
[|L̂( j)

n − 1
α

( j)
n �=0

L( j)
n | ≥ ε/2

] + n!/nn .

Therefore, using (1) and Hoeffding’s inequality (Hoeffding 1963), we obtain

P
[|L̂( j)

n − L( j)
n | ≥ ε

]

≤ E

[
P

[∣
∣L̂( j)

n − E[L̂( j)
n | Θ( j),D

( j)
n ]∣∣ ≥ ε/2

∣
∣
∣ Θ( j),D

( j)
n

]]
+ n!/nn

≤ 2Ee−α
( j)
n ε2/2 + n!/nn .
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A second application of (one-sided) Hoeffding’s inequality shows that for t > 0,
with probability larger than 1−e−2t2/n , α( j)

n > −t +n(1−1/n)n . Thus, for all t > 0,

Ee−α
( j)
n ε2/2 ≤ e(tε2−n(1−1/n)nε2)/2 + e−2t2/n

≤ e−nε2(−t/n+1/4)/2 + e−2t2/n,

since (1 − 1/n)n ≥ 1/4 for all n ≥ 2. The choice t = n/5 yields

Ee−α
( j)
n ε2/2 ≤ 2e

−nmin
(

ε2
40 , 2

25

)

.

Putting all the pieces together, we conclude that, for all ε > 0,

P
[|L̂M,n − Ln| ≥ ε

]

≤ P

[ 1

M

M∑

j=1

|L̂( j)
n − L( j)

n | ≥ ε/2
]

+ P

[∣∣
∣
1

M

M∑

j=1

L( j)
n − Ln

∣
∣
∣ ≥ ε/2

]

≤ M
(
2e

−nmin
(

ε2
160 , 2

25

)

+ n!/nn
)

+ P

[∣∣
∣
1

M

M∑

j=1

L( j)
n − Ln

∣
∣
∣ ≥ ε/2

]
.

By Hoeffding’s inequality, the last term is upper bounded by 2e−Mε2/2. Thus,

P
[|L̂M,n − Ln| ≥ ε

] ≤ 2Me
−nmin

(
ε2
160 , 2

25

)

+ Me
√
ne−n + 2e−Mε2/2.

Finally, letting M = 
n/80�, we have

P
[|L̂M,n − Ln| ≥ ε

] ≤
(

n

40
+ 4 + e

)
e
−nmin

(
ε2
160 , 2

25

)

.
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