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Abstract Developing analytical or instrumental methods

for the purity assessment of poly(amidoamine) dendrimers

(PAMAMs) is almost equally important as much as inte-

grating novel synthesis and purification methods to obtain

ideal and monodisperse dendrimers. The aim of this study

was to investigate the use of chemometric methods; prin-

cipal component regression (PCR), and partial least squares

(PLS2) to assess the purity of PAMAMs. A full factorial

experimental design was used to construct PCR and PLS2

calibration models. Absorbance spectra of PAMAMs were

collected by UV–Vis spectroscopy between the wavelength

ranges of 250–350 nm with 1.00 nm intervals at 101

points. PCR and PLS2 multivariate models were con-

structed from these full spectra. The built models were

compared in terms of prediction powers by means of rel-

ative mean square error of prediction values. Validation

results of these models provided compelling evidence that

PCR and PLS2 models, indeed PLS2 better, could be

successively used to predict PAMAM mixtures quantita-

tively and qualitatively in terms of components. The

developed models could be used to assess the purity of

PAMAMs successfully for routine laboratory analysis in

future studies.

Keywords PAMAM dendrimers � Chemometric methods �
UV–Vis spectroscopy � Simultaneous separation of binary

mixtures � Purity assessment

Introduction

Over the past decades, dendrimers have been attractive for

a number of different applications due to their well-defined,

monodisperse, three-dimensional, and hyperbranched star-

bust structures. In particular, poly(amidoamine) PAMAM

dendrimers have received much attention as candidates for

various therapeutic, biomedical, and diagnostic applica-

tions containing intracellular and targeted drug-delivery,

gene delivery, and diagnostic imaging (Pourianazar et al.

2014; Kesharwani et al. 2014; Wang et al. 2016; Parisi

et al. 2016; Mekuria et al. 2016). PAMAMs are methodi-

cally constructed through either divergent or convergent

synthesis. In the divergent synthesis, repetition of the

alkylation and amidation steps iteratively yields to next

higher generation. The controlled convergent synthesis of

PAMAMs leads to well-defined molecular masses.

Although PAMAMs can have polydispersity indices as low

as 1.01, using classical divergent and convergent synthetic

methods gives mixtures of products, by-products, branch-

ing defects, and lower generations (trailing generations)

(Tolić et al. 1997; van Dongen et al. 2013; Islam et al.

2005). The presence of impurities and trailing generations

leads to heterogeneity and requires intense and careful

purification to prepare PAMAMs for use in many of the

referenced applications.

Purification of dendrimers is an important goal to be

achieved as much as obtaining higher yield and ideal

growth because of the heterogeneity of the dendrimers is

expected to influence the material properties, such as water

solubility and biodistribution (Almeida et al. 2011). In

particular, the choice of core, repeating units, and surface

functional groups can be substantially significant on the

overall physical and chemical characteristics of the den-

drimers (Scott et al. 2004). Several groups reported defects
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and trailing generations leading to the structural hetero-

geneity arising during the dendrimer synthesis (Peterson

et al. 2003; Tomalia et al. 1990; Kallos et al. 1991; Tolić

et al. 1997). A recent research indicates that membrane

dialysis improves the uniformity of commercially available

PAMAMs (Mullen et al. 2012). In addition, liquid-phase

retention (LPR) (Spivakov et al. 1985) can be used for the

removal of these heterogeneities as an advanced technique.

Therefore, these materials can reach the desired purity to

be used as a proper sample in nonviral gene delivery

mechanic, polycationic–cellular membrane interaction,

target delivery, and molecular imaging studies (Mullen

et al. 2012). In summary, the ideal and monodisperse

dendrimer synthesis, which is important in terms of the

application field where the dendrimer will be utilized, can

be possible by the use of proper synthesis and purification

methods together (Ertürk et al. 2014, 2015).

Up to present, several instrumental methods, such as LC,

MS, and CE, have been applied to detect evolving unpu-

rified lower generations (trailing generations) (Li et al.

2000; Peterson et al. 2002; Shi et al. 2005; Caminade et al.

