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Abstract The diameter distribution of trees in a stand pro-
vides the basis for determining the stand’s ecological and 
economic value, its structure and stability and appropriate 
management practices. Scots pine (Pinus sylvestris L.) is one 
of the most common and important conifers in Turkey, so 
a well-planned management schedule is critical. Diameter 
distribution models to accurately describe the stand structure 
help improve management strategies, but developing reli-
able models requires a deep understanding of the growth, 
output and constraints of the forests. The most important 
information derived by diameter distribution models is pri-
mary data on horizontal stand structure for each diameter 
class of trees: basal area and volume per unit area. These 
predictions are required to estimate the range of products 
and predicted volume and yield from a forest stand. Here, to 
construct an accurate, reliable diameter distribution model 
for natural Scots pine stands in the Türkmen Mountain 
region, we used Johnson’s SB distribution to represent the 
empirical diameter distributions of the stands using ground-
based measurements from 55 sample plots that included 
1219 trees in natural distribution zones of the forests. As an 

alternative, nonparametric approach, which does not require 
any predefined function, an artificial intelligence model was 
constructed based on support vector machine methodology. 
An error index was calculated to evaluate the results. Over-
all, both Johnson’s SB probability density function with a 
three-parameter recovery approach and the support vector 
regression methodology provided reliable estimates of the 
diameter distribution of these stands.

Keywords Diameter distribution · Johnson’s  SB · Support 
vector regression · Scots pine · Türkmen mountains

Introduction

Scots pine (Pinus sylvestris L.) is one of the main forest tree 
species in high demand in Turkey and covers 1.4 million ha 
(6.2% of the total forest area) in Turkey (GDF 2015). Eco-
logically, Scots pine forests provide important ecological 
services such as protecting soil and water resources, mitigat-
ing, and adapting to the negative effects of climate change, 
and protecting biological diversity (Fischer et al. 2008; Leb-
edev 2022). Moreover, due to its valuable, versatile wood, it 
is in high demand and has high economic value. Last but not 
least, Scots pine forests that dominate the study region and 
Anatolian black pine (Pinus nigra Arnold. subsp. pallasiana 
Lamb.), trembling poplar (Populus tremula L.) and oriental 
beech (Fagus orientalis Lipsky) support a huge variety of 
wildlife worthy of consideration in a management strategy 
for the forest. To create planning and management strategies 
to protect these forests, reliable and accurate information on 
the status, growth and development characteristics of these 
forests is needed.

Tools capable of considering the structures and special 
attributes of Scots pine stands are required for managing 
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these natural resources in a multifunctional approach. 
Detailed and accurate predictions of stand development 
under different management strategies often needed. Diam-
eter classes help to obtain information such as stand struc-
ture, age distribution, and stand establishment that is needed 
to plan important silvicultural interventions. Knowledge on 
tree diameters, a principal factor in the production phase, is 
required because the type of machinery need for production 
and the transportation of the wood must be suitable for the 
diameters in the stands (Bailey and Dell 1973). Information 
needed for forest management studies such as estimates of 
the energy that can be obtained from biomass, carbon, or 
wood for each diameter class can be easily obtained with the 
help of diameter distribution models (Borders et al. 2008). 
Bankston et al. (2021) stated that the diameter distribution 
of a stand also gives information about the ecological or 
economic value of this stand. While the diameter distri-
butions of the stands can provide information about stand 
structures that benefit different wildlife characteristics, esti-
mating future product quantity from the relevant stand and 
its distribution for different commercial standards (paper 
production, timber, etc.) is economically important and will 
inform management design. Actual diameter distributions 
of the stand are needed to accurately estimate of growth and 
yield, and design management plans suitable for that forest. 
Management decisions about the management of forests are 
shaped by the current and future conditions of the resources. 
Since the volume and other properties of the tree depend 
on the diameter of the tree, the diameter distribution can 
characterize the properties of a stand quite well (Bailey and 
Dell 1973).

Forest resource managers benefit from knowing how 
much stand volume is distributed into different size 
classes at any given time. Diameter distribution models, 
which employ a probability density function (PDF) to 
distribute a stand feature over size classes such as diam-
eter at breast height (DBH) or tree height, are of great 
importance for forest management decisions. Although 
the PDF is a continuous function defined by a param-
eter vector that does not have any direct biological sig-
nificance on its own, it is used in many forestry studies 
to model the distribution of trees in stands in different 
diameter or height classes. Since the studies analyzing 
the diameter distribution numerically in the early 1900s 
until today, many PDFs have been used in modeling 
diameters such as lognormal, Weibull, Gamma, normal 
and Johnson’s SB (Fonseca et al. 2009; Mirzaei et al. 
2016; Sun et al. 2019; Ogana et al. 2020; Araújo et al. 
2021). Because of the flexibility of Johnson’s SB distri-
bution for the possible shape that a tree diameter distri-
bution can produce, we selected it as the most appro-
priate for our study. In addition, the ease of integration 
of the cumulative density function (CDF) (Zhang et al. 

