Skip to main content
Log in

Influence of synthesis conditions over simonkolleite/ZnO precipitation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Simonkolleite is a zinc-layered hydroxide salt with the formula Zn5(OH)8Cl2·H2O. It has a platelet morphology and can be used for many applications, owing to both its layered structure and its nature as a hydroxide salt. It can be prepared via a simple precipitation from ZnCl2 and NaOH in water thermostated at 50 °C. Depending on the synthesis conditions, we could obtain different sizes and a hybrid containing parts of ZnO. We studied the influence of the OH:Zn molar ratio, the addition order, and the maturation time after the reaction was completed. With the support of pH profiles, kinetic studies, and thermodynamic equilibrium data, we were able to propose a global synthesis mechanism explaining the influence of those three parameters and identify the range of conditions in which simonkolleite can be formed. Depending on the desired application, we were able to synthesize bigger or smaller layered crystals of simonkolleite, in the presence of absence of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arizaga GGC, Satyanarayana KG, Wypych F (2007) Layered hydroxide salts: synthesis, properties and potential applications. Solid State Ion 178(15–18):1143–1162. doi:10.1016/j.ssi.2007.04.016

    Article  CAS  Google Scholar 

  • Audebrand N, Auffredic J, Louer D (1998) X-ray-diffraction study of the early stages of the growth of nanoscale zinc-oxide crystallites obtained from thermal-decomposition of four precursors—general concepts on precursor-dependent microstructural properties. Chem Mater 2450:2461

    Google Scholar 

  • Baikousi M, Stamatis A, Louloudi M, Karakassides MA (2013) Thiamine pyrophosphate intercalation in layered double hydroxides (LDHs): an active bio-hybrid catalyst for pyruvate decarboxylation. Appl Clay Sci 75–76:126–133. doi:10.1016/j.clay.2013.02.006

    Article  Google Scholar 

  • Boshkov N, Petrov K, Vitkova S, Raichevsky G (2005) Galvanic alloys Zn–Mn—composition of the corrosion products and their protective ability in sulfate containing medium. Surf Coat Technol 194(2–3):276–282. doi:10.1016/j.surfcoat.2004.09.016

    Article  CAS  Google Scholar 

  • Camino G, Maffezzoli A, Braglia M, De Lazzaro M, Zammarano M (2001) Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer. Polym Degrad Stab 457:464

    Google Scholar 

  • Cursino ACT, Gardolinski JEFC, Wypych F (2010) Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate. J Coll Interface Sci 347(1):49–55. doi:10.1016/j.jcis.2010.03.007

    Article  CAS  Google Scholar 

  • Hawthorne FC, Sokolova E (2002) Simonkolleite, Zn5 (OH)8 Cl2 (H2O), a decorated interrupted-sheet structure of the form [MΦ2]4. Can Mineral 40(3):939–946. doi:10.3749/gscanmin.40.3.939

    Article  CAS  Google Scholar 

  • Khamlich S, Bello A, Fabiane M, Ngom BD, Manyala N (2013) Hydrothermal synthesis of simonkolleite microplatelets on nickel foam-graphene for electrochemical supercapacitors. J Solid State Electrochem 17(11):2879–2886. doi:10.1007/s10008-013-2206-0

    Article  CAS  Google Scholar 

  • Khamlich S, Mokrani T, Dhlamini MS, Mothudi BM, Maaza M (2016) Microwave-assisted synthesis of simonkolleite nanoplatelets on nickel foam–graphene with enhanced surface area for high-performance supercapacitors. J Coll Interface Sci 461:154–161. doi:10.1016/j.jcis.2015.09.033

    Article  CAS  Google Scholar 

  • Komarneni S, Menon VC, Li QH, Roy R, Ainger F (1996) Microwave-hydrothermal processing of BiFeO3 and CsAl2PO6. J Am Ceram Soc 79(5):1409–1412. doi:10.1111/j.1151-2916.1996.tb08605.x

    Article  CAS  Google Scholar 

  • Kozai N, Mitamura H, Fukuyama H, Esaka F, Komarneni S (2006) Synthesis and characterization of nickel-copper hydroxide acetate, NiCu(OH)3.1(OCOCH3)0.9·0.9 H2O. Microporous Mesoporous Mater 89(1–3):123–131. doi:10.1016/j.micromeso.2005.10.015

    Article  CAS  Google Scholar 

  • Li Z, Qu B (2003) Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends. Polym Degrad Stab 81(3):401–408. doi:10.1016/S0141-3910(03)00123-X

