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Abstract Zeolites have been regarded as one of the most
important catalysts in petrochemical industry due to their
excellent catalytic performance. However, the sole micro-
pores in zeolites severely limit their applications in oil
refining and natural gas conversion. To solve the problem,
mesoporous zeolites have been prepared by introducing
mesopores into the zeolite crystals in recent years, and thus
have the advantages of both mesostructured materials (fast
diffusion and accessible for bulky molecules) and micro-
porous zeolite crystals (strong acidity and high hydro-
thermal stability). In this review, after giving a brief
introduction to preparation, structure, and characterization
of mesoporous zeolites, we systematically summarize
catalytic applications of these mesoporous zeolites as
efficient catalysts in oil refining and natural gas conversion
including catalytic cracking of heavy oil, alkylation,
isomerization, hydrogenation, hydrodesulfurization,
methane dehydroaromatization, methanol dehydration to
dimethyl ether, methanol to olefins, and methanol to
hydrocarbons.

Keywords mesoporous zeolite, catalysis, oil refining,
natural gas conversion

1 Introduction

Microporous crystalline aluminosilicate zeolites are widely
used in petrochemistry and fine-chemical industry because
of their large surface area, high adsorption capacity, high
thermal and hydrothermal stabilities, strong acid sites
within their defined micropores, and shape-selectivity in
catalysis [1–3]. However, zeolites with sole micropores are
imposed by severe mass-transfer constraints, which results

in poor catalytic performance (such as lifetime and
convention) in bulky substrate catalytic reactions [2–5].
Ordered mesoporous materials such as MCM-41 [6,7] and
SBA-15 [8,9] with good mass transfer have once been
expected to solve this problem. Unfortunately, compared
with zeolites crystals, poor hydrothermal stability and
weak acidity of these mesostructured materials hinder their
catalytic applications in petrochemical chemistry [1,2,10]
due to the amorphous nature of the mesoporous walls. The
strategies for improving hydrothermal stability of ordered
mesoporous materials have been developed by partly
crystallization of mesoporous walls via the addition of as-
synthesized zeolitic seeds solution in the synthesis
procedure [11–14] or employing “high-temperature synth-
esis” routes [15,16]. However, the thus obtained materials
are still insufficient for the catalytic application in
industrical processes [17,18]. To solve these problems,
many efforts have been devoted to synthesize nanosized
zeolites [19,20], ultralarge pore zeolites, and hierarchical
mesoporous zeolites. Nanosized zeolites can offer more
active sites in catalysis compared with conventional
zeolites due to their larger external surface area, but they
are difficult to be separated from the reaction mixture or
catalysis system [19,20]. Ultralarge pore zeolites (such as
UTD-1 [21], VPI-5 [22], ITQ-33 [23], JDF-20 [24], ITQ-
37 [25], and ITQ-43 [26]) have been regarded as ideal
candidates for improving the mass transfer and catalytic
conversion of bulky molecules, but special and high-cost
organotemplates hinder their catalytic applications in
industry. Recently, great efforts have been put forth to
prepare mesoporous zeolites by creating mesopores into
the zeolite crystals [17,27–31], which combines the
advantages of mesostructured materials (fast diffusion
and accessible for bulky molecules) and microporous
zeolites (strong acidity and high hydrothermal stability)
instead of upgrading their individual performances in
catalytic reactions [32]. In this review, we briefly
summarize the preparation, characterization and catalytic
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applications of mesoporous zeolites as efficient catalysts in
oil refining and natural gas conversion.

2 Synthesis

2.1 Post-synthesis treatments

Mesoporosity can be introduced into the zeolite crystals
through post-synthesis treatments including steaming [33]
and leaching methods with acidic or basic media [34,35].
However, post-synthesis treatments always result in a
significant reduction of zeolite crystallinity and the
formation of amorphous aluminosilicate fragments in
disordered and uncontrolled mesopores, which could
negatively affect catalytic performance [27].