2003) is a considerable advantage. Finally, the relative 
forest literature supports the Johnsons SB distribution use 
for tree: (1) diameter description (Hafley and Schreuder 
1977; Lopes 2001; Kiviste et al. 2003; Parresol 2003; 
Fonseca 2004; Özçelik et al. 2016; Ogana et al. 2017; 
Gorgoso-Varela et al. 2020; Vega et al. 2022), (2) height 
(Hafley and Schreuder 1977), and (3) volume ratio (New-
berry and Burk 1985). However, it is a difficult proce-
dure to select the appropriate theoretical distribution 
that can model the source of randomness appropriately 
in the study variable. For this reason, we used probability 
theory to express the likelihood of chance as a source 
for the difference in end outcome. On the other hand, a 
distribution’s parameter recovery method has to be care-
fully selected, so as to produce reliable results. Further-
more, if there are no trees in some diameter classes, then 
both the sampling error and the sampling distribution 
of these classes may lead to a violation of regression 
assumptions. Free of such assumptions and due to its 
computational efficiency, in order to overcome the above 
difficulties, the support vector machine (SVM) learn-
ing methodology (Vapnik et al. 1997; Basak et al. 2007; 
García-Nieto et al. 2012; Gu et al. 2016) with the support 
vector regression (SVR) procedure was used to simulate 
as accurately as possible the empirical diameter distribu-
tion of the ground truth data to predict the structure of 
a stand. Previous studies highlighted the effectiveness 
of the support vector machine methodology for solv-
ing forest modeling problems. Guo et al. (2005) applied 
SVMs to predict the distribution of sudden oak death in 
California, Monnet et al. (2011) showed that the support 
vector regression models adequately predicted dominant 
tree height, basal area, mean diameter, and stem density, 
and Jiao et al. (2012) used SVR methodology to estimate 
timber volume. SVM approaches were also used by Dia-
mantopoulou et al. (2018) to predict tree bark volume, 
by Nguyen et al. (2019) to classify tree species, and by 
Iizuka et al. (2022) to estimate DBH of Japanese cypress.

DBH values for trees are related to basal area, stand density 
and tree volume determination, and can be used for downscal-
ing from stand-level information to tree level (Newton et al. 
2005). However, the available information concerning the 
diameter distribution of Scots pine species is highly limited, 
and no such models have been developed for the Türkmen 
Mountain region. For this purpose, Johnson’s SB distribu-
tion was used due to its flexible structure in representing or 
explaining biological variables. The three-parameter recovery 
approach, which is based on the percentile moment method 
suggested by Fonseca et al. (2009), was used to estimate the 
model’s parameters. Furthermore, the support vector machine 
for regression methodology was used for the simulation based 
on the empirical diameter distribution modeling. The use 
of support vector methodology is a fairly new approach for 
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diameter distribution modeling and has not been used for Scots 
pine stands.

Materials and methods

Study area

The study region is between 39°16′ and 39°38′ N and 30°06′ 
and 30°36′ E on Turkmen Mountain (Fig. 1). Rhyolite and 
dacite are the most common geological parent minerals in 
the study area; others are also present, e.g., basalt, claystone, 
and limestone. Grey brown and podsolic grey brown forest 
soils are the most common soil types (Güner 2006). The 
mean annual temperature is from 10.6 °C to 11.1 °C, and 
annual precipitation is between 374 and 562 mm, according 
to data from meteorological stations in Eskişehir, Kütahya, 
and Afyonkarahisar. In the Thornthwaite water-balancing 
system, the climate type of the research region ranges 
between semihumid and humid (Güner 2006). Scots pine 
dominates the research area. The other main plant species 
in the study area are Anatolian black pine, trembling poplar, 
and oriental beech.

In natural stands, sample plots were carefully selected 
to reflect all the existing variability such as site, stand 
age and stand density. Plot size varied between 200 and 
300  m2, depending on the density of the stands. All trees 
in the sample plots (total 1219) were numbered, then the 

diameters of all trees at 1.30 m height were measured. 
The height of some trees was measured with an accuracy 
of 0.1 m using Blume-Leiss ALTimeter (Carl Leiss Ber-
lin, Berlin, Germany) to estimate stand height. In addi-
tion, for each plot, variables such as average diameter ( d ), 
quadratic mean diameter ( dg ), number of trees per hectare 
( N ), basal area per hectare ( G ), minimum diameter ( dmin ), 
maximum diameter ( dmax ), and median diameter ( d0.50 ) 
were calculated. Descriptive statistics (mean, maximum, 

Fig. 1  Location of study area in Turkey

Table 1  Descriptive statistics for stand variables used to develop 
diameter distribution models (1219 trees from 55 plots)

d mean diameter, dg, quadratic mean diameter, d0.50 median diameter, 
dmin minimum diameter, dmax, maximum diameter, n number of trees 
per plot, G basal area, N number of trees per hectare, SD standard 
deviation

Variable Mean Min Max SD

d(cm) 23 17 31 3.66

dg (cm) 23 18 32 3.69
d0.50 (cm) 23 17 34 3.85
dmin (cm) 15 9 26 3.40
dmax (cm) 32 23 46 4.80
n (no. of trees/plot) 22 15 40 5.85
G  (m2  ha−1) 45 24 67 8.89
N (no. of trees/hectare) 1092 500 2000 312.90
Size  (m2) 205 200 300 22.92
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and minimum values and SD) of the main stand variables 
are given in Table 1.

