Skip to main content
Log in

Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

A novel type of sulfur-doped graphene fibers (S-GFs) were prepared by the hydrothermal strategy, the in situ interfacial polymerization method and the annealing method. Two S-GFs were assembled into an all-solid-state fibriform micro-supercapacitor (micro-SC) that is flexible and has a high specific capacitance (4.55 mF·cm−2) with the current density of 25.47 µA·cm−2. The cyclic voltammetry (CV) curve of this micro-SC kept the rectangular shape well even when the scan rate reached 2 V·s−1. There is a great potential for this type of S-GFs used in flexible wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun H, You X, Deng J, et al. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Advanced Materials, 2014, 26(18): 2868–2873

    Article  Google Scholar 

  2. Lee S Y, Choi K H, Choi W S, et al. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy & Environmental Science, 2013, 6(8): 2414–2423

    Article  Google Scholar 

  3. Cheng H H, Hu C G, Zhao Y, et al. Graphene fiber: a new material platform for unique applications. NPG Asia Materials, 2014, 6(7): e113

    Article  Google Scholar 

  4. Zeng W, Shu L, Li Q, et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Advanced Materials, 2014, 26(31): 5310–5336

    Article  Google Scholar 

  5. Cheng H, Liu J, Zhao Y, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angewandte Chemie International Edition, 2013, 52(40): 10482–10486

    Article  Google Scholar 

  6. Lee E J, Choi S Y, Jeong H, et al. Active control of all-fibre graphene devices with electrical gating. Nature Communications, 2015, 6(1): 6851 (6 pages)

    Article  Google Scholar 

  7. Li Y, Sheng K, Yuan W, et al. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chemical Communications, 2013, 49(3): 291–293

    Article  Google Scholar 

  8. Shao C, Xu T, Gao J, et al. Flexible and integrated supercapacitor with tunable energy storage. Nanoscale, 2017, 9(34): 12324–12329

    Article  Google Scholar 

  9. Liao M, Sun H, Zhang J, et al. Multicolor, fluorescent super-capacitor fiber. Small, 2017, 14(43): 1702052 (6 pages)

    Article  Google Scholar 

  10. Dong Z, Jiang C, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers. Advanced Materials, 2012, 24(14): 1856–1861

    Article  Google Scholar 

  11. Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nature Communications, 2011, 2(1): 571–580

    Article  Google Scholar 

  12. Cong H P, Ren X C, Wang P, et al. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Scientific Reports, 2012, 2(1): 613–619

    Article  Google Scholar 

  13. Tian Q, Xu Z, Liu Y, et al. Dry spinning approach to continuous graphene fibers with high toughness. Nanoscale, 2017, 9(34): 12335–12342

    Article  Google Scholar 

  14. Ma T, Gao H L, Cong H P, et al. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Advanced Materials, 2018, 30(15): 1706435

    Article  Google Scholar 

  15. Xu Z, Gao C. Graphene fiber: a new trend in carbon fibers. Materials Today, 2015, 18(9): 480–492

    Article  Google Scholar 

  16. Aboutalebi S H, Jalili R, Esrafilzadeh D, et al. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano, 2014, 8(3): 2456–2466

    Article  Google Scholar 

  17. Bae J, Park Y J, Lee M, et al. Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Advanced Materials, 2011, 23(30): 3446–3449

    Article  Google Scholar 

  18. Meng Y, Zhao Y, Hu C, et al. All-graphene core—sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Advanced Materials, 2013, 25(16): 2326–2331

    Article  Google Scholar 

  19. Zheng B N, Huang T Q, Kou L, et al. Graphene fiber-based asymmetric micro-supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(25): 9736–9743

    Article  Google Scholar 

  20. Li X, Zang X, Li Z, et al. Large-area flexible core—shell graphene/porous carbon woven fabric films for fiber supercapacitor electrodes. Advanced Functional Materials, 2013, 23(38): 4862–4869

    Google Scholar 

  21. Wang X, Liu B, Liu R, et al. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angewandte Chemie International Edition, 2014, 53(7): 1849–1853

    Article  Google Scholar 

  22. Hu Y, Cheng H, Zhao F, et al. All-in-one graphene fiber supercapacitor. Nanoscale, 2014, 6(12): 6448–6451

    Article  Google Scholar 

  23. Ding X T, Zhao Y, Hu C G, et al. Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(31): 12355–12360

    Article  Google Scholar 

  24. Chen Q, Meng Y N, Hu C G, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. Journal of Power Sources, 2014, 247: 32–39

    Article  Google Scholar 

  25. Li Z, Xu Z, Liu Y, et al. Multifunctional non-woven fabrics of interfused graphene fibres. Nature Communications, 2016, 7(1): 13684

