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Human subcortical brain asymmetries in 15,847 people
worldwide reveal effects of age and sex
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Abstract The two hemispheres of the human brain differ
functionally and structurally. Despite over a century of re-
search, the extent to which brain asymmetry is influenced by
sex, handedness, age, and genetic factors is still controversial.

Here we present the largest ever analysis of subcortical brain
asymmetries, in a harmonized multi-site study using meta-
analysis methods. Volumetric asymmetry of seven subcortical
structures was assessed in 15,847 MRI scans from 52 datasets
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worldwide. There were sex differences in the asymmetry of
the globus pallidus and putamen. Heritability estimates, de-
rived from 1170 subjects belonging to 71 extended pedigrees,
revealed that additive genetic factors influenced the asymme-
try of these two structures and that of the hippocampus and
thalamus. Handedness had no detectable effect on subcortical
asymmetries, even in this unprecedented sample size, but the
asymmetry of the putamen varied with age. Genetic drivers of
asymmetry in the hippocampus, thalamus and basal ganglia
may affect variability in human cognition, including suscepti-
bility to psychiatric disorders.

Keywords Subcortical brainasymmetry .Age .Handedness .

Sex . Enigma . Heritability . Meta-analysis

Introduction

Left–right differentiation of the central nervous system (CNS)
results in anatomical, functional, and behavioral asymmetries
in many organisms (Ocklenburg and Gunturkun 2012).
Humans are no exception: functions including language, vi-
suospatial cognition, and hand–motor control are asymmetri-
cally organized between hemispheres in a typical human brain
(Haaland and Harrington 1996; Mellet et al. 2014). At the

population level, these asymmetries show clear directional
biases, or lateralizations (Bryden 1982). Handedness is the
most overt example: around 90 % of people have a right-
hand preference, a strong bias not seen in other species includ-
ing our closest evolutionary relatives, the apes (Hopkins et al.
2011).

Functional and structural lateralization of the human brain
may be influenced by left-right differences in gene expression
(Francks 2015), as recently demonstrated in language-related
regions of the adult superior temporal cortex (Karlebach and
Francks 2015). Even so, lateralization varies markedly across
individuals. Women and men show average differences in
asymmetry, as well. Men show, on average, more pronounced
asymmetries in superior temporal language regions of the ce-
rebral cortex than women, based on brain magnetic resonance
imaging (MRI) data from over 3000 people (Guadalupe et al.
2015). Genes involved in steroid hormone biology may affect
the degree of lateralization in both men and women
(Guadalupe et al. 2015). Another trait linked to cerebral later-
alization is handedness (Willems et al. 2014): the largest study
of cerebral cortical structural differences by handedness
showed weak associations with changes in surface area of
the left precentral sulcus (Guadalupe et al. 2014a), consistent
with prior reports (Amunts et al. 1996; Foundas et al. 1998).
Left-handers have a slightly higher incidence of atypical
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functional hemispheric language dominance (Mazoyer et al.
2014). Alterations of cerebral cortical lateralization have also
been linked to cognitive and psychiatric disorders , including
language-related impairments (Altarelli et al. 2014; Herbert
et al. 2005), autism (Eyler et al. 2012; Herbert et al. 2005),
schizophrenia (SCZ; Oertel-Knochel et al. 2012), and
substance-use disorders (Balconi and Finocchiaro 2015).

In contrast to the cerebral cortex, lateralizations of human
subcortical structures and the hippocampus have not beenwell
studied, nor the factors that might affect their individual dif-
ferences or roles in lateralized cognition. Most investigations
have been in clinical contexts, where differences between
cases and controls in asymmetry patterns of subcortical struc-
tures have been linked to various neuropsychiatric disorders.
For example, abnormal asymmetries in the basal ganglia, par-
ticularly of the globus pallidus and caudate nucleus, have been
observed in cases of attention-deficit/hyperactivity disorder
(ADHD; Hynd et al. 1993), and in developmental stuttering
and Tourette’s syndrome (TS; Foundas et al. 2013; Singer

et al. 1993). Abnormal asymmetry of the striatum has been
linked to prenatal alcohol or methamphetamine exposure
(Roos et al. 2014; Willford et al. 2010). Changes in thalamic
asymmetry have been found in cases of TS (Lee et al. 2006)
and SCZ (Zhou et al. 2003). Regarding limbic system struc-
tures, studies of major depression (Xia et al. 2004), obsessive-
compulsive disorder (Szeszko et al. 1999), SCZ (Niemann
et al. 2000), anorexia nervosa (Titova et al. 2013), and age-
related memory impairment (Soininen et al. 1994) have
shown abnormal asymmetries of the hippocampus, which in
patients with temporal lobe epilepsy also included the amyg-
dala (Cendes et al. 1993). Abnormal asymmetries of the
amygdala have also been reported in SCZ (Niu et al. 2004)
and in cocaine addiction (Makris et al. 2004). Some of these
disorders differ in their prevalence between sexes and by
handedness (Castellanos et al. 2001; DeLisi et al. 2002;
Niemann et al. 2000). Interestingly, sex differences in subcor-
tical asymmetries have been suggested to have an etiological
role in TS (Zimmerman et al. 2000) and SCZ (Niu et al. 2004).
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These findings suggest that, in addition to the more salient
cerebral cortical asymmetries, asymmetries of the subcortical
nuclei also play a role in brain health and disease.