2.2 Templating strategies

Mesoporous zeolites with good crystallinity can be
prepared employing mesoscale templates, which could be
achieved by “hard” or “soft” templating strategies
[27,29,30]. In hard-templating strategies, mesopores can
be “duplicated” into zeolite crystals directly by using the
secondary mesoscale templates such as carbon nanoparti-
cles [36–38], carbon nanotubes [39,40], carbon nanofibers
[41], carbon aerogels [42–45], and mesoporous carbons
[46–53]. In addtion, some inorganic nanoparticles such as
nano-sized CaCO3 can also be used as hard templates for
synthesizing mesoporous zeolites [54]. Many mesoporous
zeolites including FAU, MFI, BEA, LTA, LTL, MEL and
MTW framework types can be successfully synthesized by
using these hard templates. Notably, most mesopores in
these cases are disordered and unopened. Recently,
Tsapatsis’ group [49–51] prepared a series of ordered
mesoporous zeolites (3Dom-i zeolite) such as Silicalite-1,
ZSM-5, beta, Y, A and L by using three dimensional
ordered mesoporous carbons (3Dom carbon) as mesoscale
templates (Fig. 1).
In soft templating strategies, mesopores could be

successfully introduced into zeolite crystals directly

because there are an interaction between the mesoscale
soft templates and the aluminosilicate species. In 2006,
Xiao et al. [55] firstly reported the synthesis of mesoporous
beta zeolite by using the cationic polymers as mesopore-
directing agents. Subsequently, Choi and Srivastava et al.
[56–58] synthesized mesoporous ZSM-5 and A zeolites by
using an amphiphilic organosilicate as mesopore-directing
agent. Later in the same year, mesoporous ZSM-5 zeolite
was also prepared by using a silylated polyethylenimine as
mesopore-directing agent [59]. After then, mesoporous
zeolites have been widely investigated and the most used
templates are polymers, long chain organosilicates, and
amphiphilic surfactants. For example, mesoporous ZSM-
11 templated by polyvinyl butyral [60], mesoporous Y
templated by long chain organosilicates [61], and meso-
porous ZSM-5 templated by CTAB or F127 or P123
[62,63] have been reported. More recently, there are a
breakthrough progress in the synthesis of mesoporous
zeolites with ordered mesopores by using soft template
strategy. Ryoo’ group [64–66] designed a kind of
bifunctional surfactants, such as C22H45–N

+(CH3)2–
C6H12–N

+(CH3)2–C6H13 (C22–6–6) and C18H37–
N+(CH3)2–C6H12–N

+(CH3)2–C6H12–N
+(CH3)2–C18H37

(C18–6–6–18), which can direct the formation of zeolite
structures on the mesoporous and microporous length
scales simultaneously, yielding ZSM-5 zeolite nanosheets
with a thickness (2 nm) of only a single unit cell (Fig. 2) or
ordered mesoporous zeolites with hexagonal mesophase
and MFI-like zeolite framwork, respectively. Xiao’s group
[67] recently designed a new type of polymer polystyrene-
4-vinyl pyridine (PSt-co-P4VP), which can be used as the
new polymer template for successfully synthesizing
mesoporous ZSM-5 zeolite with b-axis-aligned mesopor-
ous channels.

3 Catalysis

Mesoporous zeolites can be widely used as catalysts or
supports in petrochemistry and fine-chemical synthesis
such as cracking, alkylation, isomerization, hydrogenation

Fig. 1 Schematic illustration of 3Dom-i zeolite templating from 3Dom carbon. Reproduced by permission of Ref [51]. Copyright 2011
American Chemical Society
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and hydrodesulfurization, methane dehydroaromatization,
methanol dehydration to dimethyl ether, methanol to
olefins (MTO), and methanol to hydrocarbons (MTH).

3.1 Cracking reactions

Fluid catalytic cracking (FCC) process is very important in
industry because a huge amount of heavy hydrocarbon
feedstocks can be further cracked into more valuable light
oils. In these processes, USY with mesoporosity is widely
used as the active component of the FCC catalysts. The
introduction of mesoporosity in Y-zeolite by steaming and
acid or base leaching can enhance the cracking activity of
zeolite Y despite the acidic properties are modified by
dealumination [1,28]. Kung et al. [68] concluded that
minimizing diffusion restraints by the introduction of
mesoporosity could be very important to increase rates of
dimeric and oligomeric cracking reactions, which serve as
an alternative explanation to highly active single sites. This
explanation can be supported by that smaller ZSM-5
crystallites reduced the diffusion restraints and showed
better catalytic activity than the parent samples for the
cracking of linear or branched paraffins [69]. In a recent
report by Garcia-Martinez et al. [70], mesostructured Y
zeolites with well-controlled mesoporosity and high
hydrothermal stability were prepared by a surfactant-
assisted method and used in the FCC process. These
mesostructured Y-zeolites produced significantly more
gasoline and light cycle oil (LCO) as well as less bottoms
and coke, because the presence of mesopores allows larger
molecules in the vacuum gas oil (VGO) to access the active
sites within the zeolite crystals. Tan et al. [71] synthesized
a bimodal micro-mesoporous aluminosilicate by assem-
bling preformed zeolite Y nanoclusters using a triblock
polymer as template. This micro-mesoporous material

