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The authors are to be congratulated for their solid contribution in providing a powerful
method that handles classification and dimension reduction problems with functional
data sets. This type of problemshas drawnmuch attention in the literature, and is known
to be difficult due to the complex structure of the corresponding data sets. In particular,
many existing dimension reductionmethods ignore the relationship between predictors
and labels, and perform dimension reduction only using the covariates. Such proce-
dures can be suboptimal and may lead to unstable results, especially when the predic-
tors are sparsely observed. The proposed PEFCSmethod integrates the observed labels
in the dimension reduction step by estimating class-conditional probabilities, and is
shown to enjoy more competitive and robust performance in numerical examples.

This interesting paper leads to many promising research directions. For example,
class-conditional probability (we denote it by Pj (X̂i ) = pr(Y = j | X̂i )) estimation
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is a crucial step in the PEFCS method. In the literature, it is known that classification
methods can be grouped into two main categories: soft and hard classifiers (Wahba
2002; Liu et al. 2011). Soft classifiers directly estimate class-conditional probabili-
ties, which further leads to classification rules. Typical examples of soft classification
include Fisher’s LDA and logistic regression. In contrast, hard classifiers bypass direct
estimation of probabilities and focus on classification boundary estimation. Typical
examples of hard classification include the support vector machine (SVM, Boser et al.
1992;Cortes andVapnik 1995) andψ-learning (Shen et al. 2003). In Liu et al. (2011), it
was observed that the classification performance of various classifiers depends heavily
on the underlying distribution of (X,Y ). The authors use the hinge loss for the SVM in
this paper. Therefore, a possible generalization of the proposed technique is to employ
a more general loss function in their equation (5) for probability estimation, instead
of using the weighted SVM. We will briefly discuss the idea below.

Consider the optimization problem

min
g∈FK

n∑

i=1

�
{
Yi g

(
X̂i

)}
+ λ‖g‖2FK

, (1)

where �(·) is a differentiable loss function for a soft classifier. One can verify that
P+1(X̂i ) can be estimated using �′{−ĝ(X̂i )}/�′{ĝ(X̂i )} (Liu et al. 2011). For standard
classification where the predictors are scalars or vectors, Liu et al. (2011) pointed out
that when the underlying class-conditional probability, as a function of the predictors,
is relatively smooth, soft classifiers tend to perform better than the hard ones. More-
over, the transition behavior from soft to hard classifiers were thoroughly investigated
using the large-margin unified machine family proposed by Liu et al. (2011). For
functional data classification, the comparison between soft and hard classifiers and
the corresponding transition behavior are largely unknown, and further exploration in
this direction can be very interesting.

Another potential research topic is to extend the PEFCS methodology to handle
multicategory problems. In this case, the construction of slices in the EDR method
becomes more involved. In particular, when Y ∈ {+1,−1}, only one direction of
the EDR space can be recovered, because of the existence of homogeneity in learn-
ing problems with binary responses. To overcome this difficulty, Shin et al. (2014)
proposed to construct slices based on P+1(X̂i ). In multicategory classification, esti-
mation of the class-conditional probabilities becomes more complex, as one needs
to estimate a probability vector {P1(X̂i ), P2(X̂i ), . . . , Pk(X̂i )}. Furthermore, how to
construct S(P1,P2,...,Pk )|X remains unclear. Therefore, it can be interesting and chal-
lenging to develop newmethodology in this future research direction.Next, we provide
one possible way to generalize the PEFCS methodology for multicategory problems.

For margin-based classification, when the number of classes is three or larger, one
classification function g(·) is not enough to discriminate all classes. To overcome this
difficulty, a common approach in the literature is to use k functions for k classes,
and impose a sum-to-zero constraint on the k functions to reduce the parameter space
and to ensure some theoretical properties such as Fisher consistency. Recently, Zhang
and Liu (2014) suggested that using k functions and the sum-to-zero constraint can
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be inefficient and suboptimal, and proposed the angle-based large margin classifiers
for multicategory classification. In particular, consider a simplex W with k vertices
{W1, . . . ,W k} in a (k − 1)-dimensional space, such that

W j =
{

(k − 1)−1/21k−1, j = 1,
− (

1 + k1/2
)
/{(k − 1)3/2}1k−1 + {k/(k − 1)}1/2 e j−1, 2 ≤ j ≤ k,

where 1k−1 is a vector of 1’s with length k − 1, and e j ∈ R
k−1 is a vector with the j th

element 1 and0 elsewhere. In angle-based classification, oneuses a (k−1)-dimensional
classification function f = ( f1, . . . , fk−1)

T , which maps x to f (x) ∈ R
k−1, where x

is the predictor vector.Observe that f introduces k angleswith respect toW1, . . . ,W k ,
namely, � ( f ,Wj ); j = 1, . . . , k. The prediction rule is based on which angle is the
smallest. In particular, ŷ(x) = argmin j∈{1,...,k} � ( f ,Wj ), where ŷ(x) is the predicted
label for x. Based on the observation that

argmin
j∈{1,...,k}

� ( f ,Wj ) = argmax
j∈{1,...,k}

〈 f ,W j 〉,

Zhang and Liu (2014) proposed the following optimization problem for the angle-
based classifier

min
n∑

i=1

�{〈W yi , f (xi )〉} + λJ ( f ), (2)

where �(·) is a binary margin-based surrogate loss function, J ( f ) is a penalty on f to
prevent overfitting, and λ is a tuning parameter to balance the goodness of fit and the
model complexity. One advantage of the angle-based classifier is that it is free of the
commonly used sum-to-zero constraint, hence it can bemore efficient for learningwith
big data sets. Thus, generalization of the PEFCSmethod in the angle-based framework
should be feasible and promising.
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