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Abstract Forest fires are key ecosystem modifiers affect-
ing the biological, chemical, and physical attributes of forest
soils. The extent of soil disturbance by fire is largely depend-
ent on fire intensity, duration and recurrence, fuel load, and
soil characteristics. The impact on soil properties is intri-
cate, yielding different results based on these factors. This
paper reviews research investigating the effects of wildfire
and prescribed fire on the biological and physico-chemical
attributes of forest soils and provides a summary of current
knowledge associated with the benefits and disadvantages
of such fires. Low-intensity fires with ash deposition on soil
surfaces cause changes in soil chemistry, including increase
in available nutrients and pH. High intensity fires are noted
for the complete combustion of organic matter and result
in severe negative impacts on forest soils. High intensity
fires result in nutrient volatilization, the break down in soil
aggregate stability, an increase soil bulk density, an increase
in the hydrophobicity of soil particles leading to decreased
water infiltration with increased erosion and destroy soil
biota. High soil heating (> 120 °C) from high-intensity for-
est fires is detrimental to the soil ecosystem, especially its
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physical and biological properties. In this regard, the use
of prescribed burning as a management tool to reduce the
fuel load is highly recommended due to its low intensity
and limited soil heating. Furthermore, the use of prescribed
fires to manage fuel loads is critically needed in the light
of current global warming as it will help prevent increased
wildfire incidences. This review provides information on the
impact of forest fires on soil properties, a key feature in the
maintenance of healthy ecosystems. In addition, the review
should prompt comprehensive soil and forest management
regimes to limit soil disturbance and restore fire-disturbed
soil ecosystems.
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Abbreviations

AFAC Australasian Fire Authorities Council
C Carbon

CEC  Cation exchange capacity

Cco, Carbon dioxide

EC Electrical conductivity

GHG  Greenhouse gas(es)

MBC  Soil microbial biomass carbon
MBN  Soil microbial biomass nitrogen
N Nitrogen

NH,* Ammonium

NO;~  Nitrate

ocC Organic carbon
OM Organic matter

P Phosphorus

PF Prescribed fire
SOC  Soil organic carbon
SOM  Soil organic matter
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TC Total carbon

TN Total nitrogen
TP Total phosphorus
WF Wildfire

Introduction

Soil is one of the most valuable natural resources utilized
across socio-ecological and natural systems (Alcaiiiz et al.
2018), and plays acritical role in nutrient cycling, as a
warehouse for minerals, in carbon sequestration, and sup-
port for plant growth (Osman 2013). It is considered a non-
renewable natural resource on a human timescale because
of its rapid deterioration and slow phase of formation (Lal
2015). Therefore, degradation of the biological, chemical,
and physical properties of forest soils reduce its capacity to
function fully, with such effects either temporary or perma-
nent. Key drivers of soil degradation in forest ecosystems
are deforestation, fires, erosion, and soil contamination
(Ghazoul et al. 2015; Silvério et al. 2019).

Fires are considered a destructive factor in most for-
est ecosystems of tropical, temperate, and boreal areas
(Fernandez-Garcia et al. 2019a, b), and are viewed as global
phenomena affecting most land areas (Bento-Gongalves
et al. 2012). The evidence of fire was first discovered in
the 360-million-year-old fossil records of the Carbonifer-
ous period (Verma and Jayakumar 2012). Fire influences
forest ecology and functioning by affecting nutrient turno-
vers, hydrophobicity, species composition and regeneration,
and ecological biodiversity. Wildfires are often a result of
anthropogenic activities, while naturally occurring fires
represent only a small fraction of global fires (Knorr et al.
2016). Forest fires are a major cause of soil degradation and
nutrient losses via volatilization and erosion (Goémez-Rey
et al. 2013).

Forest fires affect the biological and physico-chemical
quality of soils and diminish the nutrient pool through vari-
ous mechanisms, including volatilization, oxidation, ash
transfer, and erosion (Pellegrini et al. 2018). Akburak et al.
(2018) reported a drastic decline in microbial biomass car-
bon on a short-term basis following forest fires. Raison et al.
(1986) also reported a reduction in nutrient pools such that
there was a decline of 50-75% of nitrogen (N), 35-50% of
phosphorus (P), and 25-50% of magnesium (Mg) via volatil-
ization and oxidation processes. Mataix-Solera et al. (2011)
observed that forest fires with temperatures greater than
300 °C resulted in the destruction of soil water repellence,
with a significant impact on soil water cycle and erosion
characteristics (Inbar et al. 2014).