2005; Baytekin et al. 2006; Giordanengo et al. 2007; Pande

and Crooks 2011). However, these analytical methods are

mostly expensive or not always pervious for the routine

laboratory analysis. Furthermore, validation of these

methods might require long effort or pretreatments

depending on the sample matrix in each generation. To the

best of our knowledge, no analytical techniques have been

proposed for the quantification of dendrimers in the mix-

tures until now. Therefore, it will be important to develop

fast, simple, and low-cost analytical techniques for the

determination and purity assessment of dendrimer

generations.

Multivariate chemometric methods (Joliffe and Morgan

1992; Martens 1991; Martens and Martens 2000), such as

principal component regression (PCR) and partial least

squares (PLS2), help to analyze analytical information

from full spectra. Moreover, multivariate chemometric

tools have widely been used in the simultaneous qualifi-

cation and quantification of mixtures (Kumar et al. 2014),

and could be an alternative for the purity assessment of

dendrimers. PCR and PLS2 have been attracting increasing

attention as multivariate calibration methods for the mul-

ticomponent analysis of mixtures (Martens and Naes 1989;

Brereton 2003; Brown and Ferré 2009). These techniques

are useful for analyzing mixtures of components that show

strongly overlapping spectra, and allow the rapid and

simultaneous determination of each component with min-

imum sample preparation, reasonable accuracy, precision,

and without need of time-consuming separations.

Principles component analysis based methods do not

require the spectra or concentrations of all compounds in a

mixture. In these methods, it is important to make a

sensible estimate of significant components characterizing

a mixture. PCR uses regression to convert principle com-

ponent scores to concentrations (Martens and Naes 1989;

Brereton 2003).

PLS considers errors in both the concentration estimates

and the spectra, whereas PCR assumes that the concen-

tration estimates are error free. PLS attempts to find fac-

tors, called latent variables, that maximize the amount of

variation in spectra that are relevant for predicting con-

centrations, whereas, in PCR, the factors, called principal

components, are selected based on the amount of variation

that they explain in variables. PLS2 is the extension of

PLS1. In PLS1, one compound is modelled at a time,

whereas in PLS2, all known compounds can be included in

the model (Martens and Naes 1989; Brereton 2003; Brown

and Ferré 2009; Wise et al. 2006).

The purpose of this study is to describe and examine the

application of the multivariate chemometric calibration

methods PCR and PLS2 for the purity assessment of

PAMAMs. For this purpose, a full factorial experimental

design was used to develop PCR and PLS2 models.

Developed models were applied to evaluate the purity of

binary mixtures of PAMAMs both quantitatively and

qualitatively from UV–Vis spectroscopic data. The models

were compared in terms of root-mean-square errors. The

validation of the developed models demonstrated that PCR

and PLS2 models could be successfully used to predict

concentrations of dendrimer mixtures simultaneously and

take part of the routine laboratory purity assessment of

dendrimers in future studies without using any pretreat-

ment due to the sample matrix.

Experimental

Materials

Jeffamine� T-403, Mn 440 was purchased from Aldrich.

Methyl acrylate, ethylenediamine, n-butanol, and methanol

were purchased from Merck. Unless it was stated, all other

chemicals were analytical grade and used directly without

purification. LPR ultrafiltration membranes, Amicon 8000

stirred cell, and dialysis membranes, which have the

molecular cut of size (MWCO) 0.5, 1 and 3 kDa, were

supplied from Millipore. Double distilled 18.2 MX cm

Milli-Q deionized (Millipore) water was used for LPR

experiments.

Instrumentation

The CEM Focused MicrowaveTM Synthesis System, Model

Discover (CEM Corporation, North Carolina, USA) with a

continuous microwave power delivery system with the
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operator selectable power output from 0 to 300 W

(±30 W) programmable in 1-W increments, infrared tem-

perature control system programmable from 25 to 250 �C,
and 5 to 125 mL vessel capacity was used as microwave

reactor. UV–Vis spectra were obtained using a PG T 70

Spectrometer (PG Instruments, England) with a quartz

cuvette cell which has an optical path length of 1.00 cm.

