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Abstract The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel zoonotic pathogen. In
2012, the infectious outbreak caused by MERS-CoV in Saudi Arabia has spread to more than 1600 patients in 26
countries, resulting in over 600 deaths. Without a travel history, few clinical and radiological features can reliably
differentiate MERS from SARS. But in real world, comparing with SARS, MERS presents more vaguely defined
epidemiology, more severe symptoms, and higher case fatality rate. In this review, we summarize the recent
findings in the field of MERS-CoV, especially its molecular virology, interspecies mechanisms, clinical features,
antiviral therapies, and the further investigation into this disease. As a newly emerging virus, many questions are
not fully answered, including the exact mode of transmission chain, geographical distribution, and animal origins.
Furthermore, a new protocol needs to be launched to rapidly evaluate the effects of unproven antiviral drugs and
vaccine to fasten the clinical application of new drugs.
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Introduction

The world witnessed the devastating outbreak of severe
acute respiratory syndrome coronavirus (SARS-CoV) in
2003, resulting in up to 8000 cases and 700 deaths
worldwide [1]. SARS-CoV is a novel zoonotic pathogen,
causing typical fever and respiratory symptoms. No
specific antiviral drugs and vaccines were available for
SARS-CoV. Fortunately, SARS-CoV remained in the
population for only 8 months and vanished without a
trace. In 2012, a new interspecies coronavirus outbreak
occurred in Saudi Arabia, and this infection has spread to
26 countries across the globe, infecting 1698 patients, and
resulting in 609 deaths as of March 23, 2016 [2]. The virus
was initially designated HCoV-EMC [3]. All individuals
diagnosed with Middle East respiratory syndrome (MERS)
have been linked directly or indirectly to one of four
countries in the Middle East. Therefore, the virus was
renamed Middle East respiratory syndrome coronavirus
(MERS-CoV). Compared with SARS, the novel corona-
virus emerged with a more vaguely defined epidemiology,
more severe symptoms, higher case fatality rate, absence of

prophylactic or therapeutic measures, and most impor-
tantly, circulation in humans with mixed features of both
epidemic and sporadic nature [4]. The largest outbreak of
MERS-CoV outside of Saudi Arabia occurred in South
Korea with 185 confirmed cases and 36 deaths [5],
including the fourth-generation descendants of MERS
cases, which emerged sporadically but later as an
epidemic. In this review, we summarize the recent findings
in the field of MERS-CoV, especially its molecular
virology, interspecies mechanism, clinical features, and
antiviral therapies, as well as our speculations.

Virology

MERS-CoV belongs to lineage C of the genus Betacor-
onavirus in the family Coronaviridae under the order
Nidovirales. SARS-CoV belongs to Betacoronavirus line-
age B. Similar to SARS-CoV, MERS-CoV is a positive-
sense, enveloped, single-stranded RNA virus, which is
spherical with a diameter of approximately 125 nm;
MERS-CoV also represents one of the largest identified
RNA genomes, with up to 30 kilobases (kb) [6]. MERS-
CoV is the sixth CoV known to cause human infection and
is closely related to bat coronaviruses HKU4 and HKU5,
compared with SARS [7]. The genome of MERS-CoV
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contains a 5′ cap structure along with a 3′ poly (A) tail and
comprises four main structural proteins, namely, spike (S),
membrane (M), envelope (E), and nucleocapsid (N)
proteins; all these proteins are encoded within the 3′ end
of the viral genome. The viral genome is organized in the
following order: 5′UTR-ORF1a/1b-S-E-M-N-3′UTR-poly
(A) tail. The 5′ cap structure and 3′ poly (A) tail play a vital
role in the replication and transcription of the viral genome.
The ORF1a/1b occupies 2/3 of the genome and encodes a
series of non-structural proteins. Most of these proteins are
involved in the formation of the viral replication/
transcription complex. The S glycoprotein mediates
receptor recognition and membrane fusion and is also the
focus of most immunization strategies against MERS-CoV.
The S glycoprotein is cleaved into two subunits: S1 and S2.
The S1 subunit contains the receptor-binding domain
(RBD), which mediates viral attachment to its host
receptor. When S1 binds to its receptor, the S2 subunit
changes its conformation and partially inserts into the
target cell, drawing viral and host cell surfaces closer to
facilitate plasma membrane fusion. This conformational
change requires the formation of a fusion core by two
heptad repeats (HR1 and HR2) of the S2 subunit.
Interference with either HR1 or HR2 blocks the viral
entry. The three other structural proteins relate to virion
assembly and release. MERS-CoV contains five accessory
proteins, namely, 3, 4a, 4b, 5, and 8b (Fig. 1) [8], which
present no homology with other coronaviruses. The
accessory protein 4a exhibits a potent antagonistic activity
against interferon response through both cytoplasmic and
nuclear targets. The functions of the other accessory
proteins have yet to be clarified.