The SB distribution and localization of the empirical 
distributions

Due to the moment statistics ability to provide sufficient 
information to construct a frequency distribution function, 
the third standardized moment (skewness, β1) and the fourth 
standardized moment (kurtosis, β2) were used to estimate 
and evaluate the asymmetry (left or right skewed distribu-
tion) and kurtosis (heavy- or light-tailed distribution) of our 
ground-truth data, respectively. To obtain the estimator �√

b1

�
 of the coefficient of skewness, the centered third-

order moment was divided by the sample standard deviation 
raised to the third power. The estimated skewness 

�√
b1

�
 

values ranged from − 1.47 to 1.20. The estimator 
(
b2
)
 of kur-

tosis was obtained by dividing the centered fourth-order 
moment by the sample standard deviation raised to the 
fourth power. The estimated kurtosis values ranged 
from − 1.50 to 4.36. Figure 2 shows these estimates in the 
( �1, �2 ) space with two reference lines. �1 represents the 
square of the standardized measure of skewness and �2 is the 
standardized measure of kurtosis. Some combinations of �1 
and �2 are mathematically impossible and occur above the 
�1 − �2 − 1 = 0 line. In Fig. 2, 54 empirical distributions are 
in the SB region (some of which are quite close to the SL 
region) and the remaining one is in the SU region. Figure 2 
shows that the diameter distribution for approximately 1.8% 
of the sample areas used in the study can be better repre-
sented by another distribution instead of Johnson’s SB 
distribution.

Johnson’s SB probability density function is one of the 
components of Johnson’s distribution function family, which 
was first introduced by Johnson (1949). This distribution 
system consists of SU, SL and SB distributions which are 
for unbounded variates, variates bounded at one end, and 
bounded from below to above, respectively. The PDF for 
a variable X which follows an SB PDF can be expressed as:

where, f (x) is the probability density associated with diam-
eter x ; λ, δ > 0, − ∞ < ξ < ∞, − ∞ < γ < ∞. The parameter λ 
gives the range parameter, ξ is the location parameter and 
represents lower bond, δ and γ are shape parameters, and 
γ = 0 indicates symmetry.

The SB PDF can represent variables that have natural or 
physical constraints on their range thanks to the lower (ξ) 
and upper (ξ + λ) bounds. Moreover, a remarkable amount of 
flexibility to fit a wide range of distribution can be achieved 
by two parameters (δ and γ) which control the shape. These 
attributes of the Johnson’s SB PDF make this distribution 
system suitable for representing the biological variables 
(Fonseca et al. 2009).

The approaches commonly used to estimate Johnson’s SB 
distribution parameters are the linear and nonlinear regres-
sion, maximum likelihood, percentile and the moment meth-
ods. However, for most of these techniques, knowledge of 
the distribution boundaries is essential. The use of Johnson’s 
SB distribution for diameter distribution in growth and yield 
models and the use of parameter prediction or parameter 
recovery methods for parameter estimation have been tested, 
albeit in limited numbers (Özçelik et al. 2016). However, 
the parameter prediction method has some important disad-
vantages such as not being able to provide a match between 
the estimated stand value and the stand value obtained from 
the distribution, along with the possibility that a very small 
part of the variation in the parameters will be explained by 
the stand variables. For example, the shape parameter of the 
function shows a very weak relationship with age. Better 
results will be obtained with the parameter recovery-based 
approach (Scolforo et al. 2003; Fonseca 2004).

Three‑parameter recovery method (3‑PRM)

Extreme diameter values in the sample data set were used 
to estimate the location and range parameters of the John-
son’s SB PDF distribution, which has been converted from 
a four-parameter to a three-parameter distribution. The 

(1)

f (x) = ��
√

2�(x − �)(� + � − x)

exp

(

−1
2

[

� + � ln
(

x − �
� + � − x

)]2
)

,

x ∈ (�, � + �),

Fig. 2  Representation of the observations in the ( �1, �2 ) space of 
skewness squared and kurtosis
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remaining parameters of the distribution model can be 
estimated using a percentile or moment method. Scolforo 
et al. (2003) defined a moment method to estimate the 
shape parameters. Parresol (2003) developed a percent-
moment method for simultaneous solution of range and 
shape parameters. Alternatively, it can be used to directly 
estimate average stand properties using parameter recov-
ery models and then to estimate the base diameter distri-
bution. The parameter recovery method provides compat-
ibility between the stand characteristics estimated from 
the regression and created from the distribution function. 
For applying the parameter recovery method, the equation 
system should include certain tree characteristics, and SB 
parameters should be developed (Fonseca et al. 2009).

