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Abstract We thank the discussants, the referees, and the associate editor for their
stimulating discussions and helpful remarks. We thank the editor for giving us the
opportunity to discuss our paper in this journal. The rejoinder is organized in several
sections, which address the main points raised by the discussants.

1 Computational issue

Christophe Croux and Viktoria Ollerer (CO), Ricardo A. Maronna (MA), Peter
Rousseeuw and Wannes Van den Bossche (RV), Stefan Van Aelst (VA), and Roy
E. Welsch (WE) comment on the high computational cost of the two-step generalized
S-estimator (2SGS) and the need for faster alternatives.

MA, WE, and VA propose to separate the imputation step from the estimation to
bypass the computational complexity of 2SGS. The idea is to first filter the outliers,
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second impute the filtered cells, and third estimate the multivariate location and scatter
matrix using some computationally efficient robust procedure, such as the fast-S or
the fast-MCD. This approach is called “three-step estimator” by VA.

The first step of 2SGS (filter) is fast, but the second step is slow due to the compu-
tation of the generalized S-estimator (GSE) (Danilov et al. 2012). We notice that GSE
first resamples the filtered data to compute an initial estimate and then iterates until
convergence a sequence of robust imputation and estimation steps. These iterations
can be computationally intensive and time consuming when a large fraction of the
data has been filtered. However, the main computational burden in GSE comes from
the computation of the initial robust estimator (extended minimum volume ellipsoid,
EMVE) which is needed to achieve high robustness against casewise outliers.

EMVE is a generalized version of MVE, which was introduced by Rousseeuw
(1985). The computation of EMVE consists of a combination of resampling and con-
centration steps. Once the estimators of location and scatter for a given subsample
are obtained, the concentration step consists of computing the Gaussian MLE via the
classical EM algorithm on the half of the observations with the smallest Mahalanobis
distances. The concentration steps are time consuming, especially when there is a large
number of filtered cells. This problem is aggravated by the required large number of
subsamples, especially when p is large.

To save computing time, we now study the performance of a faster alternative to
2SGS, which we call Fast-2SGS. The Fast-2SGS is identical to 2SGS except that in
the second step we now initalize GSE with a faster initial estimator instead of the time
consuming EMVE. The faster initial estimator (inspired by the discussant’s comments)
is a simple three-step estimator described below.

Step 1. Filter cellwise outliers. We flag cellwise outliers using the Gervini—Yohai
filter and replace them by NA’s.

Step 1. Impute filtered cells. Following the discussants’ suggestion, we impute the
filtered cells using coordinate-wise medians. This simple imputation proce-
dure seems sufficient, in our case, to obtain a fast and robust initial estimator.
VA proposes a finer imputation approach: estimating the cell predictive dis-
tribution by fitting a robust simple regression of the missing variable on its
most correlated counterpart. Unfortunately, in our naive implementation,
this approach is very slow due to the inefficient looping in R needed to fit
the different robust regressions. However, VA’s suggestion seems interesting
and deserves further study.

Step III. Robustly estimate the multivariate location and scatter matrix. We apply
the MVE-S (see Maronna et al. 2006, Section 6.7.5) to the imputed data.
The MVE-S is an S-estimator with bisquare p-function and MVE as initial
estimator. We use MVE-S rather than other faster alternatives because this
estimator best resembles the EMVE used in the original proposal.

This simple three-step estimator is called IS (for imputed data S-estimator) in the table
and the figures below.

We conduct a simulation study to investigate the average computing time and robust-
ness performance of Fast-2SGS and 2SGS. For comparison, we also included IS and
the DetMCDScore proposed by RV. We consider several dimensions p and sample

@ Springer



486

C. Agostinelli et al.

Table 1 Average CPU time—in seconds of a 2.8 GHz Intel Xeon

Dim ICM THCM
2SGS Fast-2SGS ~ DetMCDScore IS 2SGS  Fast-2SGS  DetMCDScore IS
10 0.70  0.10 0.01 0.08 0.36  0.08 0.01 0.06
20 6.93 0.50 0.03 0.28 148 024 0.03 0.15
30 31.51  1.72 0.07 0.68 426 0.59 0.06 0.22
40 91.21 4.41 0.12 1.34 8.24 142 0.12 0.29
50 210.05 9.37 0.20 230 12.83 3.36 0.20 0.38
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Fig. 1 Average LRT for various contamination values, k, from ICM and THCM. Results are based on
p = 40 dimensional data sets

sizesn = 10 x p. We use the random correlation structures described in Sect. 4 of the
original paper. For each dimension, we average the results over 100 replications of the
following setups: (a) cellwise contamination with k = 1,2, ..., 6 and (b) casewise
contamination with k = 5, 10, ..., 100. The range of k was chosen so that it contains
the maximum average LRT. We consider the case of 10 % contamination.

Table 1 shows the mean time needed to compute the considered estimators for data
with cellwise (ICM) and casewise outliers (THCM) as described in Sect. 4 of our
paper. In general, DetMCDScores is the fastest and 2SGS the slowest. We also notice
that Fast-2SGS is much faster than 2SGS.

