Skip to main content
Log in

Effects of Methylphenidate on Working Memory in Traumatic Brain Injury: A Preliminary fMRI Investigation

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

As part of a preliminary investigation on the effects of methylphenidate on brain activation during a working memory (WM) task in patients with traumatic brain injury (TBI), patients with TBI received 15 mg of methylphenidate (N = 4) or placebo (N = 5) twice a day for one month in a double-blind, placebo-controlled design. Brain activation was assessed at pre-treatment and on the final treatment day using functional magnetic resonance imaging (fMRI) with an N-back task using faces as stimuli. In a whole brain voxel-wise analysis, methylphenidate, compared to placebo, produced a decrease in brain activation for the 2-load minus 0-load contrast in the anterior cingulate, thalamus, cuneus and cerebellum, regions associated with WM performance. Further, an a priori region of interest analysis with small volume correction found reduced activation in the anterior cingulate. Although based on a small sample size, these preliminary findings suggest methylphenidate may increase processing efficiency associated with cognitive control during WM tasks in patients with TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Barona, A., Reynolds, C. R., & Chastain, R. (1984). A demographically based index of premorbid intelligence for the WAIS-R. Journal of Consulting and Clinical Psychology, 52(5), 885–887. doi:10.1037/0022-006X.52.5.885.

    Article  Google Scholar 

  • Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8(12), 539–546. doi:10.1016/j.tics.2004.10.003.

    Article  PubMed  Google Scholar 

  • Challman, T. D., & Lipsky, J. J. (2000). Methylphenidate: its pharmacology and uses. Mayo Clinic Proceedings, 75(7), 711–721. doi:10.4065/75.7.711.

    Article  PubMed  CAS  Google Scholar 

  • Christodoulou, C., DeLuca, J., Ricker, J. H., Madigan, N. K., Bly, B. M., Lange, G., et al. (2001). Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 71(2), 161–168. doi:10.1136/jnnp.71.2.161.

    Article  CAS  Google Scholar 

  • Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604–608. doi:10.1038/386604a0.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, an International Journal, 29(3), 162–173. doi:10.1006/cbmr.1996.0014.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, W. (1992). Measuring recognition memory. Journal of Experimental Psychology: General, 121(3), 275–277. doi:10.1037/0096-3445.121.3.275.

    Article  CAS  Google Scholar 

  • Elliott, R., Sahakian, B. J., Matthews, K., Bannerjea, A., Rimmer, J., & Robbins, T. W. (1997). Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology, 131, 196–206. doi:10.1007/s002130050284.

    Article  PubMed  CAS  Google Scholar 

  • Fincham, J. M., & Anderson, J. R. (2006). Distinct roles of the anterior cingulate and prefrontal cortex in the acquisition and performance of a cognitive skill. Proceedings of the National Academy of Sciences of the United States of America, 103(34), 12941–12946. doi:10.1073/pnas.0605493103.

    Article  PubMed  CAS  Google Scholar 

  • Friston, K. J., Holmes, A., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2, 189–210. doi:10.1002/hbm.460020402.

    Article  Google Scholar 

  • Gronwall, D. M. A. (1977). Paced auditory serial-addition task: a measure of recovery from concussion. Perceptual and Motor Skills, 44, 367–373.

    PubMed  CAS  Google Scholar 

  • Kim, B. N., Lee, J. S., Cho, S. C., & Lee, D. S. (2001). Methylphenidate increased regional cerebral blood flow in subjects with attention deficit/hyperactivity disorder. Yonsei Medical Journal, 42(1), 19–29.

    PubMed  CAS  Google Scholar 

  • Kim, Y., Ko, M. H., Na, S. Y., Park, S. H., & Kim, K. W. (2006). Effects of single-dose methylphenidate on cognitive performance in patients with traumatic brain injury: a double-blind placebo-controlled study. Clinical Rehabilitation, 20(1), 24–30. doi:10.1191/0269215506cr927oa.

    Article  PubMed  Google Scholar 

  • Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120–131. doi:10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8.

    Article  PubMed  CAS  Google Scholar 

  • Lou, H. C., Henriksen, L., Bruhn, P., Borner, H., & Nielsen, J. B. (1989). Striatal dysfunction in attention deficit and hyperkinetic disorder. Archives of Neurology, 46(1), 48–52.

    PubMed  CAS  Google Scholar 

  • Mattay, V. S., Callicott, J. H., Bertolino, A., Heaton, I., Frank, J. A., Coppola, R., et al. (2000). Effects of dextroamphetamine on cognitive performance and cortical activation. NeuroImage, 12(3), 268–275. doi:10.1006/nimg.2000.0610.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: A functional MRI study. Neurology, 53(6), 1300–1308.

    PubMed  CAS  Google Scholar 

  • Mehta, M. A., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. Journal of Neuroscience, 20(6), RC65.

    PubMed  CAS  Google Scholar 

  • Newsome, M. R., Scheibel, R. S., Steinberg, J. L., Troyanskaya, M., Sharma, R. G., Rauch, R. A., et al. (2007). Working memory brain activation following severe traumatic brain injury. Cortex, 43(1), 95–111. doi:10.1016/S0010-9452(08)70448-9.