Parresol (2003) introduced a new estimation approach 
for the recovery of three parameters. In the method, a 
parameter recovery method has been developed for the 
range and shape parameters by using the median, first 
and second noncentral moments of the diameter distribu-
tion in general. In this approach, the location parameter 
is also estimated. Parresol (2003) estimated the location 
parameter ξ using a regression technique to extrapolate the 
random variable breast height diameter (d) to the lower 
bound. Using this estimated location parameter and the 
transformation given by Johnson and Kotz (1970), the two 
shape and range parameters can be solved. Although there 
is no closed form expression for the SB probability density 
function (PDF), if the random variable is X ~ SB (δ, λ, γ, 
δ), where X is the diameter (Parresol 2003; Fonseca et al. 
2009), then

Given a new variable,

It follows from Eq. 2 that

The new random variable Y will follow a distribution with 
the same shape parameters as X (Johnson and Kotz 1970). 
Using the Y  random variable, the SB PDF Eq. (1) becomes 
(Parresol 2003; Fonseca et al. 2009):

Setting z in Eq. (4) equal to 0 and rearranging in terms of 
parameter γ gives

(2)z = � + �ln

[
(x − �)

(� + � − x)

]
∼ N(0, 1)

(3)y =
(x − �)

�
,

(4)z = � + �ln

[
y

(1 − y)

]
∼ N(0, 1).

(5)

f (y) =
𝛿

y(1 − y)
√
2𝜋

exp

�
−
1

2

�
𝛾 + 𝛿ln

�
y

1 − y

��2�
, 0 < y < 1.

where y0.50 is the median of Y .
Following the expected value of Xp in terms of the Y vari-

able, then

where ��

1
(Y) and ��

2
(Y) are first and second noncentral 

moment of distribution of Y, respectively. d is the average 
tree diameter. Equation 7 denotes average tree diameter ( d ) 
as a function the first noncentral moment of Y. It is worth 
noticing that Eq. 8 is a function of the first two noncentral 
moments of Y  . The quadratic mean diameter (dg) is func-
tionally related to the number of trees per unit area ( N ) and 
basal area per unit area (G) ∶ G = kNdg2 , wherek is the con-
version factor for the basal area per square meter 

(
k =

�

40000

)
 . 

Hence, Eq. 8 is equivalent to

Because z is a unit normal variance, the rth noncentral 
moment of Y is

As indicated by Fonseca et al. (2009), the relationship 
in Eq. 6 is first used to eliminate γ in Eqs. 7 and 9 by sub-
stitution in Eq. 10. The solution system of the two equa-
tions and the two unknown parameters is nonlinear and must 
be solved by numerical procedures (see Parresol 2003 for 
details). Given the estimates of G , N , d , median tree diam-
eter (d0.50), and location parameter, and Eqs. 7 and 9, the 
system of equations for δ and λ must be solved by iteration. 
The parameter γ is then found from Eq. 6.

As a result, ξ is predetermined, λ and δ are solved by 
iteration using Eqs. 7 and 9, and then the range parameter 
γ is solved with the help of Eq. 6. More details on technical 
solution for the three-parameter recovery approach can be 
found in Parresol (2003) and Fonseca et al. (2009). Param-
eters of Johnson’s SB distribution were estimated in SAS 9.2 
(SAS Institute, Cary, NC, USA) with the parameter recovery 
method based on the percent-moment method. This program 
is implemented with the nonlinear Levenberg–Marquardt 
(NLPLM) method with the help of the interactive matrix 
language CAPABILITY subroutine (SAS Institute 2010). 
Detailed information can be found in Parresol et al. (2010).

(6)� = �ln

(
1

y0.50
− 1

)
,

(7)d = � + ��
�

1
(Y)

(8)dg2 = E(� + �Y)2 = �2 + 2���
�

1
(Y) + �2�

�

2
(Y)

(9)G = kN
[
�2 + 2���

�

1
(Y) + �2�

�

2
(Y)

]
.

(10)�
�

r
(Y) =

1√
2π

+∞

∫
−∞

�
1 + e

−
z−�

�

�−r
e−z

2∕2dz
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Support vector regression models (SVRs)

The support vector regression modeling approach belongs to 
the type of supervised machine learning algorithms and can be 
considered as a generalization of the support vector machine 
(SVM) methodology for regression-type problems (Vapnik 
1995, 1998, 1999, 2000; Vapnik et al. 1997). The SVR meth-
odology represents a promising nonparametric learning algo-
rithm with surprising characteristics such as the recognition 
of all patterns in the available data set. The methodology used 
in this paper is the SVR with the ε-insensitive loss function 
based on the determination of the support vectors (SVs) that 
produced an ε-insensitive tube, supported by the nonlinear ker-
nel functions (Smola and Schölkopf 2004). That is, in order for 
the learning error to be disclosed for the nonlinear SVR, the 
input vector x (training sample) with a dimension mapped onto 
a higher dimensional space (let’s say n-dimensional space) 
via the fixed nonlinear mapping function �(x) ∈ Rn , a linear 
combination is constructed:

with (x) ∈ R , that due to φ(x) leads to a nonlinear function. 
By ignoring the errors that are within the ε-insensitive tube, 
the function is minimized:

where yi is the output value, w denotes the weight param-
eters, C is the parameter that represents the smoothness of 
the model, and �i and �′

�
 are slack variables (Fig. 3), that show 

the deviation of points outside the ε-insensitive zone.

