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Abstract Influenza causes seasonal outbreaks yearly and unpredictable pandemics with high morbidity and
mortality rates. Despite significant efforts to address influenza, it remains a major threat to human public health.
This issue is partially due to the lack of antiviral drugs with potent antiviral activity and broad reactivity against
all influenza virus strains and the rapid emergence of drug-resistant variants. Moreover, designing a universal
influenza vaccine that is sufficiently immunogenic to induce universal antibodies is difficult. Some novel epitopes
hidden in the hemagglutinin (HA) trimeric interface have been discovered recently, and a number of antibodies
targeting these epitopes have been found to be capable of neutralizing a broad range of influenza isolates. These
findings may have important implications for the development of universal influenza vaccines and antiviral drugs.
In this review, we focused on the antibodies targeting these newly discovered epitopes in the HA domain of the
influenza virus to promote the development of universal anti-influenza antibodies or vaccines and extend the
discovery to other viruses with similar conformational changes in envelope proteins.
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Introduction

Influenza virus, a member of the Orthomyxoviridae family
of viruses, is an enveloped virus with a negative-sense
single-stranded RNA genome [1]. Influenza viruses can be
classified according to the diversity of the surface proteins
hemagglutinin (HA) and neuraminidase (NA) [2]. Cur-
rently, four types of influenza viruses have been identified:
A, B, C, and D types [3]. Influenza A and B viruses are the
most dominant among all types, and they circulate,
disseminate, and cause seasonal influenza epidemics [4],
which may lead to high mortality and morbidity rates in
vulnerable populations (https://www.who.int/news-room/
fact-sheets/detail/influenza-(seasonal)). The World Health
Organization has identified 18 HA and 11 NA types in
influenza Aviruses. They can be further classified into two
separate groups on the basis of HA type: group 1, which
includes H (1, 2, 5, 6, 8, 9, 11, 12, 13, 16, 17, and 18); and
group 2, which includes H (3, 4, 7, 10, 14, and 15). Each

group has many subtypes that can infect humans, pigs, sea
mammals, and birds [5,6].
Influenza viruses have high mutation rates, which cause

resistance to existing drugs; in addition, the development
of “universal” protective antibodies and universal vaccine
candidates to induce such antibodies is limited by the
diversity and rapid evolution of influenza viruses [7].
Some avian influenza viruses, such as H5N1 [8], H7N9
[9,10], and H10N8 [11], can infect humans. In 1996, the
H5N1 virus, which was isolated from a domestic goose,
infected humans and caused 18 influenza cases and 6
deaths. Outbreaks of human infection were reported from
1998 to 2003; for example, H5N1 was reported in Hong
Kong, China, H9N2 [12] was reported in Guangdong,
China, and H7N7 [13] was reported in the Netherlands. In
2013, a new H7N9 avian influenza virus emerged in China
and infected about 1500 individuals (http://www.who.int/
csr/don/01-may-2017-ah7n9-china/en/). The spread of the
virus from one species to another is a severe risk factor to
human health. The diversity and rapid evolution of
influenza viruses are also serious problems that limit the
development of “universal” protective antibodies and
universal vaccine candidates to induce antibodies [14].
Furthermore, some highly conserved epitopes in the HA
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might have low immunogenicity, and they cannot easily
induce antibody response. Thus, the key difficulty may be
the development of new strategies to strengthen specific
immunization and improve specific antibody selection. Yu
et al. isolated mAb m826 as a novel epitope in the HA
trimeric interface that exerted highly therapeutic effects on
mice with a lethal challenge of H7N9 [15]. This interface
was previously considered to be hidden but can be exposed
according to the recently proposed HA “breathing” theory
[16]. Consequently, panels of broadly neutralizing anti-
bodies targeting these epitopes were identified [16–18]. In
the present work, we review the recent progress on these
novel “universal” antibodies and discuss the potential
implications of existing studies on influenza drug and
vaccine development.