produced light oil fraction in higher yield (53%) than the
conventional Y catalyst (40% yield) in catalytic cracking
of heavy oil.
In addition, mesoporous zeolites such as ZSM-5 and

beta can be used as additives in a commercial USY FCC
catalyst for imporving the catalytic activity and selectivity
toward light olefins. For example, the higher propylene
yield of 12.2 wt-% was achieved over E-USY/Meso-Z
compared with 9.0 wt-% over E-USY/ZSM-5 [72], despite
these additives did not affect the cracking activity of E-
USY/additives at similar gas-oil yield. Mesopores in
Meso-Z was stated as a key factor to the enhanced
production of propylene, which suppressed secondary and
hydrogen transfer reactions and offered easier transport
and accessibility to active sites. Recently, ZSM-5 zeolites
with small intracrystal mesopores (2.2 and 5.2 nm) tem-
plated by organosilane polymer templates were also
investigated in selective petroleum refining [73]. Com-
pared with conventional ZSM-5, the two mesoporous
zeolites display much higher reactivity and selectivity
toward light olefins (gasoline) in cracking of VGO. The
gasoline yield increased from 12% to 19% when using the
mesoporous zeolites at the temperature of 823 K, while the
VGO conversion increased from 33% to 48%, which was
attributed to the olefin precursor formation in small
intracrystal mesopores and subsequent olefin formation

Fig. 2 HRTEM of as-synthesized (a) and calcined (b) MFI nanosheet templated from C22–6–6 surfanctant. Reproduced by permission of
Ref. [64]. (Copyright 2009 Nature Publishing Group)

Scheme 1 Proposed reaction of 1,3,5-triisopropylbenzene cracking
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in micropores. These examples showed that mesoporous
ZSM-5 zeolites as FCC catalysts have higher catalytic
cracking performance than parent ZSM-5 zeolites.
The bulky 1,3,5-triisopropylbenzene (TIPB) is usually

chosen as a typical substrate (Scheme 1) for the cracking of
bulky aromatic hydrocarbons over mesoporous zeolites
[74]. For example, mesoporous ZSM-5 prepared by a
steaming-assisted conversion method shows a much higher
initial conversion (98%) than the conventional ZSM-5
(14%) in cracking of TIPB [75]. Similarly, Zhou et al. [63]
synthesized mesoporous ZSM-5 by using block copolymer
surfactants as template in the steaming-assisted strategy,
which showed much higher catalytic activity and remark-
ably imporved anti-deactivation performance in the
cracking of TIPB (Fig. 3) compared to the conventional
ZSM-5, due to the much increased external surface and
shortened diffusion length in microporous networks
provided by the mesoporous zeolites. Mesoporous ZSM-
11 zeolite shows a similar trend in the cracking of 1,2,4-
trimethylbenzene, giving a higher conversion (67%)
compared with 43% for conventional ZSM-11 at a

relatively low temperature of 350°C [60]. Mesopores in
ZSM-11 zeolite crystals also leads to a higher activity of
mesitylene isomerisation due to the fast diffusion of the
bulky mesitylenes in the mesoporous, which reduced
retention times and chance of cracking to form smaller
products, but increased chance of mesitylene isomerisa-
tion.
Cracking of heavy linear alkanes such as n-hexadecane

catalyzed by mesoporous zeolites has also received much
attention. Zeolites with strong acidity, such as ZSM-5,
ZSM-12, and ZSM-11 have been investigated in these
reactions. For example, mesoporous ZSM-5 zeolite
templated by carbons shows a significantly increased
activity in heavy n-hexadecane cracking, and a much
higher n-hexadecane conversion (52%) than that of
conventional ZSM-5 (17%) [76]. After the zeolites were
impregnated with platinum, their cracking activity
increased significantly and the mesoporous ZSM-5 still
displayed higher activity. Notably, there was a four fold
increase in n-hexadecane isomerisation over mesoporous
ZSM-5, which was explained by that the shorter retention
time of the substrates in zeolite crystals with mesoporosity
leads to less carcking and more isomerisation activity.
Similarly, mesoporous ZSM-12 also showed higher
activity compared with conventional ZSM-12 in n-
hexadecane cracking [77]. Mesoporous ZSM-12 also
exhibited higher coke-resistance performance, because
mesopores increase the number of entry points to the
microporous system as well as the overall surface area, and
thereby increase the amount of coking needed to restrict its
accessibility. In a different study, mesoporous zeolites with
MEL structure type, such as silicalite-2 and ZSM-11, and
conventional ZSM-5 were investigated and compared in n-
hexadecane cracking [78].
In addition, the cracking of the polymers such as