However, the impact of fires on soil quality indicators is
largely dependent on their severity and frequency (Johnston
and Barati 2013; Pellegrini et al. 2018; Pérez-Izquierdo et al.
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2021). A review by Certini (2005) found that an intense fire
moving at a slow pace resulted in more damage to the soil
than a fast-moving fire. Moreover, temperatures of 850 °C
and higher may be attained on soil surfaces with dry, heavy
fuel loads, and may have destructive effects on soil proper-
ties (DeBano 2000). Certain nutrients are also more vulner-
able to fire than others. For example, levels of potassium
(K), calcium (Ca), and magnesium (Mg) may be increased
or unaffected by fire, while sulphur (S) and nitrogen (N)
usually decline. Temperature specifically regulates the vol-
atilization of nutrients within the soil. In organic matter,
N begins to volatilize at 200 °C (Knicker 2007), while Ca
requires 1484 °C to vaporize (Johnston and Barati 2013).
Fires of high intensity can also alter soil physical properties
and make it more vulnerable to nutrient depletion by erosion.

With current global warming, higher temperatures and
extreme droughts significantly increase the risk of forest
fires (Zhang and Biswas 2017). There have been several
recent predictions on the possible increase in fire duration,
intensity, and frequency in forested regions, especially in
the tropics, because of higher temperatures (Zhang and Bis-
was 2017; Auclerc et al. 2019; Addo-Fordjour et al. 2020).
Therefore, increased fire risk will not only affect forest flora,
but also soil physical, chemical, and biological properties
(Romeo et al. 2020). Fire influence forest soils in complex
ways but have not been studied as comprehensively com-
pared to the effects of vegetation. Fires on forest soils influ-
ence a wide range of processes, including organic matter
loss (Knicker 2007), nutrient availability and their dynamics
(Cavard et al. 2019), and revival of vegetation after the fire
(Rodriguez et al. 2018). Consequently, information on the
changes to soil properties following fire is key to finding
sustainable and adaptable management practices of soils and
forests (Zhang and Biswas 2017). The objective of this paper
is to review the current knowledge on forest soil modifica-
tions following fire disturbance.

Concept of wildfire and prescribed fire
Wildfire

The term “wildfire” has been used to define fires outside
urban areas (Fig. 1). The Australasian Fire Authorities
Council (AFAC 2010) considers wildfire to be any uninten-
tional vegetation fire, including forest fires and shrub fires.
The United States has also described wildfire as “any non-
structure fire that occurs in the wildland” (National Wildfire
Coordinating Group 2011). In Australia, the term “bush-
fires” has also been denoted as any vegetation fire (AFAC
2010). Forest fire is the term applied to any wildfire or bush-
fire in the Europe (European Commission 2010). Within the
past decade, major wildfires have occurred (https://blog.


https://blog.batchgeo.com/largest-wildfires/
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Fig. 1 High-intensity bushfire
in native vegetation. Photo
credits to Ghana Districts News,
Ghana, Africa, January 2018
(https://ghanadistricts.com/
Home/Reader/3¢5f581-09a6-
4cb6-86)

Table 1 Major wildfires

o Country Name of wildfire Year of wildfire
worldwide in the past decade
Australia Australian bushfire season 2019/2020
Canada Northwest Territories fires 2014
Serbia Siberia wildfires 2019
Bolivia Bolivia forest fires 2010
Canada British Columbia wildfires 2018
Canada British Columbia wildfires 2017
United States Western United States wildfires 2020
Russian Russian wildfires 2015
Brazil Amazon rainforest wildfires 2019
Canada Alberta wildfires 2019
Greece Attica wildfires 2018
Sweden Swedish wildfires 2018
Portugal Portuguese wildfires 2017
Gran Canaria Canary Islands wildfires 2019
California, USA California wildfires 2018
Canada Richardson Backcountry Fire 2011
Northern California, USA Mendocino Complex fires 2018
Sierra Nevada Rim Fires 2013
Russia Russian wildfires 2010
Amur Oblast Russia Russian wildfires 2018
Southern California, USA Thomas Fire 2017