(11)f (x) = [w,�(x)] + b,

(12)min
1

2
||w||2 + C

n∑
i=1

�
i
+ �

�

i

(13)with constraints ∶

⎧⎪⎨⎪⎩

yi − f (x) ≤ � + �
�

i

f (x) − yi− ≤ � + �i
�i, �

�

i
≥ 0, i = 1,… , n

For the input vector x to be mapped onto a higher dimen-
sional feature space, the Gaussian radial basis function (RBF) 
kernels was used:

where �SVR = (1∕2�2) is the free parameter of the RBF kernels 
and ‖xi − xj‖ is the Euclidean distance between the support 
vectors (SV).

From the above, it is clear that the robustness and the 
effectiveness of an ε-SVR model depends on three meta-
parameters: ε, that determines the width of the ε-insensitive 
zone; �SVR , the parameter that depends on the variance of 
the training samples (σ2) and thus sets the spread of the ker-
nel; C, the cost parameter, (which can balance the resulting 
inaccuracy against the desired simplicity of the constructed 
ε-SVR model.

For the construction of the ε-SVR model, the program-
ming language Python 3.9 (Van Rossum and Drake 2011; 
Python Software Foundation 2022) and libraries of scikit-
learn (Pedregosa et al. 2011) were used. The state-of-the-
practice approach utilized for a machine learning model 
construction (Olson and Delen, 2008), includes the 90% 
and 10% percentages division for the fitting and testing data 
sets, respectively. For this purpose, the available data set 
of the trees of the 55 sample plots was randomly divided 
into fitting (90% of the total sample plots) and testing (the 
remaining 10% of the total sample plots) samples to test the 
predictive ability of the constructed ε-SVR model for new, 
never-seen data in its construction phase. Furthermore, to 
prevent overfitting for the best generalization of the con-
structed ε-SVR model, the k = tenfold cross validation pro-
cedure was applied to the fitting data set.

Finally, for a quantitative approach of the concentration 
of the empirical data around the ε-SVR model fit, the root 
mean square error (RMSE) function from scikit-learn met-
rics library was used (Pedregosa et al. 2011) to produce a 
risk metric that corresponded to the expected values of the 
root squared (quadratic) error or loss by the ε-SVR model fit.

(14)k
(
x, x�

)
= exp

(
−𝛾SVRxi − x2

j

)
, 𝛾SVR > 0

Fig. 3  Representation of 
ε-SVR mapping
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Evaluation of the simulated distributions using different 
approaches

For testing the simulated diameter distributions using dif-
ferent approaches, the diameter class width of 5 cm was 
selected as the most accepted one. The error index (EI) intro-
duced by Reynolds et al. (1988) was calculated related to 
the basal area of the diameter class as a function of weight 
as can be calculated as an exact value. Moreover, using the 
basal area as the weight factor ensures that the different 
dimensions of the tree bole would be considered in the eco-
nomic evaluation of the trees (Fonseca et al. 2009; Özçelik 
et al. 2016). The formula for the error index (EI) is given as:

where M is the number of diameter classes, Gi is the 
observed basal area of the jth diameter class, Ĝj is the pre-
dicted basal area of the jth diameter class,Cj denotes diam-
eter class number j, and f̂  is the function of the different 
approaches used for the diameter distribution simulation.

Results

For presenting the values of the parameter estimates 
obtained from the 55 sample plots using the three-parame-
ter recovery method based on the percent-moment method, 
the parameter estimations obtained by the simulated John-
son’s SB distribution for the first 10 sample plots are given 
in Table 2. Similar results were obtained for the rest of the 
plots. According to the three-parameter solution method 
introduced by Parresol (2003), two parameters (range and 
lambda) and both shape parameters (gamma and delta) of the 
four parameter Johnson’s SB distribution that were estimated 

(15)EI =

M∑
j=1

|||Gj − Ĝj
||| =

M∑
j=1

|||||
∫
Cj

πx2

4

[
f̂ (x) − femp(x)

]
dx
|||||
,

for all sample plots, the L1-norm (output variable, which 
should have a value close to zero) values (Parresol et al. 
2010), for almost all sample plots were quite small similar 
to the results given in Table 2. A delta value less than 0.7 
generally indicates a bimodal distribution. More than half 
of the δ values for the 55 sample areas were less than 0.7. 
As seen in Fig. 2, Johnson’s SB distribution cover a broad 
spectrum of shapes, fitting both positively and negatively 
skewed data. As indicated by Parresol (2003), because the 
Johnson’s SB distribution is obtained by transformation of a 
standard normal variate, integration over specific classes can 
be accomplished by application of the well-tabulated stand-
ard normal. Further, the distribution can easily be extended 
to multivariate forms.