Despite these intriguing initial findingswith respect to disease
states, decades of research have failed to answer definitively how
brain asymmetries in the healthy population are linked to basic
biological factors such as age, sex, and handedness. This is partly
becausemany brain asymmetries and their normal variability are
subtle, and difficult to measure reliably in small studies (tens to
low hundreds of subjects are typical). Regarding sexual dimor-
phisms, a sex difference in asymmetry of the amygdala has been
reported (Niu et al. 2004), while no sex difference was detected
in another study (Szabo et al. 2001). For striatal asymmetry, no
significant sex differences were observed by three studies
(Abedelahi et al. 2013; Giedd et al. 1996; Wyciszkiewicz and
Pawlak 2014), although a sex difference in putamen asymmetry
was suggested to affect TS etiology (Zimmerman et al. 2000).
Sexual dimorphism in thalamic asymmetry has been recently
reported (Kang et al. 2015) but not replicated. Asymmetry of

striatal nuclei changes with age (Abedelahi et al. 2013;
Yamashita et al. 2011), but prior studies of subcortical structures
have tended to look at age and asymmetry as separate aspects of
study (Caviness et al. 1996; Giedd et al. 1996). Left-handedness
has not been robustly investigated in relation to subcortical
asymmetries, as there are so few left-handers in most datasets
(Foundas et al. 1998; Kloppel et al. 2007). Likewise, in clinical
studies, possible effects of sex, age, and handedness have not
often been investigated, either as a result of restricted inclusion
criteria, or otherwise not considering these factors in their anal-
yses (e.g. Kang et al. 2015; Yamashita et al. 2011).

The present study was the first by the Lateralization
working-group embedded within the ENIGMA (Enhancing
Imaging Genetics through Meta-Analysis) Consortium
(Thompson et al. 2014). Our goal was to detect effects
of sex, handedness, and age on the normal variability in
subcortical asymmetries, through a harmonized multi-site
study using meta-analysis methods, based on 52 healthy
control and population-based datasets which comprised a
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total of 15,847 participants. All brain magnetic resonance (MR)
images were analyzed using a single, uniform protocol, despite
inevitable heterogeneity in image acquisition (Hibar et al. 2015;
Stein et al. 2012). This study was by two orders of magnitude
the largest ever of asymmetry with respect to subcortical struc-
tures of the human brain, and factors affecting its variability.
This allowed us to establish subtle but definitive findings of sex
and age-related effects on some of the structures, where previ-
ously the literature has been inconsistent and contradictory (see
Discussion). We also measured the heritabilities of subcortical
and hippocampal asymmetries in a large family dataset, as pre-
vious studies have suggested these to be partially heritable
(Eyler et al. 2014; Hulshoff Pol et al. 2006; Renteria 2013).
This heritability screen is a valuable precursor to future
genome-wide association studies of laterality in brain traits, as
well as identifying genetic overlap between asymmetries and
cognitive or psychiatric disorders.

Methods

Datasets

The participating sites were members of the Lateralization
working-group within the ENIGMA Consortium (Thompson
et al. 2014), who contributed data from 52 independent

samples to this study comprising a total of 15,847 healthy
participants (7524 males and 8323 females). Samples were
drawn from the general population or comprised healthy con-
trols from clinical studies. Table 1 and Supplemental
Information S1 summarize the datasets’ sample sizes and
age distributions. Each dataset and its image acquisition pro-
tocols are described in Supplemental Information S2.

Handedness of participants was known for a subset of the
overall sample. The method of assessment varied per dataset
(see Supplemental Information S3). An ambidextrous catego-
ry was not included and only datasets with enough left-
handers to perform statistical comparisons were considered.
In total, 959 and 11,236 subjects were left- and right-handed,
respectively.

The final numbers of subjects and datasets that were used
for meta-analyses differed per test and structure according to
the availability of covariate and structure-specific volumetric
information, and the minimum sample-size criteria. Details
are given below per analysis.