polyethylene or polypropylene are often tested over
mesoporous zeolites to produce light olefins, and it is
found that mesoporous zeolites are good catalysts for these
reactions [64,79].

3.2 Alkylation reactions

Alkylations of benzene and its derivatives are important
reactions in oil refining and natural gas conversion.
Mesoporous zeolites are more active in these alkylations
reactions than conventional zeolites, due to the shorter
diffusion path length in mesoporous zeolites. For example,
mesoporous ZSM-5 prepared by carbon-templating
showed higher conversion and ethylbenzene selectivity
(18% and 81%, respectively) than the parent ZSM-5 (15%
and 73%, respectively) (Scheme 2) [80,81]. Higher
selectivity can be explained by the predominant level of
monoalkylated product over mesoporous ZSM-5 resulting
from a shorter diffusion path length in mesoporous zeolite
crystal, while ethyl-benzene is difficult to diffuse in
microporous zeolites leading to more polyalkylated

Fig. 3 Catalytic properties of conventional ZSM-5 and meso
ZSM-5 employed in the cracking of TIPB (1,3,5-triisopropylben-
zene) as a probe reaction: (a) deactivation behavior at 500°C, and
(b) catalytic activities (conversions) at different temperatures.
Reproduced by permission of Ref [63]. (Copyright 2011 American
Chemical Society)
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products than those desired. Perez-Ramirez et al. [82]
investigated the catalytic performance over mesoporous
ZSM-5 obtained by desilication in liquid phase alkylation
of benzene with ethylene, and highlighted a direct
correlation between the catalytic activity in benzene
alkylation and the hierarchy factor of ZSM-5, which was
determined as the product (Vmicro/Vpore) � (Smeso/SBET).
The productivity of ethylbenzene during benzene alkyla-
tion over selected zeolites shows a linear dependence on
the hierarchy factor. These results show that a sample only
having a pronounced mesoporosity as well as a relatively
preserved microporosity performed well in this reaction.

Xiao et al. [55] synthesized a mesoporous zeolite beta by
using mesoscale cationic polymers as soft template, which
was used as catalyst in alkylation of benzene with 2-
propanol. Mesoporous beta sample exhibited much higher
activity and isopropylbenzene selectivity (both close to
100%) than the conventional beta, and more importantly, a
remarkably slow deactivation over the mesoporous sample
could be also observed (Fig. 4). de Jong et al. [83,84]
reported the catalytic performance over a seriers of
mordenite zeolites by dealumination or/and desilication
used as catalysts in liquid alkylation of benzene with

propylene. Various catalytic effects such as Al-content,
inter- and intracrystalline porosity, acid strength and the
presence of extra-framework aluminum were investigated.
The mordenite samples by dealumination showed a
slightly improved activity and a selectivity towards
cumene/di-isopropylbenzene, compared with the parent
mordenite sample. However, a subsequent optimized
desilication treatment resulted in a mesoporous catalyst
displaying a significantly higher activity (up to 27-fold
increase) and an increased selectivity towards di- and tri-
isopropylbenzene. The mordenite sample by desilication
also displayed an excellent combined cumene/di-isopro-
pylen benzene selectivity of > 99% arising from sup-
pressed propylene oligomerization.