Double distilled 18.2 MX cm Milli-Q deionized (Milli-

pore) water was used for background subtraction. Eigen-

vector Research Chemometric Software, Solo?MIA 7.03

(Solo with Multivariate Image Analysis built-in), was used

for PCR and PLS2 calibrations.

Microwave assisted synthesis of Jeffamine� T-403

cored PAMAMs

PAMAMs, generation 2 (P2) and 3 (P3), were synthesized

according to our recently reported method (Ertürk et al.

2014) and briefly summarized hereafter. This method

involves alkylation and amidation steps. In the alkylation

step, excess methyl acrylate (2.5 M eq. per terminal

amine) was added to a methanolic solution of commer-

cially available Jeffamine� T-403 polymer. The reaction

mixture was stirred for 24 h at room temperature. Excess

reagents and solvents were removed under vacuum at

65 �C bath temperature and purified by LPR. The

resulting half-generation ester terminated product P0.5 was

colorless oil (93%). In amidation, excess ethylenediamine

(EDA) (10 M eq.of EDA per ester branched half gener-

ation) was added to the stirred methanolic solution of

P0.5. The final mixture was irradiated with microwave

(MW) at 200 W for 30 min. Final traces of EDA were

removed under vacuum below the bath temperature of

65 �C using 50 mL of n-butanol as hydrogen competitive

reagent for three times. The final product was purified by

LPR. The resulting product was full-generation amine

terminated P1 (92%). By repeating the above cycle,

syntheses of desired PAMAM generations, P2 and P3,

were performed (Fig. 1).

Purification of PAMAMs: liquid-phase polymer

retention technique (LPR)

LPR has the principle of separation of small molecules

or fractals from high-molecular weight macromolecules

by means of ultrafiltration membranes. When water-sol-

uble macromolecule solutions are placed into LPR sys-

tem and diafiltered through a membrane, the membrane

retains the molecules with the higher molecular weights

compared to its molecular weight cut of size (MWCO)

and permeates the smaller ones. Dendrimers with the

higher molecular weight should be dialyzed with mem-

branes of low MWCO to be sure about the purification

of the dendrimer from fragmental and reagents.

PAMAMs, P2 and P3, were purified in the principle of

the LPR and then characterized. The main components of

LPR system are a filtration unit (a stirred cell), a

membrane filter with appropriate MWCO size, and a

pressure source (N2) gas. Detailed systematic explana-

tions and applications of LPR can be found in the lit-

erature (Spivakov et al. 1985; Rivas and Geckeler 1992),

but the ideal one can be considered as a continuous flow

LPR system (Rivas et al. 2011).

Appropriate Millipore ultrafiltration membrane disk was

equipped with Amicon 8000 stirred cell. (1:1)

MeOH:aqueous solutions of crude product were transferred

into the cell. Depending on the expected size of the pro-

duct, membrane disks were selected in the range of MWCO

1–3 kDA. The solution was diluted to 200 mL inside the

cell. Methanol–water mixture was used as feeding solvent.

Continuous dialysis was performed under 15 psi nitrogen

pressure for 24 h. Finally, the methanol water mixture was

evaporated under vacuum.

Preparation of dendrimer solutions

Aqueous solutions of intensively LPR purified PAMAMs,

P2, and P3, were used to prepare the binary mixtures of

calibration samples C1–C9 (Table 2) and validation set

(Table 3). 18.2 mX cm double distilled Milli-Q water was

used to prepare solutions. No any other sample prepara-

tions and treatments were performed before the UV–Vis

spectroscopy analysis.