    Article  PubMed  Google Scholar 

  • Perlstein, W. M., Cole, M. A., Demery, J. A., Seignourel, P. J., Dixit, N. K., Larson, M. J., et al. (2004). Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. Journal of the International Neuropsychological Society, 10(5), 724–741. doi:10.1017/S1355617704105110.

    Article  PubMed  Google Scholar 

  • Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia, 20(3), 249–262. doi:10.1016/0028-3932(82)90100-2.

    Article  PubMed  CAS  Google Scholar 

  • Price, C. J., & Friston, K. J. (2002). Functional imaging studies of neuropsychological patients: applications and limitations. Neurocase, 8, 345–354. doi:10.1076/neur.8.4.345.16186.

    Article  PubMed  Google Scholar 

  • Rypma, B., Berger, J. S., & D'Esposito, M. (2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14(5), 721–731. doi:10.1162/08989290260138627.

    Article  PubMed  Google Scholar 

  • Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science, 251(4996), 947–950. doi:10.1126/science.1825731.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel, R. S., Pearson, D. A., Faria, L. P., Kotrla, K. J., Aylward, E., Bachevalier, J., et al. (2003). An fMRI study of executive functioning after severe diffuse TBI. Brain Injury, 17(11), 919–930. doi:10.1080/0269905031000110472.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel, R. S., Newsome, M. R., Steinberg, J. L., Pearson, D. A., Rauch, R. A., Mao, H., et al. (2007). Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. Neurorehabilitation and Neural Repair, 21(1), 36–45. doi:10.1177/1545968306294730.

    Article  PubMed  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar Stereotaxic Atlas of the Human Brain. New York: Thieme.

    Google Scholar 

  • Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2(7872), 81–84. doi:10.1016/S0140-6736(74)91639-0.

    Article  PubMed  CAS  Google Scholar 

  • Tomasi, D., Chang, L., Caparelli, E. C., & Ernst, T. (2007). Different activation patterns for working memory load and visual attention load. Brain Research, 1132(1), 158–165. doi:10.1016/j.brainres.2006.11.030.

    Article  PubMed  CAS  Google Scholar 

  • Turner & Levine. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71(11), 812–818. doi:10.1212/01.wnl.0000325640.18235.1c.

    Article  PubMed  Google Scholar 

  • Vaidya, C. J., Austin, G., Kirkorian, G., Ridlehuber, H. W., Desmond, J. E., Glover, G. H., et al. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14494–14499. doi:10.1073/pnas.95.24.14494.

    Article  PubMed  CAS  Google Scholar 

  • Verhaegen, P., & Salthouse, T. A. (1997). Meta-analyses of age-cognition relations in adulthood: estimates of linear and nonlinear age effects and structural models. Psychological Bulletin, 122(3), 231–249. doi:10.1037/0033-2909.122.3.231.

    Article  Google Scholar 

  • Wagner, A. K., Kline, A. E., Ren, D., Willard, L. A., Wenger, M. K., Zafonte, R. D., et al. (2007). Gender associations with chronic methylphenidate treatment and behavioral performance following experimental traumatic brain injury. Behavioural Brain Research, 181(2), 200–209. doi:10.1016/j.bbr.2007.04.006.

    Article  PubMed  CAS  Google Scholar 

  • Warden, D. L., Gordon, B., McAllister, T. W., Silver, J. M., Barth, J. T., Bruns, J., et al. (2006). Guidelines for the pharmacologic treatment of neurobehavioral sequelae of traumatic brain injury. Journal of Neurotrauma, 23(10), 1468–1501. doi:10.1089/neu.2006.23.1468.

    Article  PubMed  Google Scholar 

  • Whyte, J., Hart, T., Vaccaro, M., Grieb-Neff, P., Risser, A., Polansky, M., et al. (2004). Effects of methylphenidate on attention deficits after traumatic brain injury: a multidimensional, randomized, controlled trial. American Journal of Physical Medicine & Rehabilitation, 83(6), 401–420. doi:10.1097/01.PHM.0000128789.75375.D3.

    Article  Google Scholar 

  • Willmott, C., & Ponsford, J. (2008). Effects of methylphenidate on the rehabilitation of attention following traumatic brain injury: A randomized, cross-over, double-blind, placebo controlled inpatient trial. Journal of Neurology, Neurosurgery, and Psychiatry, (Dec), 5 [E-pub ahead of print].

Download references

Acknowledgment

This research was supported by grants NS-42772 and NS-21889 awarded to Harvey S. Levin. The Michael E. DeBakey Veterans’ Affairs Medical Center and the South Central Mental Illness Research, Education and Clinical Center (MIRECC) provided equipment and laboratory space used in the collection and analysis of imaging data. We express gratitude to Andrew Saykin, Erin Bigler, and two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary R. Newsome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newsome, M.R., Scheibel, R.S., Seignourel, P.J. et al. Effects of Methylphenidate on Working Memory in Traumatic Brain Injury: A Preliminary fMRI Investigation. Brain Imaging and Behavior 3, 298–305 (2009). https://doi.org/10.1007/s11682-009-9072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-009-9072-5

Keywords

Navigation