    Article  Google Scholar 

  26. Xu T, Ding X, Liang Y, et al. Direct spinning of fiber supercapacitor. Nanoscale, 2016, 8(24): 12113–12117

    Article  Google Scholar 

  27. Qu G, Cheng J, Li X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Advanced Materials, 2016, 28(19): 3646–3652

    Article  Google Scholar 

  28. Liang Y, Wang Z, Huang J, et al. Series of in-fiber graphene supercapacitors for flexible wearable devices. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(6): 2547–2551

    Article  Google Scholar 

  29. Wang Z P, Cheng J L, Guan Q, et al. All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy, 2018, 45: 210–219

    Article  Google Scholar 

  30. Ji H, Wang T, Liu Y, et al. A novel approach for sulfur-doped hierarchically porous carbon with excellent capacitance for electrochemical energy storage. Chemical Communications, 2016, 52(86): 12725–12728

    Article  Google Scholar 

  31. Han J, Zhang L L, Lee S, et al. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano, 2013, 7(1): 19–26

    Article  Google Scholar 

  32. Wang D W, Li F, Chen Z G, et al. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chemistry of Materials, 2008, 20(22): 7195–7200

    Article  Google Scholar 

  33. Guo H, Gao Q. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. Journal of Power Sources, 2009, 186(2): 551–556

    Article  Google Scholar 

  34. Kwon T, Nishihara H, Itoi H, et al. Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels. Langmuir, 2009, 25(19): 11961–11968

    Article  Google Scholar 

  35. Wu G, Tan P F, Wu X J, et al. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Advanced Functional Materials, 2017, 27(36): 1702493

    Article  Google Scholar 

  36. Peng Z, Ye R, Mann J A, et al. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano, 2015, 9(6): 5868–5875

    Article  Google Scholar 

  37. Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano, 2012, 6(1): 205–211

    Article  Google Scholar 

  38. Fan J J, Fan Y J, Wang R X, et al. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(36): 19467–19475

    Article  Google Scholar 

  39. Yang S B, Zhi L J, Tang K, et al. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Advanced Functional Materials, 2012, 22(17): 3634–3640

    Article  Google Scholar 

  40. Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano, 2012, 6(1): 205–211

    Article  Google Scholar 

  41. Wu Z S, Parvez K, Winter A, et al. Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Advanced Materials, 2014, 26(26): 4552–4558

    Article  Google Scholar 

  42. Wang Y. Research progress on anovel conductive polymer-poly (3,4-ethylenedioxythiophene) (PEDOT). Journal of Physics: Conference Series, 2009, 152: 012023

    Google Scholar 

  43. Jin L, Wang T, Feng Z Q, et al. A facile approach for the fabrication of core—shell PEDOT nanofiber mats with superior mechanical properties and niocompatibility. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2013, 1(13): 1818–1825

    Article  Google Scholar 

  44. Meng Y N, Jin L, Cai B, et al. Facile fabrication of flexible core—shell graphene/conducting polymer microfibers for fibriform supercapacitors. RSC Advances, 2017, 7(61): 38187–38192

    Article  Google Scholar 

  45. Cai S Y, Huang T Q, Chen H, et al. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn super-capacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(43): 22489–22494

    Article  Google Scholar 

  46. Liu H, Liu Y, Zhu D. Chemical doping of graphene. Journal of Materials Chemistry, 2011, 21(10): 3335–3345

    Article  Google Scholar 

  47. Sheng Z H, Shao L, Chen J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano, 2011, 5(6): 4350–4358

    Article  Google Scholar 

  48. Li X, Wang H, Robinson J T, et al. Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society, 2009, 131(43): 15939–15944

    Article  Google Scholar 

  49. Cui Z, Li C M, Jiang S P. PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. Physical Chemistry Chemical Physics, 2011, 13(36): 16349–16357

    Article  Google Scholar 

  50. Hu D, He X, Sun L, et al. Growth of single-salled carbon nanotubes from Ag15 cluster catalysts. Science Bulletin, 2016, 61(12): 917–920

    Article  Google Scholar 

  51. Yu D, Qian Q, Wei L, et al. Emergence of fiber supercapacitors. Chemical Society Reviews, 2015, 44(3): 647–662

    Article  Google Scholar 

Download references

Acknowledgements

Thank for the National Natural Science Foundation of China (Grant No. 51602358) to support this work, and also thank for the High Level Personnel Fund of Zhoukou Normal University (ZKNU2014117) and the Education Department of Henan Province Natural Science Research Program (18B150029). L.J. acknowledges the Key Laboratory of Polymeric Composite & Functional Materials of Ministry of Education for funding (PCFM-2017-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuning Meng or Lin Jin.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, B., Shao, C., Qu, L. et al. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors. Front. Mater. Sci. 13, 145–153 (2019). https://doi.org/10.1007/s11706-019-0455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-019-0455-2

Keywords

Navigation