3.3 Isomerization reactions

3.3.1 Conversion of n-butene to isobutene

Isomerization of n-butene to isobutene catalyzed by
zeolites is very valuable for producing low pollution
gasoline additive of methyl tert-butyl ether (MTBE).
Introduction of mesopores in zeolite crystals could
improve the catalyst performance. An example is the use
of fresh and steamed ferrierite (FER) catalysts in the
isomerization of n-butene to isobutene [85]. The steamed
FER catalyst with mesoporosity exhibited lower initial n-
butene conversion but much higher selectivity of isobutene
compared with the fresh catalyst. In a different report [86],
mesoporous ferrierite zeolite prepared by recrystallization
from alkaline solution in the presence of cetyltrimethy-
lammonium bromide (CTAB) showed improved catalytic
activity and selectivity in the isomerization of n-butene
with respect to the parent ferrierite. The parent ferrierite
gave 1-butene with 52% conversion while mesoporous
ferrierite increased the conversion up to 67% and the
isobutene selectivity from 48% to 61%. Similarly,
mesoporous TON zeolites prepared by desilication using
NaOH also showed a significant increase of activity in n-
butene isomerization [87]. The creation of mesopores in
zeolite crystals improved the diffusion of butene molecules
within the zeolite crystal and thereby increased the turn
over frequency (TOF) of the protonic sites. The catalytic
activities in isomerization of linear paraffins over meso-
porous zeolite catalysts were listed in Table 1.

3.3.2 Linear paraffins

Hydroisomerization of linear paraffins towards highly
branched products is an important reaction in upgrading of
oils. Mesoporous zeolites were used as catalyst in
hydroisomerization of various linear paraffins, usually
showing much better catalytic performance compared
with the parent sample [88–95]. These linear paraffins
commonly include n-hexane, n-heptane, n-octane, n-

Scheme 2 Proposed reaction of benzene alkylation with ethylene

Fig. 4 Catalytic conversions (C. Wt-%) and selectivities
(S. wt-%) in the alkylation of benzene with 2-propanol with
various zeolites samples as a function of reaction time (Reaction
temperature: 200°C; 4 ∶ 1 benzene/2-propanol; reaction pressure:
2.0 MP, weight hourly spare velocity (WHSV): 10 h–1). Repro-
duced by permission of Ref. [55]. (Copyright 2006 Wiley)
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hexadecane (Table 1). Typically, in n-octane hydroisome-
risation, mesoporous zeolites with one dimensional frame-
work type used as catalysts attracted much attention. For
example, the mesoporous bi-functional Pt/ZSM-22 catalyst
prepared by base treatment clearly showed better perfor-
mance than its microporous parent, giving a higher
monobranched isomer yield [92]. This superior activity is
attributed to an increased number of accessible micropores
in the mesoporous zeolite. Fan et al. [93] prepared a
mesoporous SAPO-11 zeolite by using a tetradecylpho-
sphoric acid (TDPA) template to create mesopores.
Compared with the conventional SAPO-11, this mesopor-
ous SAPO-11 had much higher external surface (165–
64 m2$g–1), mesoporous volume (0.31–0.06 cm3$g–1) with
the intracrystal mesopores of 4–7 nm and more medium
and strong Bronsted acid sites (165–76 μmol$g–1). In the
hydroisomerization of n-octane, this mesoporous SAPO-
11-based catalyst showed superior isomerization activity,
enhanced selectivity to dibranched products, and decreased
cracking selectivity (Fig. 5). These results indicate that
mesopores in zeolite catalyst enhance the catalytic
performance in n-octane hydroisomerization. Similarly,
the Y-β zeolite composite with mesoporosity synthesized
by using high silica Y zeolite as the precursor also showed
an excellent hydrocracking activity and good hydroisome-
rization performance of n-octane [94]. Additionally, in
the isomerizations of large hydrocarbons, such as n-
hexadecane, mesoporous Pt/ITQ-6 was more active than
Pt/FER, giving a higher ratio (2.1) of isomerisation to
cracking products than Pt/FER (1.2) [95].

3.3.3 Xylene

The isomerization of o-xylene to p-xylene, a typical
example of shape-selective catalysis by zeolites, is of great
importance in petrochmical industry. O-xylene isomeriza-
tion over mesoporous ZSM-5 prepared by desilication [96]
showed higher conversion than the parent ZSM-5, owing
to the reduced diffusion limitations. However, the
selectivity of p-xylene decreased, more m-xylene formed,

and the catalyst was rapidly deactivated, due to the
deleterious effect of acidity on the external surface as a
consequence of coking. These disadvantages could be
reduced by washing the desilicated zeolite with acid to
remove extra-framework aluminum (EFAl) species on the
external surface for inhibiting the non-shape selective
isomerization reaction [97]. The acid washed mesoporous
ZSM-5 was more stable than parent ZSM-5 and untreated
mesoporous ZSM-5, increasing the selectivity of p-xylene
and the yield of p-xylene by two fold compared to parent
ZSM-5.