Targets of influenza virus antibodies

Influenza viruses primarily consist of eight gene segments,
which encode ten identified proteins (Fig. 1). Among these

proteins, three surface proteins, namely, HA, NA, and M2
(Fig. 1), are the most dominant and could be “observed” by
the humoral immune system. Therefore, almost all
antibodies that are known to inhibit viral proliferation
target these proteins.
M2 is the influenza virus surface protein that acts as a

proton channel at low pH, following the uncoating of the
viral ribonucleoprotein complex from the endosome to the
cytoplasm [19,20]. However, antibodies against M2 are
not neutralizing and generally do not confer protection by
promoting effector functions on the basis of their Fc
regions [21]. Furthermore, the antibody responses toward
M2 are typically weak and/or transient after natural
influenza infections in humans [22,23]. NA, another viral
surface protein, acts as a receptor-destroying enzyme and
removes sialic acid residues from the surface of infected
cells to release and spread budding virions [24]. Although
NA has lower variability than HA, it also undergoes a
certain degree of antigenic drift, which may affect the
intensity of NA antibody response to viruses or vaccines.
The HA protein facilitates viral infection into host cells and

Fig. 1 Overview of influenza virus structure and epitopes recognized by neutralizing antibodies in the HA1 domain. The genomes of the
influenza virus comprise eight gene segments, including polymerase basic 1 (PB1), polymerase basic 2 (PB2), polymerase acidic (PA),
nucleoprotein (NP), matrix (M), nonstructural (NS), HA, and NA. The dominant glycoprotein on the viral surface, HA, mediates receptor
binding, and membrane fusion is divided into HA1 and HA2. HA1 is the main target of neutralizing antibodies and antibody binding sites
in the HA1 domain (indicated by different colors).
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influences the humoral immune response by shielding
receptor binding sites (RBSs) and the process of antigenic
drift. The antibodies targeting HA could directly neutralize
viruses or stimulate the effector functions to eliminate
infected host cells [25]. An analysis of blood samples
collected from influenza virus-infected or immunized
individuals shows that most broadly neutralizing anti-
bodies target HA [26–30]. Therefore, the present work
mainly focuses on the antibodies that target the highly
conserved regions of HA.

Influenza virus HA protein: structure and
function

HA, a type 1 glycoprotein on the virus surface, forms a
homotrimer that measures approximately 220 kDa and is
responsible for the virus binding to the host cell receptors.
The mature influenza HA monomer consists of two
subunits [31], namely, HA1 and HA2 (Fig. 1); these
subunits are connected by disulfide bonds and functions
differently [32–34]. The HA1 region contains a highly
antigenic domain, and the HA2 region is the conservative
membrane fusion domain that aids viral and cell membrane
fusion within the endosome.
The HA structure is metastable and changes dynamically

through pH adjustment [35] because pH influences the
neutral pH conformation of the protein found on the virus
and induces viral and cell membrane fusion. During
influenza infection, HA aids the influenza virus in binding
to the host cell membrane via an HA/sialic acid interaction,
which allows the internalization of viral particles via
endocytosis. The HA protein is cleaved enzymatically into
the N-terminal HA1 polypeptides with a distal domain of
globular shape and C-terminal HA2 polypeptides with part
of the HA1 polypeptide during endocytosis. Within the
low pH (5–6) environment of the endosome, HA2
undergoes structural rearrangements, and the viral envel-
ope fuses with host endosomal membranes, thereby
allowing the virus to be internalized and the viral RNA
to be released within the host cell [36].
HA is an appropriate target for inhibiting influenza

viruses [37] because it is not only the most abundant
protein antigen on the viral surface but also a critical factor
that facilitates viral infection. The HA domain is diverse;
however, almost all HA domains, except the newly
identified H17 and H18 HAs from bats, play the same
role of aiding the binding of viruses to host cells and
inducing the fusion of viruses and host cell membranes
[38–41]. Thus, blocking the RBS or inhibiting the process
of HA maturation and membrane fusion are two suitable
ways to prevent influenza viral infection. The two types of
influenza viral antibodies target the globular head (HA1) or
stem (HA2) regions of HA [29].