As for the simulated diameter distribution by the con-
structed ε-support vector regression (ε-SVR) model using 
the radial basis function (RBF) kernel, the best combination 
of the set of ε, the �SVR parameter, and the cost parameter (C) 
was explored (Fig. 3) by the grid search method (Pedregosa 
et al. 2011). The grid-search method was used to test and 
evaluate all possible combinations of the parameters’ val-
ues that comprised the grid. Specifically, the tested ε values 
ranged from 0.00 to 0.45 in steps of 0.01, �SVR from 0.00 to 
1.00 in steps of 0.01, while the tested C values ranged from 
4 to 30 in steps of 1.

The root mean square error (RMSE; as the square root 
of the mean of the squares of the deviations between the 
observed and the predicted by the ε-SVR model diameter 
values) was used as the statistical evaluation criterion that 
represented the adaptation of the model to the fitting data 
set along with its predictive ability to the testing data set, 
respectively. This measure was used for a quantitative 
approach of the empirical data concentration around the ε-
SVR model fit. Finally, the combination that gave the small-
est root mean square errors for both the fitting and the testing 
data set was ε = 0.01, �SVR = 0.01 and C = 10, with RMSE 

Table 2  Parameter estimates 
for the first 10 sample plots 
obtained with Johnson’s SB PDF

*XI: Location parameter; RC: SAS return code from IML routine NLPLM indicating which converge cri-
teria was met or reason for non convergence. Positive value indicates successful termination, while a nega-
tive value indicates unsuccessful termination

Plot XI* λ γ δ L1_Norm Converged RC*

1 19 11.86663 1.20472 0.75483 0.036319 Yes 3
2 14 13.65007 0.18093 0.74471 2E−10 Yes 3
3 11 12.47177 –0.28727 0.69875 1.55E−07 Yes 3
4 9 16.42203 0.02198 0.42758 3.3E−07 Yes 3
5 10 12.73792 –0.09352 0.26050 6.39E−06 Yes 3
6 10 18.91966 –0.09684 0.84708 5.92E−06 Yes 3
7 11 13.56259 –0.03630 0.56251 3.68E−06 Yes 3
8 14 75.59411 3.69980 1.39746 0.022806 Yes 3
9 15 61.26548 2.61986 1.17991 0.183885 Yes 3
10 16 36.06415 0.97485 1.01762 1.52E−10 Yes 3
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equal to 1.1152 and 1.1183 for the fitting (training plus vali-
dation data sets) and the test data sets, respectively (Fig. 4).

Although the behavior of the simulated distributions by 
both approaches was evaluated for the total available data 
set of the 1219 trees, it was considered as significant infor-
mation, and the specific simulation ability of the different 
approaches according to the small number of trees of each 
plot separately was also evaluated. The diameter distribution 
simulation of both approaches for plots 1, 2, and 5–10 plots 
in Table 2 is shown in Fig. 5. As can be seen, the simula-
tion of both models is more or less acceptable for all plots, 
with the Johnson’s SΒ distribution outperforming for plots 
1, 2 and 5.

The experimental distribution for the sample plot 10 
showed a typical right-tie flat distribution while the simu-
lated ε-SVR distribution was a multi-modal distribution. As 
can be seen, the ε-SVR model showed the ability to capture 
the diameter distribution pattern of plot 10, except for the 
case of the 25 cm diameter class (Fig. 5).

For examining the reliability of the simulated distribu-
tion using both Johnson’s SB distribution and the constructed 
SVR model, plots of the experimental distributions and the 
observed distributions for sample plots 4, 15, and 35, are 
given in Fig. 6. The motivation behind the usage of these 
plots was to explore the adaptation of the simulated distribu-
tions to the actual slightly skewed distribution. The experi-
mental Johnson’s SB distribution was constructed with δ 
values less than 0.7 and, according to the 35-sample plot, 
γ value equal to 0.02. On the other hand, delta, and gamma 
values for the sample plot 35 showed a left-skewed bimodal 
distribution with δ = 0.5 and γ = − 0.59 (Fig. 6). As can be 
seen (Fig. 6) the ε-SVR constructed model gave well-shaped 

curves that followed the original curve shape. As for the 
35-plot, the constructed ε-SVR distribution showed a sig-
nificant peak of diameter in the 27.5–32.5 cm diameter 
class. Despite this fact, the distribution simulation by the 
SVR model can be considered as a successful diameter 
distribution.

The shape of the 18- and 26-plot distributions are 
shown in Fig. 7. As can be seen (Fig. 7), the simulated 
distributions for the 18-plot were sufficient, produc-
ing unimodal and uniform distribution patterns for both 
approaches, while for plot 26, Johnson’s SB simulation 
produced a bimodal distribution. According to plot 26, 
for the estimated distribution obtained with the help of 
Johnson’s SB distribution, the peak values are at 15 cm 
and 30 cm, while in the observed distribution, the peak 
value is at 25 cm. As for the SVR approach, the simulated 
peak was followed the actual distribution’s peak (plot 26). 
Although for both approaches, partial differences between 
the observed distribution and the estimated distribution 
were observed, the diameter distribution was sufficient.