    Article  CAS  Google Scholar 

  • Li D, Tuo Z, Evans DG, Duan X (2006) Preparation of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene. J Solid State Chem 179(10):3114–3120. doi:10.1016/j.jssc.2006.06.006

    Article  CAS  Google Scholar 

  • Lonkar SP, Kutlu B, Leuteritz A, Heinrich G (2013) Nanohybrids of phenolic antioxidant intercalated into MgAl-layered double hydroxide clay. Appl Clay Sci 71:8–14. doi:10.1016/j.clay.2012.10.009

    Article  CAS  Google Scholar 

  • Machado GS, Wypych F, Nakagaki S (2012) Anionic iron(III) porphyrins immobilized on zinc hydroxide chloride as catalysts for heterogeneous oxidation reactions. Appl Catal A 413–414:94–102. doi:10.1016/j.apcata.2011.10.046

    Article  Google Scholar 

  • Markov L, Ioncheva R, Marinov M, Ivanov K (1990) Synthesis and thermal decomposition of Cu(II)–Zn(II) hydroxide nitrate mixed crystals. Mater Chem Phys 493:504

    Google Scholar 

  • Moezzi A, Cortie M, McDonagh AM (2013) Formation of zinc hydroxide nitrate by H+ -catalyzed dissolution-precipitation. Eur J Inorg Chem 2013(8):1326–1335. doi:10.1002/ejic.201201244

    Article  CAS  Google Scholar 

  • Momodu DY, Barzegar F, Bello A, Dangbegnon J, Masikhwa T, Madito J, Manyala N (2015) Simonkolleite-graphene foam composites and their superior electrochemical performance. Electrochim Acta 151:591–598. doi:10.1016/j.electacta.2014.11.015

    Article  CAS  Google Scholar 

  • Rives V, Del Arco M, Martín C (2013) Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): a review. J Control Release 169(1–2):28–39. doi:10.1016/j.jconrel.2013.03.034

    Article  CAS  Google Scholar 

  • Rojas R, Giacomelli CE (2013) Effect of structure and bonding on the interfacial properties and the reactivity of layered double hydroxides and Zn hydroxide salts. Coll Surf A 419:166–173. doi:10.1016/j.colsurfa.2012.12.002

    Article  CAS  Google Scholar 

  • Schmetzer K, Schnorrer-Köhler G, Medenbach O (1985) Wülfingite, ε-Zn(OH)2, and simonkolleite, Zn5(OH)8Cl2·H2O, two new minerals from Richelsdorf, Hesse, FRG. Neues Jahrb Miner Monatsh 145:154

    Google Scholar 

  • Tagaya H, Sasaki N, Morioka H, Kadokawa H (1993) Preferential intercalation of isomers of naphthalenecarboxylate ions into the interlayer of layered double hydroxides. Chem Mater 1431:1433

    Google Scholar 

  • Tagaya H, Sasaki N, Morioka H, Kadokawa J (2000) Preparation of new inorganic–organic layered compounds, hydroxy double salts, and preferential intercalation of organic carboxylic acids into them. Mol Cryst Liq Cryst 341(2):413–418. doi:10.1080/10587250008026174

    Article  CAS  Google Scholar 

  • Wang Z, Han E, Ke W (2005) Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Prog Org Coat 53(1):29–37. doi:10.1016/j.porgcoat.2005.01.004

    Article  CAS  Google Scholar 

  • Xu ZP, Zhang J, Adebajo MO, Zhang H, Zhou C (2011) Catalytic applications of layered double hydroxides and derivatives. Appl Clay Sci. doi:10.1016/j.clay.2011.02.007

    Google Scholar 

  • Zhu Y, Zhang X, Lan Z, Li H, Zhang X, Li Q (2016) Hydrogen bonding directed assembly of simonkolleite aerogel by a sol–gel approach. Mater Des 93:503–508. doi:10.1016/j.matdes.2016.01.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this article are particularly grateful for both financial and technical support from Toseda s.r.o. and IGA University of Pardubice within the frame of Project SGSFChT_2016_014. Special thanks to Pr. Benes for providing XRD of crystal measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Cousy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cousy, S., Gorodylova, N., Svoboda, L. et al. Influence of synthesis conditions over simonkolleite/ZnO precipitation. Chem. Pap. 71, 2325–2334 (2017). https://doi.org/10.1007/s11696-017-0226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0226-4

Keywords

Navigation