Animal origin

Accumulating evidence suggests that the dromedary camel
is the animal reservoir of MERS-CoV. Serologic studies
have shown the presence of cross-reactive antibodies to
MERS-CoV in dromedary camels in Oman, Qatar, and
Mongolia [9–11]. Live MERS-CoV was isolated directly

from infected camels and confirmed in camel-to-human
transmission. However, the exact mode of transmission
remains largely under investigation. The effects of raw
meat consumption, intake of camel milk, or exposure to
other infections remain unclear. To date, studies have not
found any regularity in MERS-CoV transmission from the
existing cases. A comparative analysis indicated that the
virus isolated from camels shows more genetic variation,
with few genomic variants not infectious to humans [12];
this finding partially explained the lower infection rate in
humans than in camels. Therefore, camels serve as an
important reservoir for the maintenance and diversification
of MERS-CoVs.
The existence of an intermediate host between camels

and humans has yet to be established. During the SARS
epidemic, virus transmission from bats to humans was
intermediate via civet (Paguma larvata) and spread by
raccoon. We speculated whether MERS-CoV was trans-
mitted similarly, given the evidence that MERS-CoV
replicated in cell lines of other animals, including goat, pig,
rabbit, horse, and civet [13–15]. However, no evidence of
other intermediate hosts was found mediating MERS
transmission from camels to humans.
The origin of MERS-CoV infection in camel remains

unclear. The transmission from bats is supported by the
following evidence: (1) MERS-CoV is phylogenetically
and closely related to Tylonycteris bat CoV HKU4 (Ty-
BatCoV-HKU4) and Pipistrellus bat CoV HKU5 (Pi-
BatCoV-HKU5), which were discovered in Tylonycteris
pachypus and Pipistrellus abramus, respectively, in Hong
Kong in 2006, revealing the MERS-CoV genomic origins
in bats [16]; (2) the MERS-CoV receptor is also the
receptor for HKU4 but not HKU5, hence showing
functional identity [17]; and (3) viral gene fragments
identical or quite similar to those of MERS-CoV have also
been recovered in bats. However, an infectious virus was
not isolated directly from bats [18]. If MERS-CoV
originated directly from bats, the spread from the bats to
humans cannot be explained. The exact mode of transmis-
sion, geographical distribution, and origins cannot also be
explained.

Fig. 1 Genomic organization of MERS-CoV.

378 From SARS to MERS: evidence and speculation



Cross-species transmission mechanism

The initial entry of the virus into human cells is mediated
by specific receptors. Scientists have identified dipeptidyl
peptidase 4 (DPP4; also known as CD26) as a functional
receptor for MERS-CoV, whereas SARS enters the target
cells via angiotensin converting enzyme 2 (ACE2). DPP4
is a membrane-bound peptidase with a type II topology and
forms homodimers on the cell surface. DPP4 contributes
critically to our understanding of the pathogenesis and
epidemiology of this newly emerging human coronavirus
and may facilitate the development of antiviral therapies
and vaccines [19]. Patients with chronic obstructive
pulmonary disease and cystic fibrosis demonstrate
increased DPP4 immunostaining in alveolar epithelia and
alveolar macrophages. This finding suggests that a
preexisting pulmonary disease increases MERS-CoV
receptor abundance and predisposes individuals to
MERS morbidity and mortality, which is consistent with
current clinical observations [20].
When MERS-CoV enters the body, it will impair the