However, in some sample areas with quite a small num-
ber of trees, the estimates with both approaches (Johnson’s 
SB distribution and SVR model) seem to be quite unsuc-
cessful as for plot 16 (Fig. 8). Quite large differences were 
observed between the values for estimated distributions 
and the observed distribution for the sample plot area 16, 
which includes measured diameters for 15 trees. On the 
contrary, according to those sample plots that include a 
relatively large number of trees, for example, plot 3, with 
measured diameters of 33 trees, the simulated distributions 
for both approaches were considered as adequate (Fig. 8).

For evaluating the simulation behavior of the methods 
applied, the summary statistics of the error index (EI) 
values for both approaches are given in Table 3.The EI 
values for 55 sample plots ranged from 2.67 to 28.57 and 
4.92 to 13.76 with mean error index values equal to 13.61 
and 9.25 and median values equal to 13.88 and 9.27 for 
the simulation using Johnson’s SB distribution and the ε-
SVR model, respectively. Furthermore, the proportion of 
plots that produced lower values of error index was found 
equal to 72.73% for the ε-SVR approach, meaning that the 
diameter distribution simulation by the constructed ε-SVR 
model was more reliable than the simulation derived by 
Johnson’s SB distribution for 45 plots, while according to 
the remaining 15 plots, the Johnson’s SB distribution pro-
duced simulation with better accuracy.

For both methods, the EI values for each sample plot are 
given in Fig. 9a and the frequency distribution of the EI 
values in Fig. 9b; the error distribution values for the sam-
ple plots can thus be seen to vary. Johnson’s SB distribution 
gave larger errors for most of the plots than those derived 
from the simulated distribution using the constructed 
ε-SVR model (Fig. 9a). In general, as seen from Fig. 9b, 

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

25 21 18 10 6

R
M

S
E

 v
al

u
es

,i
n

 c
m

SVR model parameters (first line: C, second line: 

SVR
, third line: )

Fitting data

Test data

Best 

combination

0.01          0.01 0.01          0.01           0.01

0.001       0.001         0.001         0.01       0.01

Fig. 4  Best combination of ε-SVR parameters as produced by the 
grid search method



1837Diameter distributions in Pinus sylvestris L. stands: evaluating modelling approaches…

1 3

0

100

200

300

400

500

600

700

800

5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f 
tr

ee
s

DBH (cm)

Measured trees

SVR model

Johnson's distribution

plot 1

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f 
tr

ee
s 

DBH (cm)

Measured trees

SVR model

Johnson's distribution

plot 2

0

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f 
tr

ee
s

DBH (cm)

Measured trees

SVR model

Johnson's distribution

plot 5

0

50

100

150

200

250

300

350

400

450

5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f 
tr

ee
s

DBH (cm)

Measured trees

SVR model

Johnson's distribution

plot 6

0

100

200

300

400

500

600

700

5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f 
tr

ee
s

DBH (cm)

Measured trees

SVR model

Johnson's distribution

plot 7

0

100

200

300

400

500

600

700

5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f 
tr

ee
s

DBH (cm)

Measured trees

SVR model

Johnson's distribution

plot 8

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f 
tr

ee
s

DBH (cm)

Measured trees

SVR model

Johnson's distribution

plot 9

0

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f 
tr

ee
s

DBH (cm)

Measured trees

SVR model

Johnson's distribution

plot 10

Fig. 5  Observed and simulated diameter distributions by both methods for sample plots 1, 2 and 5–10
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a significant part of the EI values for the sample plots are 
between 4 and 26  m2/ha for Johnson’s SB distribution and 
between 4 and 14  m2/ha for the ε-SVR model, meaning 
that the ε-SVR model adequately simulated the diameter 
distribution for most of the sample plots.

Discussion

To explore the use of a machine learning model, such as 
a support vector regression model, to reliably describe the 
diameter distribution of a natural Scots pine stand, as an 
alternative procedure to the known, accepted theoretical 
distribution method, such as the Johnson’s SB distribution, 
we used a three-parameter recovery method based on the 
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Fig. 6  Observed and simulated diameter distributions by the SVR model and Johnson’s SB distribution for sample plots 4, 15, and 35
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percentile-moment method to estimate parameters of John-
son’s SB PDF. This distribution was preferred because it 
allows modeling of different distribution patterns due to 
its two shape parameters and enables better representation 
of biological variables (Fonseca et al. 2009; Özçelik et al. 
2016). Many studies have shown that Johnson’s  SB distribu-
tion produces remarkably successful results in describing the 
diameter distributions (Kiviste et al. 2003; Parresol 2003; 
Lei 2008; Fonseca et al. 2009; Mateus and Tomé 2011; 
Özçelik et al. 2016).