Image acquisition and subcortical segmentation

Image acquisition and subcortical volume measurement has
been described in previous reports from the ENIGMA
Consortium (e.g. (Hibar et al. 2015; Stein et al. 2012) , and is
consistent enough to detect SNP effects at a genome-wide
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significant level, which individually account for less than 1% of
the variance in structure volumes. To summarize, T1-weighted
brain structural MRI scans were acquired at multiple different
sites using scanners of mostly 1.5 or 3 Tesla field strengths. One
dataset (QTIM) was acquired with a 4 Tesla field strength scan-
ner. See Supplemental Information S2 for detailed information
on manufacturers and image acquisition parameters per dataset.
All sites followed the same protocol for segmentation of sub-
cortical structures, volume computation, and quality control.
The protocol is downloadable from the ENIGMA website
(http://enigma.ini.usc.edu/protocols/imaging-protocols/).
Specifically, image pre-processing and subcortical segmentation
were done with FreeSurfer versions 4.3 through to 5.3 (Fischl
et al. 2002), using the B-recon-all^ pipeline and default settings.
This pipeline performs automated bias field correction, spatial
normalization, skull stripping, and segments brain tissue into
cortical gray/white matter, as well as into several non-cortical
tissues. This resulted in volume estimates for the following sev-
en bilaterally paired structures: nucleus accumbens, amygdala,

caudate nucleus, globus pallidus, hippocampus, putamen, and
thalamus, and estimates of total intracranial volume (ICV).

Quality control was performed separately by each of the
contributing sites, and followed the harmonized protocol de-
veloped by the ENIGMA consortium (http://enigma.ini.usc.
edu/protocols/imaging-protocols/). The protocol consisted of
visually checking individual images, plotted from a set of
axial slices. Volume estimates derived from poorly
segmented structures (i.e. where tissue labels were assigned
incorrectly) were excluded from each site’s datasets and
subsequent analyses. In addition, a number of checks were
performed to assess potential errors in the left-right orientation
of the data (see Supplemental Information S4 for details).

Within-dataset analyses

For each dataset and each of the seven bilaterally paired struc-
tures, the volumetric asymmetries, descriptive and statistical
analyses were computed at each participating site using a single

Table 1 List of contributing datasets (arranged alphabetically in two columns), their sample sizes split by sex, and their median ages. Each dataset is
also given a suffix number code for reference to Fig. 2, Fig. 3, and Supplemental Information S5

Dataset N Median age
(years)

Dataset N Median age
(years)

Males Females Males Females

BIG 1.5 T1 733 728 23 OCD-Kunming 3 T27 27 68 25

BIG 3T2 579 729 22 OCD-Kyoto 1.5 T28 25 23 30

BIL & GIN3 221 232 24 OCD-Kyoto 3 T29 20 22 30

BP-Houston4 79 94 19 OCD-London30 12 21 32

CIAM5 16 14 27 OCD-Shangai31 21 17 25

CLiNG6 132 191 24 OCD-SNU A32 53 26 25

FBIRN7 129 54 37 OCD-SNU B33 97 59 24

HMS8 21 34 41 OCD-SNU C34 115 72 24

HUBIN9 69 33 46 OCD-SU35 11 18 29

IMAGEN10 735 847 15 OCD-VUmc Amsterdam 1.5 T36 16 38 34

IMpACT11 61 80 32 OCD-VUmc Amsterdam 3 T37 20 22 38

LBC-193612 282 274 73 OCD-Zürich38 15 23 17

MAS13 224 280 78 Osaka 1.5 T39 206 231 33

MCIC14 103 60 28 Osaka 3 T40 131 106 24

Meth-CT15 50 13 25 PAFIP-IDIVAL141 51 30 26

MüNC16 327 420 32 PAFIP-IDIVAL242 69 45 29

NCNG17 105 222 54 PAFIP-IDIVAL343 13 21 69

NESDA18 23 43 41 QTIM44 169 422 22

NeuroIMAGE19 180 208 17 SHIP-245 538 572 56

OATS20 87 153 69 SHIP-Trend46 994 1046 52

OCD-AMC21 9 18 14 STROKEMRI47 19 33 45

OCD-Barcelona22 30 36 33 TCD|NUIG48 116 145 28

OCD-Fukuoka23 16 25 37 TOP49 159 144 34

OCD-India 1.5T24 34 12 26 UCLA|NL BP50 82 84 46

OCD-India 3T25 95 60 26 UMCU51 166 121 29

OCD-Kunming 1.5T26 13 27 31 Würzburg|Tübingen52 24 29 44
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script in R (R Development Core Team; 2012), on table-
formatted data. Asymmetry Indices (AI) were defined as the
relative volume difference between the left and right structure
in relation to its total bilateral volume: (Left - Right)/(Left +
Right). To exclude possible outliers in volumes or AIs we used
an adaptive SD threshold (SDThresh) depending on each
dataset’s sample size (N < 150 ⇒ SDThresh = 2.5;
150 ≥ N ≥ 1000 ⇒ SDThresh = 3; N > 1000 ⇒ SDThresh = 3.5).
Statistical tests were run on the seven subcortical AIs separate-
ly. Differences between sexes or handedness groups were
assessed by Welch’s two-sample t-test, to avoid assuming bal-
anced group sizes and equal variances (Ruxton 2006). Tests
were performed on residualised AIs, after removing effects of
age and ICV (and sex for the handedness tests) by linear re-
gression. Possible non-linear effects of ICV were investigated
using the BIG sample but found to be negligible (Supplemental
Information S5), hence all analyses were performed using only
linear correction for this covariate. The effects of age on AIs
were estimated by ANCOVAs, modelled together with sex and
ICVas covariate factors.