3.4 Hydrogenation and hydrodesulfurization

Hydrogenation and hydrodesulfurization (HDS) are very
important for removal of sulfur in gasoline and diesel fuels.
Despite conventional zeolites show their advantages in
these process, their pore size limitation inhibits their
application in deep hydrogenation and hydrodesulfuriza-
tion of diesel fuels. Mesoporous zeolite supported noble
metal catalysts have been reported as good catalysts for
hydrogenation of bulky aromatics and hydrodesulfuriza-
tion of bulky 4,6-dimethyldibenzothiophene (4,6-
DMDBT) [98–100]. These catalysts showed excellent
catalytic performance, giving much better activities than
Pd loaded other supports such as γ-Al2O3, conventional
zeolites (Hbeta and HZSM-5), and ordered mesoporous
meterials (Al-MCM-41), which is attributed to the unique
factor that these mesoporous zeolites combined the
advantages of strong acidity and large external surface
area in the samples.
Recently, Fu et al. [61] prepared a mesoporous Y zeolite

(Y-M) by using a long chain organosilane surfactant as a
soft tempate, followed by Pd loading (Pd/Y-M). Very
importantly, Pd/Y-M displays excellent catalytic perfor-
mance in HDS of 4,6-DMDBT. Compared with mesopor-
ous beta (80.0%) and ZSM-5 supported Pd catalysts
(73.4%) as well as commercial catalyst of γ-Al2O3

supported Pd catalyst (31.4%), Pd/HY-M catalyst exhib-
ited very high activity (97.3%) in HDS of 4,6-DMDBT

Table 1 Catalytic activities in isomerization of linear paraffins over mesoporous zeolite catalysts

Substrates Mesoporous zeolites Synthesis strategies Conversion/% Isomer selectivity/% Ref.

n-Hexane ZSM-5/MCM-41 Recrystallization in base solution 22 (22)* 90 (81) [89]

n-Hexane ZSM-5
beta

Desilication 68 (59)
73 (53)

97 (96)
98 (91)

[90]

n-Heptane ZSM-12
beta

Hard template 38 (10)
55 (23)

–

–

[91]

n-Octane ZSM-22 Desilication 78 (67) 75 (< 65) [92]

n-Octane SAPO-11 Soft template 43 (43) 98 (88) [93]

n-Octane Y-β Recrystallization 52 (14) 76 (54) [94]

n-Hexadecane ITQ-6 Delamination 80 (30) 62 (42) [95]

*The catalytic data in brackets correspond to the activities or isomer selectivities over parent samples
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(Fig. 6). The presence of mesoporosity in the zeolites play
an important role for the contribution of catalytic activities.
In addition, even in the liquid-phase hydrogenation of

benzene, a hierarchical mesoporous zeolite composite
possessing beta-zeolite cores and Y-zeolite polycrystalline

shells (denoted as BFZ) also showed excellent catalytic
performance [101]. The benzene conversion over H-BFZ
supported Ru (3 wt-%) is much higher than those over
parent H-Y or H-β-zeolites supported Ru catalysts, which
is ascribed to the improved diffusion and acid accessibility
as well as the enhanced Ru dispersion because of the
introduction of hierarchical mesopores.

3.5 Methane dehydroaromatization

In natural gas conversion research, the non-oxidative
methane dehydroaromatization (MDA) is one of valuable
and challenging topics in both academia and industry. Mo-
based zeolite catalysts, e.g., Mo-ZSM-5 [102] have been
often used as catalysts in this reaction. Su et al. [103]
created mesopores in ZSM-5 zeolite by alkali treatment
and found that the catalytic performance of mesoporous
Mo-HZSM-5 catalyst in MDA had been enhanced.
Recently, novel hierarchical mesoporous ZSM-5 was
synthesized by using SBA-15 as the silica source, and
showed good catalytic performance in the MDA reaction

Fig. 5 Dependence of (a) the isomer selectivity, (b) the
percentage of di-branched C8 isomers in total C8 isomers (denoted
as DB), and (c) the cracking selectivity of n-octane in n-octane-
hydroisomerization system on n-octane conversion over conven-
tional Pt/H-SAPO-11 and mesoporous Pt/H-SAPO-11-HI cata-
lysts. Reproduced by permission of Ref. [93]. (Copyright 2012
Elsevier)