Conventional anti-HA antibodies: what we
have learned so far

Most neutralizing antibodies against influenza viruses are
directed to the conformational epitopes on HA, particularly
the globular head domain. A vast number of influenza-
neutralizing antibodies against the HA globular domain are
strain-specific and can efficiently prevent infection by
blocking the HA-mediated attachment to cells. Examples
of such antibodies include the H1-specific antibody 5J8,
the H2-specific antibody 8M2, the H5-specific antibody
13D4, and the H7-specific antibody H7.5 [18,42–44],
whose binding sites are close to or overlap with RBSs. In
2018, an H1-specific antibody CL6649 identified another
conserved site on the HA head side of the H1 subtype; this
site is called a “lateral patch” [45]. However, strain-specific
antibodies bind to epitopes with high mutation rates,
thereby allowing antibody binding sites to change and
escape from antibody-mediated neutralization.
Identifying the conserved sites in the variable head

domain is difficult [32,46], and only a few anti-HA head
domain antibodies have been described as broadly
neutralizing antibodies. In 2009, mAb S139/1 was isolated
from immunized mice with H3 viruses, and it exhibited
neutralization activity against the H1, H2, and H3 strains.
Its epitope is located in the antigen site B near the RBS
[47]. A human monoclonal antibody called CH65 was
obtained by isolating it from a subject immunized with the
2007 trivalent influenza vaccine, and it neutralized 30 out
of 36 H1N1 strains. An analysis of the CH65–H1N1
complex showed that CH65 binds to the receptor binding
pocket on HA1 through HCDR3, mimicking the physio-
logic interaction between sialic acid and HA [48]. Using
phage antibody libraries from a human donor, Ekiert et al.
isolated mAb (C05), which binds directly to the RBS on
HA and neutralizes strains from multiple subtypes of the
influenza A virus, including H1, H2, and H3 [49]. In
addition, some broadly neutralizing antibodies whose
epitopes are far from the RBS have been described. Two
anti-head mAbs, F045-092 and F026-427, were identified
from human B lymphocytes by screening with the H3N2
virus; these antibodies showed activity against H1N1,
H3N2, and H5N1 viruses [50]. D1-8 is a human mAb
targeting the antigenic site D and exhibits potent, broadly
neutralizing activity across antigenically diverse influenza
H3 subtype viruses [26]. Moreover, 429B01 is particularly
broad and binds to groups 1 and 2 viruses [51]. Antibodies
CR8033 and CR8071 recognize a distinct conserved
epitope in the HA head domain of the influenza B virus,
and they have broad protection against influenza A and B
viruses [52]. C12G6 targets a conserved epitope that
overlaps with the RBS in the HA region of the influenza B
virus and therefore protects against influenza B infection
[53]. These previous studies indicated that most anti-HA
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head regions neutralizing antibodies only offer a narrow
line of protection and do not neutralize all influenza
subtypes due to the high level of sequence diversity in the
HA heads between subtypes, as well as the incorporation
of large amounts of glycans in this region.
Broadly neutralizing antibodies usually target the stem