Further, due to its nonparametric nature and ability to 
revelal unknown relationships among real world data, the 
machine learning method support vector regression (SVR) 
was used (Wang et. al. 2009; Alonso et al. 2013; Diaman-
topoulou et al. 2018). Specifically, the non-linear ε-SVR 
algorithm, including the radial basis function (RBF) kernel 
was used to simulate the distribution of diameter classes of 
pine trees. Because of the discontinuous nature of the num-
ber of trees in each diameter class, the continuous numbers 
produced by the ε-SVR model were considered equal to the 
nearest integer.

Data required in this study were obtained from various 
Scots pine stands in the Türkmen Mountain region. The 
adaptation of the simulated distributions developed with the 
Johnson’s SB PDF and the ε-SVR model in this study was 
evaluated using error index values. For this purpose, diam-
eter classes of 5-cm intervals were created. The basal area 
is used as a weight function for the error index calculation, 
since, on one hand, it can be calculated as an exact value 
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Fig. 8  Observed and simulated diameter distributions by both methods for sample plots 3 and 16

Table 3  Summary statistics of the error index (EI) values for the dif-
ferent methods

Method Mean Minimum Maximum SD Median

Johnson’s SB 
distribution 
(3-PRM)

13.61 2.67 28.57 6.62 13.88

ε-SVR 9.25 4.92 13.76 1.91 9.27
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and, on the other hand, it considers dimensional differences 
between trees (Fonseca et al. 2009; Özçelik et al. 2016).

The statistical evaluations revealed that the diameter dis-
tribution of the natural Scots pine stands in the Türkmen 
Mountain region can be modeled successfully with both 
modeling approaches tested. According to the simulated 
distributions for the whole pine stand (Fig. 10) examined 
in this study, it is obvious that both simulated distributions 
can reliably estimate the basal area of the forest per diameter 
class and per hectare.

The diameter distribution of some stands was bimodal, 
others were unimodal, and some were right or left skewed. 
Due to their features, both the simulated distributions have 
been found to be successful approaches in describing the 
ground truth behavior of the tree diameter distribution. Spe-
cifically, the most important advantage of estimating the 
parameters of Johnson’s SB distribution with the parameter 
recovery method is that it allows estimating the future diam-
eter distributions in growth and yield models, by produc-
ing significant information about forecasting the number of 
trees in a stand by diameter classes. However, the maximum 
likelihood method cannot be used directly for this purpose. 
According to the support vector regression approach, it 
showed great ability for describing the tree diameter dis-
tribution, providing a significant alternative to theoretical 
distribution.

The selection of the appropriate methodology that ena-
bles unbiased and accurate diameter distribution simulations 
requires a multifaceted design that takes into account the 
nature of the model and its applicability both in the field 
and in the office. In addition, this decision also requires set-
ting the appropriate priorities for prediction accuracy and 
convenience. In this context, the two approaches compared 
in this study make use of the same sample size and data and 
therefore involve the same field effort. Given the obtained 

results, the ε-SVR approach enables the adequate capture 
and simulation of the complex, nonlinear structure of the 
diameter distributions without the need for first specify-
ing the model form. This is not the case for other nonlinear 
modeling techniques. As far as office work is concerned, 
both modeling approaches require extensive knowledge, pro-
gramming skills, and the corresponding effort to apply the 
constructed approach. Specifically, given the SVR modeling 
approach, it is worth noting that the ε-SVR model was con-
structed using the freely available programming language, 
(Python). Using Python’s export capabilities, the ε-SVR 
models can be exported into file(s) and thus very easily 
loaded and used by a third-party user. Of course, require-
ments such as proper equipment or skills that are needed for 
the application of the ε-support vector regression models are 
not always met in practical forestry. Despite this fact, poten-
tial users can gain the experience, knowledge, and accuracy 
needed for predictions and using advanced models. When 
convenience is the limiting factor in a survey, loss of predic-
tion accuracy should be seriously taken into account.

Conclusions

For the natural Scots pine forests in the Türkmen Mountain 
region, which have quite different stand structures due to 
ongoing destruction over many years, both parametric and 
nonparametric modeling approaches (Johnson’s SB func-
tion and the support vector regression (SVR) procedure, 
respectively) were tested as accurate and reliable diameter 
distribution models that can easily fit an empirical diam-
eter frequency distribution. Johnson’s SB probability density 
function based on the percentile moment approach, due to its 
flexibility according to the possible shape that a tree diam-
eter distribution, produced a reliable tool to describe the 
empirical diameter distribution of the pine trees. However, 
a predetermined function is a requirement for this approach. 
On the other hand, the data-driven support vector regression 
modeling, a nonparametric supervised learning algorithm 
with the ε-insensitive loss function supported by nonlinear 
kernel functions, provided the desired characteristics (e.g., 
recognition of all patterns in the available data set) and 
insignificant ones.

Users can gain the experience, knowledge, and prediction 
accuracy needed to use advanced models such as the ε-SVR 
model. In other words, the ε-SVR algorithm has potential to 
accurately simulate the diameter distribution dynamics and 
thus can be safely used as a data-driven alternative for the 
efficient management of a forest ecosystem.
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