This approach supported the subsequent application of
meta-analysis methodology, through using within-site summa-
ry statistics, and without sites needing to share primary data.

AI heterogeneity between datasets

For each of the seven AIs we assessed heterogeneity due to
dataset differences through analyses of variance, with
‘dataset’ and ‘FreeSurfer version’ as the main factors. For this
analysis we re-computed the total AI variance for a given
structure and partitioned it into between-and within-'dataset’
contributions, and between- and within-'FreeSurfer version’
contributions. This allowed us to calculate estimates of eta-
squared (η2), i.e., the percentage of the total variance ex-
plained by each factor. Given that individual sites ran their
analyses on one version of FreeSurfer only, we computed
main effects but not their potential interactions.

Meta-analyses

We combined the test statistics obtained across datasets by
means of random-effect meta-analyses (Borenstein et al.
2010). This method calculates and tests the significance of a
pooled effect while weighting each dataset’s contribution to
the overall effect by the inverse of its error variance. In con-
trast to a fixed-effect meta-analysis test, this method also takes
into account the amount of variability present between effects
from different studies in its calculation, and hence does not
make strong assumptions regarding equal effects underlying
all datasets (Borenstein et al. 2010).

For meta-analyses of sex and handedness effects, we used
the mean group differences in residualised AIs and
recomputed the standard errors from 95 % confidence

intervals and degrees of freedom generated by the Welch’s
two sample t-tests. For meta-analyses of age-effects, we used
the coefficients from the ANCOVA regressions of AIs on age,
and their corresponding standard errors.

Including results based on too few observations is likely to
reduce reliability, therefore we chose to test with a cut-off of
15 observations per group and include assessments of fail-safe
N’s for any significant finding (at a corrected alpha of
P = 0.007). The method used was Rosenberg’s (Rosenberg
2005), which takes into account the weighted nature of the
meta-analysis test, and its outcome can be interpreted as the
number of studies averaging null-results which would be
needed to render the observed p-value non-significant (P >=
0.007). Furthermore, effect heterogeneity was assessed by
Cochran’s Q and the complementary Higgins’ I2, which both
assess the contribution of dataset differences to the observed
pooled effect. All tests were performed in R using the
‘metafor’ library (Viechtbauer 2010).

For the sex group comparisons, a 15-observation minimum
threshold resulted in totals between 6867 and 6962 males
versus 7708 to 7897 females, depending on the specific struc-
ture. For handedness, the totals were from 644 to 668 left
handers versus 7298 to 7667 right handers. For meta-
analyses of age-effects we applied the threshold of at least
15 observations per sex group and included an extra criterion
based on the age-range of each dataset. Only results from
datasets with a minimum 5-year range between their 1st and
3rd quartile (50 % of the dataset) were included.

To assess the pattern of statistically significant age effects
across the lifespan, we performed a post-hoc weighted meta-
regression of the age coefficients from each dataset on the
corresponding median ages. Datasets were weighted by the
square root of their corresponding sample size. The same cri-
terion for dataset inclusion was used as described above.

Population-level lateralization

T-scores and corresponding P-values were calculated for the
difference between the mean AI and zero (i.e. the point of
volumetric symmetry) for each structure and dataset, separate-
ly by sex. These were combined to assess population-level
lateralizations for each structure, separately for each sex.

Heritability of AIs

We estimated the heritability of volumetric asymmetries using
the Genetics of Brain Structure (GOBS) dataset (McKay et al.
2014; Mitchell et al. 1996). This analysis included data from
1170 subjects of Mexican-American ancestry, belonging to 71
extended pedigrees. Heritability estimates were derived from
variance-component analysis (Almasy and Blangero 1998).
The method partitions the observed phenotypic variance into
sub-components based on the relationship structures within
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the families, in order to estimate the proportion of overall
phenotypic variance due to additive genetic effects. To calcu-
late this family-based heritability estimate, the method re-
quires large pedigrees and accurate kinship estimates between
family members. For a more detailed description of the ap-
proach, applied to brain imaging measures, see (Chouinard-
Decorte et al. 2014; Koran et al. 2014). These analyses were
performed using SOLAR (Almasy and Blangero 1998) in-
cluding age, sex, and ICVas covariates. For each of the seven
structures we estimated the heritability of the AI and the her-
itability of the phenotypic correlation (i.e. genetic correlation)
between left and right volumes. Lastly, we also assessed the
phenotypic and genetic correlations across all seven AIs.

Results

AI heterogeneity between datasets

We observed notable heterogeneity in the AI distributions
across datasets (Table 2 and Supplemental Information S6).
Except for the hippocampus and putamen, dataset heteroge-
neity explained over 10 % (η2 > 0.1) of the total observed
variance per structure. Likewise, heterogeneity attributable
to different versions of FreeSurfer was also substantial, with
η2 > 0.1 for AI’s of the nucleus accumbens, globus pallidus
and thalamus.