region of HA due to the low variability of the stem domain.
Such stem-targeted bnAbs recognize the highly conserved
regions of the stem and inhibit the conformational changes
necessary for viral fusion. Therefore, these bnAbs, e.g.,
CR9114 and MEDI8852, have more extensive heterotype-
neutralizing activity compared with most head-targeted
antibodies; some can even target almost all HA types and
groups [54–57]. Recently, panels of neutralizing stem-
directed human-derived bnAbs have been reported. A
human monoclonal antibody called CR9114 recognizes a
conserved epitope in the HA stem and protects against
lethal challenges with the influenza A and B viruses [52].
Neutralizing antibodies CR6261, F10, or 70-1F02 against
group 1 influenza types target highly conserved pocket
regions in the stem of HA using only heavy chains due to a
phenylalanine in position 54 at the HCDR2 region unique
to the VH1-69 gene [55,58]. Prior studies have shown that
these antibodies can be elicited by vaccination [59–62].
However, VH1-69-derived antibodies generally do not
neutralize groups 1 and 2 strains of influenza A, and
only CR9114 can neutralize both groups [63]. By contrast,
group 2-specific antibodies, such as CR8020, bind to
epitopes closer to virus membranes [64]. As the most
extensive heterotype-neutralizing antibodies that recognize
both groups of HAs, mAb FI6 and FI6V3 can bind to
conserved epitopes in the F subdomain [65]. Moreover,
bnAbs specific for the HA stem region usually require
FcgR-mediated effector functions, which act via the
interactions of the Fc region of the antibodies with FcgR
receptors, to protect against influenza virus in vivo and kill
virus-infected target cells by attracting immune cells, such
as NK cells, macrophages, and neutrophils [66]. However,
the humoral response of the HA stem region is generally
weaker than that of the more immunogenic HA trimer
globular head region [17], leading to the vast generation of
anti-HA globular head domain antibodies during infection
with an influenza virus. Therefore, developing a universal
vaccine that promotes the generation of anti-stem anti-
bodies or using anti-stem antibodies via passive immuni-
zation in infected individuals is difficult.
Designing a universal influenza vaccine that is suffi-

ciently immunogenic to induce universal antibodies
capable of neutralizing a broad range of influenza isolates
is difficult partly because of the lack of highly conserved
epitopes in the HA globular head region [16,23]. With the
advances in antibody discovery-related technologies, a
growing number of antibodies are being identified, and
some of them target critical functional regions that are not
highly sensitive to antigenic drifts in the HA domain

[67,68]. Particular attention has been paid to some
novel epitopes hidden in the influenza trimeric HA head
interface [69,70]. These studies have rekindled the interest
in the development of “next-generation” universal
influenza virus antibodies and corresponding vaccine
immunogens.

Recent advances in anti-HA antibodies

In the past decade, extensive efforts have been made to
identify the extremely conserved epitopes and correspond-
ing universal influenza antibodies [17,68,71,72]. Several
strategies focused on the rational design of HA antigens
that could expose conserved epitopes to generate bnAbs
[73–76]. The glycosylation in the HA domain is involved
in the antigenic drift of influenza viruses; influenza viruses
have been found to introduce or remove glycans to change
the viral structure and shield the sites near the RBS on its
surface to reduce or evade host immune response [77–79].
A number of studies engineered glycans to expose the
hidden conserved epitopes in the HA domain. For instance,
one article reported that modifying glycosylation sites in
the HA stem region leads to unmasked sites by N-glycans
that elicit effective broadly neutralizing antibodies [80].
Such studies confirmed the potential role of engineering in
changing the immunogenicity of antigens and exposing
conserved sites, which are the key to induce broadly
neutralizing antibodies [76,81,82].
In a recent research article, the authors engineered a

number of hyperglycosylated versions of HA and used
them to immunize animals [76]. In their work, the glycans
changed the initially diverse antibody response into a
focused one. Three monoclonal antibodies were identified
and designated as 8H10, FL-1056, and FL-1066. The
structural studies showed that the binding sites of the three
antibodies belonged to the HA head domain in the same
epitope that is ordinarily occluded on a prefusion structure
and hidden in the trimeric HA head interface. With the
introduction of non-native putative N-linked glycosylation
sites, such occluded and highly conserved epitopes were
exposed in the glycosylated HA molecules; such condition
allowed for the broad (but not complete) antibody mAb
8H10 to recognize all of the identified H3 types and a
representative H4 type [16,76]. The article proposed that
hyperglycosylated HA could block some epitopes from
exposure to occluded epitopes and elicit broadly protective
responses.
A class of anti-influenza virus antibodies targeting the