Design and analysis of experiments: calibration

and validation sets

Binary mixtures of Jeffamine� T-403 cored PAMAMs

with varying concentrations of LPR purified P2 and P3

were analyzed by UV–Vis spectrophotometer. Then, cali-

bration and prediction data sets were constructed. A 32 (lk)

full factorial design (Montgomery 2005) was used for the

design of experiments to build PCR and PLS2 calibration

models. The number of independent variables, Y1 and Y2,
indicating the P2 and P3 (k = 2) materials in the mixture,

was selected as two. The overall absorbance when each

component is at a maximum in the mixture was determined

within the Beer-Lambert limit (without exceeding 1.2 AU

for safety). The three concentration levels (l = 3) corre-

sponding to the values of 0.40, 0.99, and 1.59 g L-1 for P2

and 0.39, 0.97, and 1.55 g L-1 for P3 were selected.

Table 1 shows the design variables that are used for

composition of the binary mixtures of P2 and P3 used in the

calibration set. The absorption spectrum of each sample

was recorded with 1.00 cm cuvettes between 250 and
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350 nm wavelength ranges at 1.00 nm intervals against a

blank of 18.2 mX double distilled Milli-Q water. Mutually

orthogonal designs were constructed by conducting

(lk = 32) nine experiments (C1–C9) for calibration data

(Table 2). UV–Vis spectra of calibration samples C1–C9

were collected between 250 and 350 nm in distilled water

as full spectral responses, and all the obtained spectral data

in 250–350 nm wavelength range were used to develop

multivariate calibration models (Fig. 2).

Data set

UV–Vis spectra of PAMAMs, P2 and P3, mixtures were

collected between the wavelength range of 250–350 nm,

which are including the kmax absorbance values of P2 and

P3. Spectral evaluation and all preprocessing of data

involving centering and normalization were performed by

Solo?MIA 7.0.3 (Solo with Multivariate Image Analysis

built-in.) Eigenvector Research Software. After the pre-

processing, data were divided into a calibration set C1–C9

(nine samples) (Table 2) to build the model and a test set

(seven samples) to validate the model. Thus, data set

including 16 spectrums was obtained. Finally, PCR and
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Fig. 1 Jeffamine� T-403 core (a) and structure of PAMAMs, generation 2 (P2), and generation 3 (P3) (b)

Table 1 Design variables and their coded and actual values used for

experimental design

Design variable (factor) Symbols Actual values of coded levels

-1 0 1

P2 concentration (g L-1) Y1 0.40 0.99 1.59

P3 concentration (g L-1) Y2 0.39 0.97 1.55

Table 2 32 full factorial design and calibration set for P2 and P3

mixtures

Batch code Factors (controllable input variables)

Initial P2 concentration Initial P3 concentration

P2 (g L-1) Level Y1 P3 (g L-1) Level Y2

C1 0.40 -1 1.55 ?1

C2 1.59 ?1 0.97 0

C3 1.59 ?1 0.39 -1

C4 0.40 -1 0.97 0

C5 0.40 -1 0.39 -1

C6 0.99 0 0.97 0

C7 1.59 ?1 1.55 ?1

C8 0.99 0 0.39 -1

C9 0.99 0 1.55 ?1
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Fig. 2 Full response UV spectra of calibration set C1–C9

130 Chem. Pap. (2017) 71:127–135

123



PLS2 regression methods were used to develop multivari-

ate calibration models (Table 3).

Variable selection

The real reason to build regression models was to make

predictions of P2 and P3 quantities of PAMAM dendrimer

mixtures, simultaneously. Therefore, before considering

the predictive abilities of the models, the first thing to be

focused on is the root-mean-square error of calibration

(RMSEC). It is defined as

RMSEC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

C

i¼0

ŷi � yið Þ2

C

v

u

u

t ; ð1Þ

where ŷi are the values of the predicted variable when all

samples are included in the model formation and C is the

number of the calibration samples. RMSEC is the measure

of how well the model fits the data.

The ability of the model to predict samples that were not

used to build the model is referred as the root-mean-square

error of cross validation (RMSECV). Equation (1) can also

be used for the calculation of the RMSECV. In this case, ŷi
corresponds to predictions for samples that were not

included in the model formation. To determine the number

of factors (k) to be used in PCR and PLS2, cross-validation

procedure was used. In this procedure, ith sample of the

data set is left out once, and the remaining samples, PCR

and PLS2 models, are formed (Şahin et al. 2012).