Independent of dataset mean differences, the nucleus ac-
cumbens showed the most variable AI estimates, and the cau-
date nucleus was the least variable (see Table 2). The average
variability around AI means, as a proportion of bilateral vol-
ume (σ2

within*100), was 7.8 % for the nucleus accumbens and
2.5 % for the caudate nucleus. All structures showed highly
significant mean lateralization, as well as consistency in mean
direction of lateralization between the sexes (see Table 2 and
Fig. 1, as well as Supplemental Information S7).

Meta-analysis of group differences by sex and handedness

After adjusting the significance threshold to P = 0.007 for
multiple testing of seven structures, meta-analyses showed
significant differences in AIs between males and females for

the globus pallidus and putamen (Table 3 and Fig. 2),
corrected for covariate effects of age and intracranial volume
(ICV) within datasets. The direction of the sex difference for
the putamen was negative (see Table 3), indicating a lower AI
inmales versus females, i.e. a rightwards shift in asymmetry in
males. The opposite was found for the globus pallidus, where
a leftward shift in AI was observed in males relative to fe-
males. Table 3 also reports the results of the study-
heterogeneity and fail-safe N estimations. We observed no
significant heterogeneity in sex effects across datasets for pu-
tamen and globus pallidus. A nominally significant sex effect
(uncorrected P = 0.02) was also found for the hippocampus.
Meta-analyses of handedness effects on AIs showed no sig-
nificant group differences (uncorrected P-values > 0.1, results
not shown).

Meta-analysis of age effects on AIs

After adjusting the significance threshold to P = 0.007 for
multiple testing over seven structures, meta-analysis revealed
a significant effect of age on the AI of the putamen (see
Table 4 and Fig. 3a), corrected for covariate effects of sex
and ICV within datasets. A positive pooled effect for the pu-
tamen indicated increasingly leftward shifts in asymmetry
with increasing age. Table 4 also reports the results of the
study-heterogeneity tests. While the heterogeneity tests for
age effects on putamen AI were statistically significant, the
estimate of a fail-safe N (n = 85) suggested that a biasing
influence of study heterogeneity on the results was unlikely.

In our post-hoc analysis of age effects, by means of weight-
ed meta-regressions, the putamen showed effects that changed
across the median ages of our samples.We found larger effects
of age in the younger datasets, compared to the older datasets
(see Fig. 3).

Heritability of AIs

AIs of the globus pallidus, hippocampus, putamen, and thala-
mus showed modest but statistically significant heritabilities,
ranging from h2 = 0.15 to 0.27 (using a corrected alpha of
P = 0.007; Table 5). For each subcortical region, we also
estimated the genetic correlation (the proportion of variance

Table 2 AI heterogeneity across
datasets assessed by analysis of
variance (ANOVA). The η2

statistic gives the proportion of
the total variability attributed to
mean AI differences between
datasets or FreeSurfer versions.
All mean AIs were significantly
different from zero

Regions Mean AI (σ2within) N (observed) η2 - dataset η2 - FreeSurfer

Nucleus accumbens -0.0072 (0.0061) 15,010 0.180 0.130

Amygdala -0.0205 (0.0027) 15,167 0.103 0.017

Caudate nucleus -0.0095 (0.0006) 15,105 0.279 0.014

Globus pallidus 0.0180 (0.0027) 14,932 0.171 0.142

Hippocampus -0.0066 (0.0008) 15,046 0.070 0.010

Putamen 0.0194 (0.0008) 14,961 0.065 0.006

Thalamus 0.0211 (0.0009) 15,158 0.189 0.333
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that two traits share due to the additive effects of genes) be-
tween the absolute volumes of the left and right structures.
While these correlations were all high (indicating partial plei-
otropy), most were significantly different from 1 (i.e.,
complete pleiotropy; see Table 5). In other words, most genet-
ic effects on volume variation are shared between the left and
right hemispheres and therefore affect bilateral volumes of
these structures, but some independent or quantitatively dif-
ferent genetic effects may operate uniquely on each hemi-
sphere, thus constituting heritable effects on asymmetry. The
nucleus accumbens also showed a suggestively significant
heritability of its AI using an uncorrected alpha of 0.05 (see
Table 5).

Pairwise phenotypic and genetic correlations, assessed in the
GOBS sample, are shown in Supplemental Information S8.
Many of the phenotypic correlations were significant, but only
the AIs of the putamen and thalamus showed a nominally sig-
nificant genetic correlation (r = −0.48, uncorrectedP = 0.037) in

the presence of a significant phenotypic correlation (r = −0.26,
P = 8.26*10−23). In other words, theremay be genetic variability
which affects these two AIs in opposite directions.

Discussion

Establishing effects of age, sex, and genetics

There is an inconsistent literature regarding basic biological
factors that may affect subcortical and hippocampal
asymmetries, including age, handedness, and sex.
Subcortical asymmetries are subtle compared to some cerebral
cortical asymmetries, and have so far only been assessed in
small sample sizes, often with different analysis methods
across studies (see Introduction). Compared to prior reports
on subcortical asymmetries, our study analyzed a large num-
ber of datasets worldwide using a harmonized protocol and

Fig. 1 Visual representation of the 7 bilaterally paired structures, colored on the side of the relatively larger volume

Table 3 Meta-analyses results of (residualised) AI differences by sex,
corrected for possible covariate effects of age and ICV. The significance
threshold was Bonferroni-adjusted to 0.007 for the seven comparisons.