interface of HA trimer has been identified. In 1988, a
monoclonal antibody Y8-10C2 was described. Y8-10C2
recognized an epitope located at the interface of adjacent
subunits and exposed to antibody binding only after acid
treatment of HA [83–85]. In 2016, a panel of H1+ H3
cross-reactive antibodies, discovered by Georgiou’s group
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and identified in multiple donors who received the trivalent
seasonal influenza vaccine, all bound to a highly conserved
epitope on monomeric HA located on the RBS but
occluded in the intact HA trimer. Moreover, these
antibodies conferred prophylactic and therapeutic protec-
tion against challenge by group 1 and group 2 strains
despite their complete lack of neutralization activity in
vitro [86]. However, the precise mechanism for protection
remains under investigation. Recently, some novel epi-
topes that are targeted by therapeutic antibodies but are
difficult to be accessed in intact trimeric HA have been
identified. The H7N9-specifc antibody, m826, is isolated
from a large phage-displayed library and binds to HA1
with subnanomolar affinity. Interestingly, m826 exhibits
pH-sensitive binding to trimeric HA. It binds to trimeric
HA with subnanomolar affinity at pH 5.0; binding at pH
7.4 is about 10-fold weaker. The crystal structure of Fab
m826 in the complex with the H7N9 HA1 fragment shows
that m826 binds to a unique epitope on H7 HA that is
buried in the trimeric structure. The mechanism of action
could be deciphered by the “breathing” of the HA
protomers [15]. Turner et al. also found this mechanism
by observing the process of HA binding to a potent

influenza H7 HA head-directed mAb through cryo-
electron microscopy. The epitope of the antibody is not
solvent and accessible in the compact prefusion conforma-
tion but is transiently exposed during “breathing” [18]. In
2019, a study discovered a naturally occurring human
monoclonal antibody, FluA-20, which can protect against
almost all influenza types [87]. Structural studies revealed
the novel epitopes of FluA-20 that are extremely well
conserved on the non-RBS side across diverse types. The
novel epitopes are positioned in the 220 loop and the
adjacent 90 loop, which is usually buried in the native HA
trimer (Fig. 2).
These findings suggest that the HA trimer is dynamic

[88–90] and that the interface can be opened, perhaps
transiently or partially, to expose conserved sites. The
“breathing” of the interface of the HA head domain has
also been reported [16–18,87]. HA0 is the HA precursor
protein. HA is assembled into a trimer by protein folding in
the endoplasmic reticulum and is then transported to the
cell surface for maturation [91,92]. HA cleavage is
required for the infectivity of influenza viruses [93,94].
A previous study demonstrated that HA cleavage alters the
HA trimer dynamics, influences the presentation of the

Fig. 2 HA interface is the critical binding site for neutralizing antibodies. (A) Trimeric HA structure seen from the side and top in space
filling. The HA trimer is dynamic, and the partially open structure is observed after a change in conformation, which resembles
“breathing.” (B) The epitopes are presented by the representative structure of targeting HA-interfaced antibody-HA complexes (FluA-20,
8H10, and S5V2-29). The “breathing” process of the HA trimer exposes a concealed epitope, which can be recognized by protective and
well-conserved antibodies. The 220 loop is targeted by antibodies FluA-20 and H3-S5V2-29 partially for 8H10.
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FluA-20 epitope, and reduces antibody function. Exposure
of HA residues allowed these residues to be recognized by
FluA-20, thereby confirming the presence of previously
unnoticed dynamic features of the HA trimer [87].
Another study reported the isolation of S5V2-29,