Fig. 6 Dependence of (a) the 4,6-DMDBT conversion and (b)
the remaining sulfur content in 4,6-DMDBT-hydrogenation
system on reaction time over Pd/HY-M, Pd/Hbeta-M, Pd/HZSM-
5-M, Pd/HY, Pd/NaY-M and Pd/γ-Al2O3 catalysts. Reproduced by
permission of Ref. [61]. (Copyright 2011 American Chemical
Society)
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[104]. The mesopores reasonably assigned to intercrystal-
line voids between the French fries-like crystals provide
easier access to the active sites in micropores, resulting in
the higher CH4 conversion and the stronger coking-
resistant performance. In one study reported by Martinez
et al. [105], a bifunctional Mo/HZSM-5-BP catalyst for
MDA was prepared by using a mesoporous HZSM-5
sample synthesized in the presence of carbon nanoparti-
cles, and showed enhanced stability with time-on-stream
compared with a Mo/HZSM-5, resulting in a higher and
stable aromatics yield. This better tolerance to carbonac-
eous deposits of Mo/HZSM-5-BP could be attributed to the
presence of the intracrystalline mesopores, allowing more
coke to be formed while keeping a larger fraction of acid
sites in the 10-ring channels active for aromatization. A
similar result has also been confirmed by Kan et al. [106].
In addition, a nestlike hollow hierarchical mesoporous

MCM-22 microspheres (MCM-22-HS) were synthesized
by using carbon black as hard template and tested in the
MDA reaction [107]. The Mo/HMCM-22-HS significantly
improved methane conversion, benzene yield, and catalyst
life (Fig. 7). The exceptional catalytic performance was

attributed to the hollow and hierarchical mesoporous
structure, which is favorable for the diffusion of larger
molecular products, probably leading to significant
improvement of the catalyst life.
All above these examples showed the presence of

mesopores in zeolite catalysts in MDA reaction enhanced
benzene yield and catalyst life.

3.6 Methanol dehydration to dimethyl ether

Dimethyl ether (DME) as a new synthetic fuel has attracted
much attention due to its potential use as a substitute of
diesel and liquefied petroleum gas. Generally, DME can be
produced in a fixed bed reactor by methanol dehydration
over porous solid acid catalysts such as zeolites. However,
DME does not diffuse quickly enough in the sole
micropore in zeolite, causing the catalyst to lose catalytic
activity and selectivity quickly. Mesoporous zeolites,
combining the strong acidity and hydrothermal stability
of microporous zeolite with the fast mass transfer
performance of mesoporous material, are also expected
to be used for dehydration of methanol to DME to obtain

Fig. 7 (a) Catalytic performances of mesoporous Mo/HMCM-22-HS and conventional Mo/HMCM-22 catalysts in methane
dehydroaromatization; (b) formation rates of benzene at 700°C on these two catalysts under space velocity of 1500 mL/(g∙h).
Reproduced by permission of Ref. [107]. (Copyright 2010 American Chemical Society)
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an improved catalytic performance. For example, Tang et
al. [108] reported that micro-mesoporous ZSM-5/MCM-
41 composites prepared by combining a microporous
zeolite silica source with nano self-assembly methods
showed an optimum activity (XMeOH = 86.6%), 100%
DME selectivity and long catalyst life at 210°C in
methanol dehydration to DME, much better than the
parent ZSM-5 (Fig. 8).
Cho et al. [109] synthesized a mesoporous LTA zeolite

by using organosilane surfactant as a mesopore-generating
agent and ion-exchanged by Ca2+. The mesoporous CaA
catalyst showed higher conversion of methanol, lower
selectivity to hydrocarbons, and slower deactivation
compared to the conventional CaA zeolite sample
(Fig. 9) in methanol dehydration to DME. For example,
the mesoporous CaA gave a 34% methanol conversion at
1 h, and the selectivity of hydrocarbons was almost zero.
However, under the same condition, the methanol conver-
sion and hydrocarbon selectivity over the conventional
CaAwas 25% and 34% in methanol dehydration to DME,
respectively.