Cochran’s Q and Higgins’ I2 are the statistics for the heterogeneity of
effects. Highlighted in bold are the statistically significant results. Fail-
safe N estimates are also given for the globus pallidus and putamen

Structure Pooled effect Standard error P-value N (datasets) Cochran’s Q (P-value) Higgins’ I2 Fail-safe N

Nucleus accumbens 0.002 0.002 0.34 14,652 (42) 76.9 (5.8*10−4) 51.2 0

Amygdala 5.7*10−5 7.4*10−4 0.94 14,859 (43) 33.37 (0.83) 0 0

Caudate nucleus -1.3*10−4 6.5*10−4 0.84 14,723 (41) 75.13 (6.4*10−4) 50.78 0

Globus pallidus 0.004 0.001 2*10−4 14,575 (40) 52.49(0.073) 27.26 56

Hippocampus 0.001 4.5*10−4 0.02 14,765 (43) 19.99 (1.0) 0 0

Putamen -0.002 4.1*10−4 4.5*10−5 14,604 (41) 24.49 (0.97) 0 53

Thalamus -0.001 7.3*10−4 0.07 14,773 (41) 65.73 (0.006) 50.27 0
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meta-analysis methods. To our knowledge, this was by far the
largest ever study of healthy variation in any aspect of human
brain asymmetry. The 52 datasets had technical and demo-
graphic differences, which appeared to influence the levels
of asymmetry measured, but in this respect were representa-
tive of the heterogeneity that exists across cohorts worldwide.
Given the scale of our study, and in contrast to literature-based
meta-analyses, ours was not affected by publication bias nor
by spurious results from underpowered studies. For future
genome-wide screens, we also revealed significant heritabil-
ities of asymmetries in a family sample.

We found reliable sex differences in asymmetries of the
globus pallidus and putamen which, together with the hippo-
campus and thalamus, were also the most strongly heritable
asymmetries among the seven structures analyzed. With in-
creasing age, there were changes in the mean asymmetry of
the putamen. Handedness was not detectably related to any
subcortical asymmetry. The ENIGMA Consortium
(Thompson et al. 2014) plans future genome-wide association
studies in sample sizes comparable to, or greater than, that
used here. Our data show which subcortical asymmetries are
heritable and suitable for detecting subtle modulatory effects
and group differences. Taken together, our heritability- and

meta-analyses indicate that asymmetries of the putamen,
globus pallidus, hippocampus and thalamus are the most like-
ly structures through which genetic variation may impact lat-
eralization for human cognition, its variability, and suscepti-
bility to brain disorders.

From a developmental perspective, some human CNS lat-
eralizations change throughout life (Kovalev et al. 2003).
Asymmetries are detectable during fetal gestation behavioral-
ly (Hepper 2013) and anatomically (Corballis 2013), so dif-
ferential development between the two human brain hemi-
spheres must, at least in part, be genetically coded in utero
(Francks 2015). Three prior reports have suggested genetic
contributions to variability in subcortical asymmetries based
on twin-based heritability estimates. One found evidence for
amygdala volumes being under strong genetic control, with
higher heritability for the left than the right hemisphere
(h2 = 0.80 and 0.55, respectively; (Hulshoff Pol et al.
2006)). Another found that genetic contributions to left and
right volume variability were partly distinct for the nucleus
accumbens and globus pallidus in particular (Eyler et al.
2014). A third found significant heritabilities of asymmetry
indexes for the caudate nucleus and putamen, h2 = 0.17 and
0.32, respectively (Renteria 2013).

Fig. 2 Forest plots of the mean
sex differences in AIs per dataset,
for the structures that showed
significant sex effects in meta-
analysis. For each structure, the
datasets are ordered top-to-
bottom by their estimated sex
difference. The identities of the
datasets are given by the numbers
in the left-hand columns, with
reference to Table 1. The size of a
square is proportional to the
weights assigned in meta-
analysis. The confidence intervals
are shown, as well as dashed
vertical lines to indicate the point
of no mean sex difference
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In terms of developmental biology and molecular genetics,
the best studied model organism for CNS lateralization is the
zebrafish. During the zebrafish’s development, there is a left-
biased migration of a midline structure (the parapineal organ)
that results in differential innervation of the bilateral
epithalamus into the surrounding tissue, which later affects
other brain regions (Concha et al. 2009). Specific molecular
contributions to this process have been identified (Colombo
et al. 2013). The relevance of this mechanism to humans is not
clear, but a subcortical origin of lateralized development in the
zebrafish brain suggests that similar or related mechanisms
may be important in our species. Cerebral cortical lateraliza-
tion may even be a downstream consequence of early subcor-
tical lateralization.

