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We would like to congratulate the authors for their innovative paper, containing many
stimulating ideas. The authors propose an estimator for multivariate location and scat-
ter, robust to both cellwise and casewise contamination. The idea is simple: (i) check
for large univariate outliers and replace these cellwise outliers by NA, and (ii) apply the
S-estimator for missing values of Danilov et al. (2012). If there are no cellwise outliers
detected in step (i), the proposed estimator equals the regular S-estimator and shares
the affine equivariance property. The authors will agree that the main power of the
estimator comes from the second step, where the casewise—or multivariate—outliers
are detected using a robust version of the Mahalanobis distance. For every observa-
tion, this distance is computed in the dimension given by the number of non-missing
components. Danilov et al. (2012) present a smart way to compute an S-estimator
associated with Mahalanobis distances computed in different dimensions.
Estimation of the scatter matrix is ‘a corner stone in many applications’, as the
authors state. However, the applications that the authors list (principal component
analysis, factor analysis, and multiple linear regression) require the precision matrix
© = X! rather than the covariance matrix X. Obviously, the inverse of the proposed
two-step generalized S-estimator (TSGS) yields an estimate of the precision matrix.
In this discussion note we (i) investigate the performance of TSGS as precision matrix
estimator by means of a modest simulation study, (ii) discuss a regularized version of
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TSGS, and (iii) make a comparison with an estimator recently proposed by Ollerer
and Croux (2014), called the GGQ-estimator.

1 The GGQ-estimator

Ollerer and Croux (2014) propose a simple robust covariance matrix estimator S =
(sjx) € RPXP,

(1) Compute the robust scale estimators Q,, of (Rousseeuw and Croux 1993) for each
variable.
(2) Compute standard correlations from the normal scores
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where R(X;;) denotes the rank of X;; among all elements of X/, the jth column
of the data matrix, and where @ is the cumulative distribution function a standard
normal. This correlation measure is called the Gaussian rank correlation, and its
robustness properties are studied in Boudt et al. (2012).

(3) Compute the robust covariance matrix S as

sik = 0n(X9) 0, (XM rGauss (X7, X5). (1)

The estimator S is consistent at normal distributions and semipositive definite. In
high dimensions, or when the sample size n is close to or larger than the dimension
p, we perform an additional regularization step, as in Tarr et al. (2015).

(4) Use S as input for the graphical lasso or GLASSO of Friedman et al. (2008). In
mathematical terms,

14
Os(X) = argmax logdet(®) — r(S@) — p > |0, 2)
0= )eRr*P jok=1
00

where we maximize over all positive definite symmetric matrices, so @ > 0, and
where p is a penalty parameter to be selected.

The resulting estimator of the precision matrix is called the GlassoGaussQn (GGQ).
It is shown in Ollerer and Croux (2014) that the proposed estimator features a high
breakdown point under cellwise contamination. The estimator can be computed very
fast, even in high dimensions.

2 Precision matrix estimation

To evaluate the performance of the TSGS for precision matrix estimation, we redo
the Monte Carlo simulation study of Agostinelli (2015) for p = 10 and n = 100. We
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Table 1 Average LRT distances of precision matrix estimators. Results are based on 500 replicates

Estimator ICM THCM
0% 5% 10 % 5% 10 %
p =10,n =100 MLE 0.67 55.15 62.24 5.82 6.62
TSGS 0.87 0.97 1.18 0.89 1.03
GGQY 0.80 2.85 4.01 4.07 4.77
p =20,n=100 MLE 3.09 106.72 120.94 8.40 9.72
TSGS 3.73 4.70 >1000 3.98 493
GGQY 3.17 5.29 6.86 7.12 8.23
MLE + GLASSO®° 4.59 116.56 127.07 9.38 11.19
TSGS + GLASSO° 4.82 6.79 9.06 7.22 8.95
GGQ° 4.75 7.09 9.22 6.82 7.75
p =100,n = 100 MLE+GLASSO° 28.40 573.98 >1000 30.72 31.71
TSGS NA NA NA NA NA
GGQ° 28.98 35.81 43.21 30.75 31.81
p =200, n = 100 MLE+GLASSO° 58.70 >1000 >1000 60.19 61.10
TSGS NA NA NA NA NA
GGQ° 59.61 71.97 86.13 60.52 61.46

V p fixed at zero
° p selected over logarithmic grid of ten values using CV

limit ourselves to a contamination size of k = 100. The performance of the estimator
is assessed by the average of likelihood ratio test distance

—

D(E7!, 25" = trace(Zo X ") — logdet(X,' 271 — p

over the N = 500 simulation runs. We compare with the maximum likelihood esti-
mator (MLE), i.e., the inverse of the sample covariance matrix, and with the GGQ
without regularization. The TSGS is implemented in the R-package GSE (Leung et al.
2014).