RMSECV usually refers to cross-validation experiments

where the calibration data set is divided into two groups as

training and test sets to evaluate how a calibration data

would perform when applied to a new data. In addition to

this, this evaluation can be performed directly by applying

a completely independent prediction set of samples that

have known Y values. In this point, root-mean-square error

of prediction (RMSEP) can be calculated when the model

is applied to a new data. RMSEP can be calculated as

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

Ct

i¼0

ŷti � ytið Þ2

Ct

v

u

u

t ; ð2Þ

where Ct is the number of test sets; ŷti and yti indicate the

measured value and predicted value from the model for ith

sample.

Results and discussions

UV–Vis spectroscopy analysis of PAMAMs

PAMAMs can show maximum UV absorption band

depending on their internal tertiary amines. These bands

can be observed in different wavelength ranges according

to generations. Pande and Crooks (2011) reported these

characteristic bands between the wavelength range of

280–285 nm. We have also observed these characteristic

UV absorption bands (Fig. 3) for Jeffamine� T-403 cored

PAMAMs in our recent study (Ertürk et al. 2014) as in

good agreement with the literature (Pande and Crooks

2011). Figure 3 shows the individual UV–Vis absorption

spectrums of P2 (285 nm), P3 (280 nm), and mixtures. It

exists approximately 5 nm maximum absorption band

difference between the individual spectrums of P2 and P3.

This small difference makes difficult to identify, screen,

and quantify the binary mixtures of P2 and P3. However, it

could be possible by developing multivariate calibration

models based on the full factorial experimental design

(Montgomery 2005). Furthermore, full UV–Vis spectra of

the binary mixtures may convey the large scale of infor-

mation. Chemometric models (PCR and PLS2) could be

used to interpret and evaluate these full spectra as a

response matrix. Thus, the P2 and P3 concentrations from

the binary mixtures of Jeffamine� T-403 cored PAMAMs

could be predicted simultaneously.

In UV–Vis assays, 250–350 nm full range of UV spectra

was used to collect information for the development of

multivariate calibration models (Fig. 2). In this range,

Table 3 Validation set for P2 and P3

Sample number P2 (g L-1) P3 (g L-1)

1 0.58 0.49

2 0.77 0.65

3 0.96 0.81

4 1.15 0.97

5 0.79 0.91

6 0.99 1.13

7 1.12 1.36
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Fig. 3 Absorption spectra of aqueous 1.59 g L-1 P2, 1.55 g L-1 P3

solutions, and mixture (P2 ? P3) of them
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280–285 nm band characteristic to PAMAMs for P2, P3

solutions and binary mixture (P2 ? P3) of them were

observed successfully (Fig. 3). Then, this range was used

in a good agreement to model calibration data (C1–C9),

which is designed with 32 full factorial design (Table 2).

C1–C9 calibrations samples were prepared from the LPR

purified P2 and P3 dendrimers. Absorbance spectrum of

each calibration sample (C1–C9) refers to overlapped

mixture absorbance spectra of the P2 and P3 dendrimer

solutions. Thus, the observed absorbance spectra in Fig. 2

between 270 and 290 nm origin from the overlapping

characteristic dendrimer peaks stemming from the absor-

bances of the internal tertiary amine groups of P2 and P3 at

around 280–285 nm.

Design of experiments and data processing

Spectroscopic data can be designed in m 9 n data matrix

X, where m refers the number of calibration experiments

(C1–C9) and n indicates the number of variables

(wavelengths: 250–350 nm). In this study, calibration

experiments were conducted by applying 32 full factorial

design. Thus, nine experiments were conducted at three

levels for the simultaneous determination of P2 and P3

from binary dendrimer mixtures (Table 2). UV spectra of

each calibration experiment were collected between 250

and 350 nm and absorbance values at each wavelength

were used to construct Xm9n data matrix (response-full

spectra matrix). On the other hand, Ym92 concentration

matrix was constructed using actual values instead of

coded values of Y1 and Y2 variables illustrated in Tables 1

and 2. Precision and prediction ability of chemometric

models can be influenced by preprocessing. Hence, pre-

processing of normalization and column centering were

applied both to the X and Y matrices by Solo MIA 7.0.3

Eigenvector Software auto-scaling function.