For the putamen AI, asymmetry increased with age. In
particular, the observed effect of age was more pro-
nounced in samples with younger median ages, suggest-
ing a non-linear relationship. Environmental or age-
dependent genetic factors may contribute to this increased
lateralization over time. To our knowledge, these associ-
ations have not been reported before, except for an oppo-
site age effect for the putamen in 120 healthy, young
adults (Abedelahi et al. 2013). We tested only linear ef-
fects of age at the dataset level, and these coefficients
were meta-analyzed. Non-linear changes in AI with age
might have gone undetected in our analysis, and may
affect the measured linear effects. However, these meta-
analyses were restricted to age effects observed in datasets
with at least a 5-year age-range between the first and third
quartile of participants. Most of our datasets had median
ages between 20 and 60 years, so a linear regressor would
have captured main effects of age on AIs, in these
datasets, even if there were subtle non-linear effects.
However, these factors should be considered when
interpreting the pooled effect sizes reported.

Perhaps surprisingly, handedness had no detectable effect
on subcortical asymmetries. However, as there are fewer left-
handers than right-handers, the effective sample size was
roughly one sixth for this analysis than for our analysis of

sex differences. It remains possible, through even larger-
scale meta-analysis, that handedness will relate to subcortical
asymmetries. However, based on our present data, such effects
must be very small.

Dataset heterogeneity

Studies of subcortical structure have been greatly advanced by
in vivo imaging. Even so, findings of population-level mean
lateralizations of subcortical structures have been inconsis-
tently reported. For example, there have been reports of the
putamen being leftward lateralized on average (i.e. the left
volume larger than the right (Giedd et al. 1996; Kang et al.
2015), as well as rightward lateralized (Abedelahi et al. 2013).
Likewise the globus pallidus has been reported as leftward
lateralized (Kang et al. 2015), as well as rightward lateralized
(Wyciszkiewicz and Pawlak 2014). Similar discrepancies
have also been found for the hippocampus (Kang et al.
2015; Niemann et al. 2000; Shi et al. 2009), amygdala
(Makris et al. 2004; Niu et al. 2004; Szeszko et al. 1999)
and the caudate nucleus (Abedelahi et al. 2013; Glenthoj
et al. 2007; Raz et al. 1995; Vernaleken et al. 2007).

Here we used uniform image processing protocols, but our
analysis showed substantial differences in mean AIs across
datasets, which were partly attributable to different versions
of FreeSurfer (see Table 2 and Supplemental Information S3).
However, the majority of datasets (39 out of 52) were proc-
essed using version 5.3, so that our ability to assess the

Table 4 Meta-analyses results for the age coefficients on AIs, corrected
for sex and ICV. The significance threshold was Bonferroni-adjusted to
0.007 for the seven comparisons. Cochran’s Q and Higgins’ I2 are the

statistics for the heterogeneity of effects. Fail-safe N estimates are also
given for the putamen. The statistically significant results are highlighted
in bold

Structure Pooled effect Standard error P-value Total N (datasets) Cochran’s Q (p-value) Higgins’ I2 Fail-safe N

Nucleus accumbens 2.1*10−6 2.1*10−4 0.99 12,073 (37) 229.16(5.8*10−30) 88.08 0

Amygdala -1.8*10−4 6.9*10−5 0.009 12,287 (38) 74.75(2.3*10−4) 54.07 0

Caudate nucleus 5.9*10−5 5.0*10−5 0.24 12,150 (36) 148.03 (7.5*10−16) 78.14 0

Globus pallidus -2.0*10−4 1.8*10−4 0.26 12,026 (35) 151.14 (1.0*10−16) 94.34 0

Hippocampus -1.0*10−4 4.0*10−5 0.012 12,212 (38) 77.31(1.1*10−4) 48.69 0

Putamen 1.5*10−4 4.35*10−5 4.0*10−4 12,042 (36) 68.96 (5.3*10−4) 59.34 85

Thalamus 1.5*10−4 8.4*10−5 0.071 12,202 (36) 184.65 (3.0*10−22) 90.91 0

�Fig. 3 Results from meta-analysis of age effects. a Forest plot of the age
coefficients for each dataset on putamen AI. The datasets are ordered top-
to-bottom by their estimated age coefficient. The identities of the datasets
are given by the numbers in the left-hand columns, with reference to
Table 1. The size of a square is proportional to the weights assigned in
meta-analysis. The confidence intervals are also depicted, as well as
dashed vertical lines to indicate the point of an age coefficient with value
zero. b Plot of the weighted regression of the age coefficients on each
sample’s median age. The dotted line represents the best linear fit
(P = 0.03). The size of a point is proportional to the square-root of a
dataset’s sample size
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contributions of other FreeSurfer versions to AI variability was
limited. Variability in image acquisition is likely a substantial
source of dataset AI heterogeneity. The ability to distinguish
different structures using MRI depends on the contrast
achieved between different tissues. Subcortical structures and
the surrounding tissue are often imperfectly contrasted, so that
automated methods of image analysis must rely to some extent
on atlas-derived information. These are often based on manual
segmentations of existing datasets, which will reflect any mean
asymmetries present in those datasets (Han and Fischl 2007;
Patenaude et al. 2011). In addition, any subtle but uncorrected
scanner magnetic field inhomogeneities may lead to geometric
distortions in segmentation of brain structures (Han and Fischl
2007; Jovicich et al. 2009). These factors might bias segmen-
tation, subtly affecting AI means. Manual segmentation does
not avoid this problem, and can introduce asymmetric biases
(Maltbie et al. 2012). In particular for assessing population
variability (as opposed to as a diagnostic tool), automated
methods clearly outperform manual segmentation in their re-
producibility and feasibility for larger-scale studies (Guadalupe
et al. 2014b; Morey et al. 2010).