innate immune response of cells, including the RIG-I-like
receptor signaling and MDA-5, which are associated with
the expression of interferon α. Additionally, type I and II
major histocompatibility (MHC) genes are affected, thereby
decreasing the expression levels of the major cytokines
involved in the activation of lymphocytes [21–23].
The host-viral interaction suggests that the interspecies

transmission of MERS-CoV might be associated with the
following two elements for efficient infection and replica-
tion: (1) vira l adsorption capacity on the surface of
human cells, particularly respiratory epithelial cells; and
(2) inhibition of innate immunity of subsequent viral entry
into the human cells and attenuation of the activation of
adaptive immune response to take over the host metabolic
apparatus and replicate efficiently.

Clinical presentation

The severity and outcome of MERS are related to gender,
older age, and underlying diseases. Majority of the MERS
patients are elderly males with median age of 56 years. A
study involving 47 patients showed an increase in case-
fatality rates with age, from 39% (seven of 18) in those
younger than 50 years, to 48% (13 of 27) in the group aged
under 60 years, and 75% (15 of 20) in patients aged 60
years or older [24]. A study involving 70 consecutive
patients found the age of 65 years associated with
increased mortality (OR 4.39, 95% CI 2.13‒9.05;
P < 0.001) [25]. Most patients present underlying co-
morbid medical disorders, such as diabetes and hyperten-
sion [26].
Patients with MERS present with symptoms of influ-

enza-like illness (ILI). Clinically, MERS and SARS show
few similar features, including fever, cough (predomi-
nantly dry), and even renal failure. The majority of MERS
patients are reported to suffer from multiple co-morbid
conditions. However, few MERS patients show no fever or
cough at all and present with walking pneumonia at early
stages, which can progress rapidly. A quarter to a third of
all the patients shows digestive tract symptoms. More than
half of the patients develop acute renal impairment at a
median time of around 11 days after symptom onset, with
most cases requiring renal replacement therapy [24,27,28–
31]. However, about 6.6% of patients with SARS show
acute renal failure occurring at 20 days after the onset of
symptoms, and only 5% need replacement therapy [24].
The possible factors contributing to the common
presentation of acute renal failure in MERS patients
include (1) increased number of chronic renal diseases in
MERS patients, with progressive respiratory failure; and
(2) direct renal injury; DPP4 is present in the renal cells,
and MERS-CoV was detected in urine.
Without a travel history, linking the patient to the

Arabian Peninsula, or a known MERS case, few clinical
and radiological features can reliably differentiate MERS
from acute pneumonia caused by other microbial agents.
Asymptomatic cases have been reported among female
healthcare workers and children [28]. MERS-CoV inci-
dence in children is less frequent and seems to be
associated with less mortality in patients without under-
lying comorbidities [32]. Low mortality in children with
MERS-CoV was also reported in SARS-CoV infections, in
which symptoms were milder, without any mortality, and
with few hospitalizations [33].
MERS-CoV shedding was further clarified during the

new epidemic in Korea, at the hospital from the first week
up to 18 days to 25 days after the onset of symptoms. The
viable virus can shed through respiratory secretion from
clinically fully recovered patients [34]. The SARS “viral
load” in upper respiratory tract secretions was low in the
first 5 days of illness, and then increased progressively,
peaking early in the second week [35]. These results
emphasize the need for sufficient isolation based on
laboratory results rather than solely on clinical symptoms
in patients with coronavirus infection.