3.7 Methanol to olefins

Methanol to olefins (MTO) is greatly important for solving
the demand for light olefins. In the MTO process, Mei et al.
[110] introduced the mesoporosity in high silica HZSM-5
by alkaline desilication and used the thus obtained zeolites
as catalyst in methanol-to-propylene (MTP) reaction. The
mesoporous HZSM-5 catalyst gave very high propylene

selectivity (42.2%) and propylene/ethylene ratio (10/1)
(Fig. 10). Characterizations by various techniques show
that these open mesopores are very helpful for enhancing
the diffusion of the primary olefin products, in particular to
propylene and butylene, thus inhibiting undesirable
secondary reactions.
Hierarchical mesoporous SAPO-34 zeolite with high

crystallinity and excellent hydrothermal stability was
synthesized in the nanoscale confined environment
provided by the natural layered material kaolin (Fig. 11)
[111]. The mesoporous SAPO-34 catalyst showed sig-
nificant enhancement of catalytic activity and selectivity in
the MTO reaction. Interestingly, a supported SAPO-34
catalyst with an average size of 60 μm was synthesized by
a hydrothermal method on fully calcined kaolin micro-
spheres pretreated with 4 wt-% NaOH solution [112]. This
new SAPO-34 catalyst remained the pretreated CKMs
structure and had high microporous volume (0.27 m3$g–1)
and mesoporous volume (0.30 cm3$g–1) with mesopores of
15.8 nm, and thereby exhibited excellent catalytic perfor-
mance with 100% methanol conversion, 90% light olefins
selectivity, a long catalyst life, and strong mechanical
stability at 450°C.

3.8 Methanol to hydrocarbons and methanol to gasoline

Methanol to hydrocarbons (MTH) reaction plays an
important role in the conversion of biomass, coal, natural
gas, and CO2 to liquid hydrocarbon fuels, which can be
tuned into production of gasoline-rich (methanol to

Fig. 8 Stability and selectivity in methanol dehydration over ZSM-5 and ZSM-5/MCM-41 composite alkali-treated by NaOH solution
1.5 mol/L. Reproduced by permission of Ref. [108]. (Copyright 2012 Elsevier)
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gasoline, MTG) or olefin-rich (methanol to olefins, MTO)
product mixtures by proper choice of catalyst and reaction
conditions [113]. Very importantly, mesoporous zeolites
showed an increased catalyst life in MTH or MTG
reactions than conventional zeolites catalyst.
Mesoporous ZSM-5 synthesized from various routes

showed an improved catalyst life in MTG and MTH,
compared to conventional ZSM-5 [64,114–121]. As a
typical example, Choi et al. [64] reported that ZSM-5
nanosheet showed equivalent initial activity, but a
significant increase in catalyst life (Fig. 12), compared to
parent ZSM-5. Recent works confirm that there are strong
correlations between the catalyst life and the external
surface area of mesoporous zeolites in MTH and MTG
reactions [116,119].

4 Summary

The strategies for creating mesoporosity in zeolite crystals
are briefly summarized. Very importantly, compared with
conventional zeolites, the mesoporous zeolites exhibit
excellent performance in oil refining and natural gas
conversion such as cracking, hydrogenation and hydro-
desulfurization of heavy oil, benzene alkylation, hydro-
isomerization, methane dehydroaromatization, methanol
dehydration to dimethyl ether, methanol to olefins, and
methanol to hydrocarbons. These phenomena are reason-
ably attributed to a fast diffusion and accessibility for
reactants and products. These features are potentially
important for applications of mesoporous zeolites in the
future.

Fig. 9 Catalytic conversion of methanol to dimethyl ether (DME) over conventional CaA-0 (a) and mesoporous CaA-2 (b) zeolites at 400°C.
Methanol conversion was calculated by considering DME and hydrocarbons as converted products. Reproduced by permission of Ref. [109].
(Copyright 2009 American Chemical Society)
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Fig. 11 (a) and (b) SEM images of the hierarchical mesoporous SAPO-34 zeolite at different magnifications; (c) SAED pattern of a
horizontal mesoporous zeolite slice; (d) Nitrogen sorption isotherms and BJH pore size distribution (inset). Reproduced by permission of
Ref. [111]. (Copyright 2009 Royal Soc Chemistry)

Fig. 10 Product selectivity of mesoporous HZSM-5 by alkaline treatment as a representative catalyst for MTP reaction as a function of
time: C3H6, C2H4, C4H8, aromatics, C1–C4 saturated hydrocarbons, C5 and higher hydrocarbons excluding aromatics. Reaction
conditions: T = 470°C, WHSV = 1 h–1, PCH3OH = 0.5 atm, H2O: CH3OH = 1 ∶ 1. Reproduced by permission of Ref. [110]. (Copyright 2008
Elsevier)
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