In our study, all structures showed highly significant devi-
ations from mean AI = 0, i.e. all showed population-level
lateralization. Except for the hippocampus, the directions of
significant mean AIs were in line with those reported in a
study of 138 young adults, based also on subcortical volumes
generated by FreeSurfer (Kang et al. 2015). However, given
the caveats outlined above, we are cautious about interpreting
the mean population AIs at face value. Different AI means
across datasets may indicate which structures are more or less
susceptible to methodological biases. The mean AIs for the
hippocampus, amygdala, and putamen differed the least be-
tween datasets. The mean AI of the thalamus, on the other
hand, showed the highest heterogeneity attributable to dataset
heterogeneity (including FreeSurfer versions), and at the same
time showed one of the strongest population-level AI

lateralizations. This pattern is in line with our previous report
that the hippocampus AI showed the highest scan-rescan cor-
relation of all structures quantified with FreeSurfer (among the
seven structures studied here), while the thalamus showed
the second lowest scan-rescan correlation, in subjects
scanned twice using varying protocols, and sometimes
using different scanners with different field strengths
(Guadalupe et al. 2014b).

In contrast to the substantial heterogeneity across datasets
in mean AIs for some structures, there was less evidence for
dataset heterogeneity in the effects of sex on mean AIs. We
detected stable sex differences in AIs regardless of differences
in age or ICV between and within datasets, and the sex differ-
ences were highly significant in our meta-analyses. The struc-
tures for which we detected sex differences in AIs showed
L > R population-level asymmetry. For the globus pallidus
this was more pronounced in males, while the opposite was
observed for the putamen.

Implications for future studies

Our study underlines the utility, and indeed the necessity,
of analyzing subtle subcortical asymmetries in vast sam-
ples. Regarding clinical studies, some brain disorders may
be associated with larger alterations in subcortical
asymmetries than variables such as sex, handedness, and
age. Nonetheless future studies linking subcortical
asymmetries to disorders should be better powered if they
analyze larger samples than used previously. Such studies
will be possible within the ENIGMA Consortium.

It is reassuring that consistent sex differences could be
measured in our study, even when AI means varied across
cohorts. Some AIs were also heritable, based on studying
relative-pair similarities. It is therefore clear that automated
segmentation methods can measure meaningful individual
differences in subcortical and hippocampal volumetric

Table 5 Heritability estimates for the AIs, their corresponding standard
errors and P-values, based on a large family dataset (GOBS). In the
middle part of the table are the genetic correlations between left and
right volumes (heritabilities of their phenotypic correlations), and test

P-values for whether the genetic correlations differ significantly from 0
and 1. In the right-hand part of the table are the environmental and
phenotypic correlation estimates between left and right volumes

Structure AI heritability Genetic correlation (ρ) between Left and Right Phenotypic (ρ-phen) and environmental
(ρ-env) correlation between Left and Right

h2 (se) P-value ρ (se) P (ρ = 0) P (ρ = 1) ρ-phen ρ-env

Nucleus accumbens 0.114 (0.06) 0.010 0.841 (0.07) 4*10−10 0.003 0.54 0.34

Amygdala 0.040 (0.05) 0.222 0.995 (0.03) 8*10−24 0.424 0.71 0.39

Caudate nucleus 0.096 (0.06) 0.053 0.974 (0.01) 2*10−32 0.021 0.85 0.56

Globus pallidus 0.148 (0.06) 0.002 0.823 (0.08) 8*10−8 0.005 0.57 0.45

Hippocampus 0.180 (0.06) 4*10−4 0.939 (0.02) 2*10−25 7*10−4 0.78 0.53

Putamen 0.270 (0.07) 8*10−7 0.899 (0.03) 5*10−23 4*10−7 0.78 0.58

Thalamus 0.228 (0.06) 2*10−5 0.824 (0.05) 1*10−13 4*10−6 0.68 0.56
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asymmetries (Guadalupe et al. 2014b; Hibar et al. 2015). It
follows that genome-wide association studies of subcortical
and hippocampal AIs are supported by this methodology,
which will require very large samples for their success
(Hibar et al. 2015; Stein et al. 2012).
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