From the first three lines of Table 1, we see that of all three estimators MLE is doing
best for clean data. For any type of contamination, however, it breaks down. Under
contamination, TSGS yields lowest numbers of average LRT distance, thus, giving
best results. Also GGQ gives reliable results, but its average LRT distance is higher.

The second part of Table 1 shows the results for p = 20, n = 100. Again MLE
is doing best for clean data, but the other two estimators are close by. For casewise
contamination (THCM), TSGS is performing best. Also for 5 % of cellwise contami-
nation (ICM) the average LRT distance of TSGS is lowest of all estimators. However,
for 10 % of cellwise contamination, the TSGS precision matrix estimator runs into
computational problems. The estimated covariance matrices contain sometimes eigen-
values close to zero, causing their inverses to have very large elements. Interestingly,
even in this case, the estimated covariance is rather precise.
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Increasing the number of variables further to p = 30, but keeping the number of
observations fixed at n = 100 led to many replicates where the estimator could not be
computed anymore, or where we encountered convergence problems.

3 Regularized estimation of the precision matrix

To overcome the problems caused by close to singular covariance matrices, a regu-
larization step can be added. Similarly as for the GGQ, a regularized TSGS precision
matrix estimator can be obtained replacing S with the TSGS estimator in (2).

We select the penalty parameter p through 5-fold cross-validation over a logarithmic
spaced grid of ten values from 0.1 ppax t0 Pmax, Where pp,4 depends on the values of
the covariance S:

= max max (S—1,);; — min S-1 ))

pmes ((i,j>e{1.,...,1ra}2 Y whetpr Y

This grid is proposed in the R-package huge-package (Zhao et al. 2014) that we use
for computing the GLASSO in (2). The cross-validation criterion to be minimized is
then the average log likelihood

Z {— log det @;_k) + tr(S(k)@fo_k))} , (3)
k=1

| —

A (—k) . .. . . . .
where @; ) is the precision matrix estimate on the data with block & left out using

penalty p, and S% is a covariance estimate computed from the data of block k. Both
for TSGS and for GGQ we use for S®) the covariance matrix estimator defined in
(1). The reason is that block k consists only of n/5 observations which will cause
computational problems when trying to compute TSGS on the data of block k only.
To avoid those problems, we use instead the robust covariance matrix estimator (1)
that can be computed in any dimension, also for small samples. To select the penalty
parameter for the regularized ML estimator, S® is the sample covariance matrix
computed from block k.

Table 1 gives the results of a Monte Carlo study for p = 20 and n = 100. We
use the same setting as before. Now we do not invert the covariance matrix estimates
obtained by MLE and TSGS to estimate the precision matrix, but instead use them
as an input for GLASSO, leading to MLE+GLASSO (the original graphical lasso)
and TSGS+GLASSO, respectively. We also add the GGQ, but now with a penalty
parameter different from zero.

We see that the regularization performed by GLASSO solves the singularity prob-
lem of TSGS: the average LRT distance is now lowest of all three estimators for
cellwise contamination, also for 10 % of contamination. Note, however, that regular-
ization introduces a bias. In comparison to the unregularized case, the LRT distances
increased in all cases where the covariance matrices estimated by TSGS were not close
to singular. Therefore, regularization needs to be used with care.

Additionally, we repeated the simulation study with an even higher number of
variables, p = 100 and p = 200, while keeping the number of observations fixed at
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n = 100. We observed that TSGS cannot be computed anymore. The only precision
matrix estimates that are still computable are MLE+GLASSO and GGQ. We see that
the latter two estimators perform similarly for clean data, with a slight advantage for the
MLE+GLASSO. Under cellwise contamination, however, the MLE+GLASSO breaks
down. It is remarkable that the MLE+GLASSO still gives reasonable results under
casewise contamination (the regularization imposed by GLASSO seems to result in a
robustification), at least for this simulation design.

4 Conclusion

The proposed two-stage generalized S-estimator is a precise and robust estimator, both
in the presence of under cellwise and casewise contamination. We have tried several
types of contamination schemes in additional, unreported simulation experiments and
TSGS was performing very well in all of them. However, there are some limitations:
(1) If the small sample n is not so much larger than 2p, TSGS is nearly singular. (ii)
If the sample size is smaller than about 2 p, TSGS cannot be computed anymore. In
case (i), regularization gives a possible solution. In case (ii), estimators as the GGQ
provide an alternative.
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