Determination of the number of variables

The UV spectra of P2 (1.59 g L-1) and P3 (1.55 g L-1) are

shown in Fig. 3. As it can be seen from Fig. 3, direct

spectrophotometric determination of one generation in the

presence of second one is impossible due to the strong

overlapping spectra of them. Therefore, PCR and PLS2

calibration methods were applied to resolve the overlapped

mixture spectra of two dendrimer generations, P2 and P3.

Absorption spectra for the standard samples (C1–C9)

shown in Table 2 were recorded in the range of 250–350 nm

at 101 points and subjected to PCR and PLS2 analysis. In

these methods, calibration was performed using the absor-

bance (Xm9n) and concentration matrices (Ym92) to predict

the unknown concentrations of the dendrimer generations

from their binary mixtures. PLS2 and PCRmodels require to

determine the optimal number of principal components

(PCs) or latent variables (LVs) before the calibration models

are constructed. The optimum number of PCs and LVs was

determined by applying cross-validation procedure (Brere-

ton 2003). In this procedure, ith sample of the data leaves one

out once, and PCR and PLS2 models have been built. The

root-mean-square error of cross validation (RMSECV) was

used as the statistical parameter to obtain the optimum

number of PCs and LVs. This parameter is defined in Eq. (1).

PCR and PLS2models require the optimal number of PCs or

LVs when the local minimal level of RMSEC is reached. In

fact, a good rule to decide the number of components is not to

include additional factors improving the RMSECV at least

2%. It can be obviously seen from Fig. 4 that PCs and LVs in

PCR and PLS2 models do not improve more than 2% at the

local minima of three PCs or LVs for both P2 and P3. In

addition, it is more reliable to construct a model with less

complexity. For these reasons, PCs and LVs to build the PCR

and PLS2 models were selected as three as it is marked with

the circle (Fig. 4).
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data
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Comparison of chemometric methods: principal

component regression (PCR) and partial least

squares (PLS2)

In the divergent synthesis of PAMAMs, core monomer or

polymer is reacted with successive addition of excess

methyl acrylate and ethylene diamine for the synthesis of

higher generation dendrimers. Insufficient or improper

purification of the synthesized dendrimers results in non-

ideal lower generation growth (Mullen et al. 2012). In this

point, multivariate calibration models could be used as a

purity or ideal structural growth screening tools. Therefore,

the components of the dendrimer solutions can be deter-

mined quantitatively. Table 4 illustrates the comparison of

PCR and PLS2 models from the aspect of prediction

powers. In Table 4, it can be clearly seen that RMSEC, the

error of calibration, values for P2 and P3 are ranged

between 0.25 and 0.29, and PLS2 model shows the smallest

RMSEC value for P3 (0.25) and other RMSEC values

cannot be distinguished from each other. In other words,

the ability of PCR and PLS2 models to fit calibration data

(R2) for P2 and P3 seems to be very close to each other.

Furthermore, RMSECV values for P2 are not a distin-

guishable value to infer which model predicts best as they

have almost the same RMSECV values. On the other hand,

one can see from RMSECV values of P3 that PLS2 has the

smallest RMSECV, and it is expected to predict best with

the original calibration data. Nevertheless, for the predic-

tion of new samples: validation data (RMSEP), PLS2

model outperforms the other models, and this is followed

closely by PCR for P2. Furthermore, PCR and PLS2 could

predict new sample in the same performance as it can be

seen the RMSECV values of P3 (Table 4). In practice, it

could be evident from the comparison of models that fit and

prediction are totally different aspects of model’s perfor-

mance. When the relative mean standard error prediction

(RMSEP) values for PCR and PLS2 in Table 4 are inves-

tigated, it can be seen that PLS2 almost predicts better the

P2–P3 binary dendrimer mixtures with just below the 5 nm

maximum absorbance wavelength difference (Fig. 3) in

contrast to PCR if prediction is the goal.