Figure 1 shows the average LRT distances of the estimators for p = 40 dimensional
data sets with different values of cellwise and casewise outliers. Similar results (not
shown here) are obtained for the other considered dimensions. Under THCM, 2SGS
still considerably outperforms the faster alternatives. Under ICM, Fast-2SGS performs
very well (same as 2SGS). We also notice that under ICM, 2SGS, Fast-2SGS, and
IS perform similarly in terms of maximum bias because the maximum occurs at a
point (k = 2) where the filter fails to filter any cell. However, 2SGS and Fast-2SGS
outperforms IS for data sets with larger cellwise outliers because the multivariate
imputation of GSE gives better results in these cases.

If time considerations are important, one can use Fast-2SGS or DetMCDScore.
Otherwise, we recommend to use 2SGS. Finding a fast and fully robust initial estimate
for GSE would be of interest and deserves further investigation.
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2 Precision matrix estimation for large and flat data sets

CO gives an extensive and detailed discussion of the performance of 2SGS in the case
of large and flat data sets (large p and relatively small n). They focus on the context
of precision matrix estimation.

Our numerical experiment confirms that, as pointed out by CO, 2SGS does not
handle well large and flat data sets. In fact, when n < 2p, 2SGS fails to exist, likewise
S-estimator and all second-generation robust estimators with breakdown point 1/2.
When much data are filtered and the fraction of complete data is small, the iterations
in GSE may fail to converge. In this case, GSE produces a nearly singular covariance
matrix. This situation is more likely to occur for datasets with relatively small n
compared to p. Danilov et al. (2012) provided a sufficient condition for the existence
of GSE: the proportion of complete observations in general position to be larger than
1/2 + (p + 1)/n. Numerical results have shown that GSE performs well for some
smaller proportions of complete observations. However, no theoretical results are
available for these cases.

To overcome the lack of convergence of 2SGS for large and flat data sets, we may
partially impute the filtered cells to ensure a fraction 1/2 4 (p + 1)/n of complete
observations. More precisely, the procedure is to first filter outliers, then randomly
select observations and impute the filtered cells using coordinate-wise medians, and
finally estimate the location and scatter using GSE. Although this procedure is rather
ad hoc, our initial numerical experiments suggests that it may work for n > 5p.

We now assess the performance of 2SGS with partial imputation (2SGS +PI) in
the case of estimation of the precision matrix. We repeat the simulation experiment
described in Sect. 1, but this time with n = 5p instead of 10p. For comparison, we
also compute the GGQ precision matrix estimate proposed by CO. Table 2 shows the
maximum average LRT distances.

It appears that partial imputation could expand the range of applicability of 2SGS
to situations with n > 5p, but further research on this topic is still needed. When
n < 5p, 2SGS +PI does not perform well and GGQ is a better alternative.

3 Controlling the robustness and efficiency of 2SGS for large p

MA makes a thoughtful remark regarding the loss of robustness of 2SGS—and in
general, S-estimators with a fixed loss function p—when p is large. The Gaussian

Table 2 Maximum average

LRT in the case of precision Dim IcM THCM

matrix estimation 2SGS +PI GGQ 2SGS +PI GGQ
10 5.7 6.9 7.5 7.3
20 7.6 9.4 9.1 10.1
30 9.8 11.6 11.4 12.5
40 11.7 14.1 13.3 15.0
50 13.8 17.2 15.7 17.3
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efficiency of 2SGS systematically increases to one as p increases, but this gain in
efficiency comes at the expense of a decrease in robustness. Hence, we agree with MA
that for large p we may need to modify the GSE step to avoid the lack of robustness of
S-estimators with fixed loss function. A possibility could be to use a well-calibrated
MM-estimator of multivariate location and scatter (Tatsuoka and Tyler 2000) after
adapting it for handling data with missing values. The resulting generalized MM-
estimator would then gain robustness for p large. Another possibility could be to
replace the bisquare rho function in GSE by a Rocke-type loss function, which changes
with dimension in order to preserve the robustness of the estimator (Rocke 1996).
A comparison of the behavior under outlier contamination of MM-estimators and
Rocke type estimators with S-estimators based on a bisquare function may be found
in Maronna and Yohai (2015). Again further work is needed on these topics.

4 Further development of the asymptotics

Alessio Farcomeni (FA) express interest on the asymptotics theory for 2SGS.

In the paper, we have shown that 2SGS is consistent at the central model provided
the reference distribution for the filter is appropriately chosen. The development of
robust inference using 2SGS, or some variation of it, would require the derivation of the
asymptotic distribution of this estimator. We believe that this would be a worthwhile
project for future research.

We conjecture that 2SGS inherits the desirable asymptotic properties of S-
estimators established for the case of complete data (such as asymptotic normality).
We, hence, believe that the proposed methodology of using a consistent filter followed
by a classical robust method may open a way for robust estimation and inference under
cellwise and casewise contamination.

5 Appropriate cut-off value for outlier detection

RV question our choice of cut-off values for detecting outliers in Sect. 5 of the orig-
inal paper. The multiple comparison correction might be appropriate in our example
because we want to determine the largest Mahalanobis distances likely to appear in
the absence of cellwise, pairwise, and casewise outliers.
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