H2214, S1V2-58, S8V2-17, and S8V2-37 from the
human donors and identified epitope S5-C1 that is
extremely conserved on the non-RBS hidden HA globular
head region and covers residues between 91 and 206 and
between 219 and 230 [17]. All these five human antibodies
own the collective breadth covering group 1 and almost all
of group 2 HA (H1, H2, H3, H5, H7, H9, and H14). S5-
C1-lineage B cell receptors (BCRs) have a similar gene
composition. The complex structure of the antibodies
bound to monomeric HA has been described [17]. At
neutral pH, the epitope on the HA trimer interface
recognized by antibodies is normally hidden in the shield
to prevent access by the antibody or BCR [88]. However,
the HA trimer could undergo conformational changes
dynamically with pH adjustment. The HA trimer is more
dynamic in the floating pH environment, and if the
transiently exposed epitopes encounter B cells, the BCRs
can recognize the virus, thus allowing for the induction of
the primary immune response against the influenza virus
[17,95]. Although BCRs or antibodies can bind to virus
particles, the transient nature of the exposure site results in
a binding rate lower than that for fully exposed epitopes.
Failure to prevent the initial infection of cells in vitro
indicates that the HA trimer’s conformational fluctuations
expose the epitope at the interface to a certain extent
[17,91,96]. Thus, only a small fraction of the head interface
epitopes could be exposed [97–99]. These studies also
showed that although most BCRs are specific for HA
epitopes, only a minority of these broadly cross-reactive
memory B cells recognize RBS epitopes. Instead,
numerous cross-reactive memory B cells recognize non-
RBS epitopes. Therefore, systematic investigations into
HA head epitopes that have not been identified to date are
important. Such epitopes may prove to be immunogenic
components of a broadly protective influenza virus drugs
and vaccines.
In summary, three independent groups have reported

similar results in the identification of important epitopes on
the non-RBS HA globular head region, as well as the
related universal antibodies that are protective against
many influenza virus types [17,76,87]. All antibodies bind
to a hidden interface in the HA trimer and have no
neutralizing activities, but they protect mice against
challenge with influenza viruses via strongly Fc-dependent
mechanisms or disruption of the HA trimer. The
characteristics of some of these antibodies are briefly
summarized in Table 1.
The new protective epitopes recognized by the anti-

bodies are transiently or partially exposed under certain
conditions; this property is reminiscent of the pH-mediated

reversible “breathing” of HA that has been supported by
recent HA kinetic studies [16,88]. The viral surface
envelope protein is dynamic and always changing, thereby
resembling “breathing” and showing that exposed cryptic
epitopes can be targeted by protective antibodies. This
“breathing” phenomenon has also been observed in
envelope glycoproteins from other viruses, e.g., MERS-
CoV, dengue virus, Zika virus, and HIV [100–103].
Moreover, a number of antibodies targeting possibly
hidden conserved epitopes in these viruses have been
identified in humans. Hence, these epitopes are promising
candidates for developing “universal” vaccines.

Summary and perspectives

The discovery of broadly neutralizing antibodies targeting
highly conserved epitopes has renewed the hope of
developing universal influenza drugs and vaccines. Recent
data have shown that antibody and memory B cell
responses against the variable epitopes of the HA head
are much higher than the responses of antibodies and
memory B cells directed against the conserved HA stem
cell region [17,70,104]. However, the most widely
reported anti-HA head region antibodies do not have
broadly neutralizing activity and only offer a narrow line of
protection due to the high level of sequence diversity and
incorporation of large amounts of glycans in this region.
The recent studies reviewed herein provided compre-

hensive analyses and showed that novel epitopes hidden in
the influenza trimeric HA head interface, which are
conserved across most influenza groups, may not be
affected by the immune pressure driving the antigenic drift
of viruses. Therefore, such “breathing” interface might
represent an ideal immunogenic candidate and should be
considered as a potential site to be used in the development
of drugs and vaccines against influenza virus infections.
Unlike anti-stem antibodies, most anti-HA head anti-

bodies do not rely on ADCC activity, and they exhibit
exceptional breadth and potency even in the Fab (antibody
without the Fc domain) format [105]. This finding suggests
the potential to develop small antibody constructs, such as
single domain antibodies [106], which could more easily
access the “breathing” subdomain or other hidden epitopes
than large-sized IgG antibodies. With the establishment
and further development of the HA “breathing” theory, an
increasing number of antibodies targeting the hidden
trimeric interface are expected to be discovered in the near
future.
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