Validation

Validation of PCR and PLS2 chemometric models was

conducted by selecting seven independent validation test

data. Predictive abilities of these models on both cali-

bration and validation data were investigated. Y mea-

sured and Y predicted concentration values for PCR and

PLS2 models were shown in Fig. 5. %Residual errors of

prediction values of models were calculated. These

values were plotted against the total sample number

(nine for full factorial calibration data and seven for

validation data) (Fig. 5b, d, f, h). Furthermore, 1:1 line

and fitting line corresponds to calibration and validation

data, respectively. Investigation of the predictive abili-

ties of PCR and PLS models (Fig. 5a, c, e, g) reveals

that these models have close regression coefficients to

each other [PCR: P2 (R2 = 0.993), P3 (R2 = 0.995);

PLS2: P2 (R2 = 0.995), P3 (R2 = 0.995)], representing

both the calibration and validation data. In addition, it

could be easily interpreted from the visual data presented

in Fig. 5 for the PCR and PLS2 models that 1:1 cali-

bration and validation test set fitting lines are almost

overlapped. That is, the PCR and PLS2 models can both

predict the calibration data and validation data in rea-

sonable %residual errors. While the PCR model predicts

binary mixtures of the PAMAMs between %residual

errors of ±8% (RMSEP: P2 = 0.698; P3 = 0.535), PLS2

predicts between those of ±6% (RMSEP: P2 = 0.470;

P3 = 0.347). To sum up, the PLS2 predicts better than

PCR and both of these methods could be successfully

used for the quantitative determination of the binary

mixtures of the PAMAMs.

Conclusions

Chemometric analysis of the experimental data designed

with 32 full factorial experimental design from full spectra

can convey large scale of information for the construction

of multivariate chemometric models. Hence, data analysis

and interpretation could be performed with good reliability

and security. Modelling from full spectra can make mul-

tivariate calibration models superior as they convey more

information compared to simple linear models. In this

study, PCR and PLS2 calibration models were constructed

to determine the concentration of P2 and P3 from binary

mixtures of Jeffamine� T-403 cored PAMAMs. The built

models were compared in terms of RMSEC, RMSECV,

and RMSEP values. Results revealed that developed PCR

and PLS2 models could be successfully used for the

Table 4 Comparison of

RMSEC, RMSECV, and

RMSEP on PCR and PLS2

models

Model P2 P3

RMSEC RMSECV RMSEP R2 RMSEC RMSECV RMSEP R2

PLS2 0.29 0.71 0.23 0.9965 0.25 0.50 0.32 0.9974

PCR 0.28 0.70 0.47 0.9968 0.28 0.54 0.35 0.9966
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simultaneous determination of the binary mixtures of

PAMAMs from spectroscopic UV–Vis data in routine

laboratory analysis. Indeed, PLS2 predicts better. More-

over, these models could be applied for the purity assess-

ment of PAMAMs.

In conclusion, this paper is the first study concerning the

purity assessment of PAMAMs using chemometric meth-

ods—PCR and PLS2. Thus, the developed models could be

easily used in routine laboratory UV–Vis spectroscopy

analysis of dendrimer mixtures without using any sample

pretreatment in a short time, and for the screening of the

dendrimer synthesis.
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Brown SD, Ferré RT (2009) Comprehensive chemometrics: linear

regression modeling, non-linear regression, classification, feature

selection, multivariate robust techniques. Elsevier, Oxford

Caminade A-M, Laurent R, Majoral J-P (2005) Characterization of

dendrimers. Adv Drug Deliv Rev 57:2130–2146. doi:10.1016/j.

addr.2005.09.011

Erturk AS, Gurbuz MU, Tulu M, Bozdogan AE (2015) Water-soluble

TRIS-terminated PAMAM dendrimers: microwave-assisted syn-

thesis, characterization and Cu(ii) intradendrimer complexes.

RSC Adv 5:60581–60595. doi:10.1039/C5RA11157A
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