Antiviral therapy

To date, no approved antiviral therapy is available for
MERS-CoV, indicating a much slower response to this
potential pandemic than to the avian H7N9 flu. Candidate
antiviral agents are identified using three general
approaches. First, broad-spectrum antiviral drugs, such as
interferon, ribavirin, and cyclophilin inhibitors, which
were effective in SARS patients, were determined to test
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the activity to MERS-CoV [36–38]. In vitro studies
suggest that the type I interferon exerted an antiviral effect
against several cell lines. MERS-CoV was 50 times to 100
times more sensitive to interferon α (IFN α) treatment than
SARS-CoV [36,37]. In vitro studies also showed sig-
nificant antiviral effects of ribavirin and interferon α-2b
combination therapy [37]. In a retrospective study,
ribavirin and interferon α-2a therapy were significantly
associated with improved survival at 14 days but not at 28
days [38]. The clinical significance of cyclosporine for
MERS treatment is likely limited, as the drug’s peak serum
level at clinical dosages was below its EC50 for MERS-
CoV [36].
The second approach to identify candidate antivirals

targeting MERS involves screening of chemical libraries
comprising numerous existing drugs. The advantages of
this approach include the commercial availability, known
pharmacokinetics, and established safety reports. The first
drug identified by this approach was mycophenolic acid,
which is an antirejection drug used in transplantation and a
broad-spectrum antiviral drug. The EC50 of this drug
against MERS-CoV was very low. Therefore, a low dosage
may be effective without inducing significant immuno-
suppression, but this assumption warrants further pre-
clinical evaluation in animal studies [39]. The other drugs,
including lopinavir and chloroquine, still remain in the in
vitro stage.
The third approach to antiviral drug developments is

based on the knowledge of genome and structural biology
of MERS-CoV. Compared with the drugs identified by the
first and second approaches, those identified by this
approach were most effective against MERS-CoV. How-
ever, this novel drug development needs time and
investment. The therapeutic potential of antibodies target-
ing coronaviruses was well recognized during the SARS
outbreak [40–42]. To date, monoclonal antibodies target-
ing different epitopes on the RBD in the S1 subunit of the
MERS-CoV S protein have been identified. These
monoclonal antibodies bind to RBD with 10-fold to 450-
fold higher affinity than the RBD binding affinity to the
human DPP4, conferring broader and higher neutralizing
activity [43–46]. One of the antibodies, m336, neutralizes
the virus with exceptional potency and therefore represents
a potential drug and vaccine candidate [47]. HR2P, a
synthetic peptide derived from the HR2 domain of MERS-
CoV spike protein, specifically binds to the HR1 domain of
the viral spike protein and blocks viral fusion, resulting in
the inhibition of MERS-CoV replication and its spike
protein-mediated cell fusion [48]. Nevertheless, a major
obstacle relates to the difficulty in generating highly potent
neutralizing mAbs in a relatively short time during an
epidemic. The other challenge relates to the emergence of
possible escape mutants.

Conclusions

The outbreak of MERS-CoV poses a serious threat to
global public health and highlights the imperative for
further investigation into the viral epidemiology and
pathogenesis, as well as the development of effective
therapeutic and prophylactic agents against MERS-CoV
infection. First, well-designed large-scale case-control
studies are needed to define the transmission chain of
MERS-CoV and to enable appropriate intervention by the
government. Second, retrospective serum antibody detec-
tion should be continued to define its true distribution in
humans and animals. Third, systematic surveillance for
signs of host adaptation and viral genome variations is very
important. Fourth, a randomized control study should be
conducted to evaluate the effects of the available antiviral
drugs. Finally, animal vaccines limit the animal-to-human
transmission [49], which will alter our approach to drug
development against newly emerging infectious diseases.
However, with regard to clinical trials, we should note that
a traditional sequence of studies in animals followed by
phased clinical trials may be very slow during public health
emergencies. A common protocol should be launched to
rapidly evaluate the promising but unproven therapies in
the current fatal emerging infectious disease outbreaks and
future epidemics [50].
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