batchgeo.com/largest-wildfires/) (Table 1), with devastat-
ing effects in different regions. For example, between 1970
and 2017 in Canada, about 5.6 million acres of vegetation
had been degraded annually from 8000 wildfire incidents
(Tymstra et al. 2020). Current climate change predictions,
coupled with more recurrent and prolonged droughts, would
exacerbate the incidence of wildfires in many agroecologies
(Caon et al. 2014).

Bushfire, forest fire, or wildfire, regardless of name, is
a major disturbance affecting forest ecosystems. Its impact
on soil properties is driven by its intensity, frequency, and

duration (Bento-Gongalves et al. 2012). Fire intensity, which
relates to the heat output per area burnt per time, can be clas-
sified as low intensity (<100 °C), medium intensity (up to
250 °C), and high intensity (>350 °C) (Caon et al. 2014).
However, the severity of wildfires is largely dependent on
the fuel load present in the ecosystem, the soil type and
moisture content, and the fire intensity. Several researchers
have documented the severity of wildfires on soil properties
(Dooley et al. 2012; Vega et al. 2013; Ibafiez et al. 2021;
Jhariya and Singh 2021). In grassland vegetation, Liu et al.
(2018) observed an increase in soil nutrients following a
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low-intensity wildfire. Similar findings were made by Inbar
et al. (2014) and Hosseini et al. (2017). However, moder-
ate to high-intensity wildfires have generally been associ-
ated with reduced physical and biological properties. For
instance, Varela et al. (2015), Downing et al. (2017), and
Heydari et al. (2017) reported negative effects of wildfire
on water content, water repellence, bulk density, and stable
aggregates, while Knelman et al. (2015), Ferndndez-Garcia
et al. (2019a, b) and Moya et al. (2019) observed decreased
microbial biomass and enzymatic processes resulting from
wildfires. Thus, evaluating the impact of wildfire is crucial
since it results in changes in soil physical, chemical, and
biological properties in the short- and long-term.

Prescribed fires

Prescribed fires or prescribed burning are low-intensity fires
used to achieve specific management objectives (Hiers et al.
2020; Francos and Ubeda 2021). Fire is used as a scientific
tool to manage fuel load (organic material) in forested areas
to prevent or mitigate a possible wildfire (Bento-Gongalves
et al. 2012) (Fig. 2). While eliminating the accumulation of
large fuel loads, prescribed burning is also used to regen-
erate certain species (Kemp et al. 2016), to clear land in
slash-and-burn agriculture (Dicen et al. 2020) and as a drill
by firefighters (Shaltout and Ismail 2020). In addition, pre-
scribed fires modulate soil properties and ecological pro-
cesses, control forest diseases and insect pests, and influence
plant and animal biodiversity in any vegetative ecosystem
(Alcaiiiz et al. 2018). Due to the low severity of prescribed
fires, their effects on soil properties are generally positive
(Fellows et al. 2018; Dems et al. 2021).

The positive impacts have been documented by several
researchers (Goberna et al. 2012; Alcaiiz et al. 2016; Fran-
cos et al. 2019). Switzer et al. (2012), Badia et al. (2014),
and Akburak et al. (2018) reported increased base cations

Fig. 2 A low-intensity pre-
scribed fire. Photo credits to
Environment SA News, South
Australia, Australia, October
2018 (https://www.environment.
sa.gov.au/news-hub/news/artic
les/2018/10/prescribed-burns)
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after prescribed burning, which was due to the accumula-
tion of ash on the soil surface. Similarly, Mugaddas et al.
(2015) and Franco et al. (2019) found increased soil pH in
burnt soils following prescribed fire. In addition, electri-
cal conductivity increased in burnt soils after low-intensity
prescribed fires due to the release of soluble inorganic ions
and the creation of black carbon (Alcaiiiz et al. 2016; Fran-
cos et al. 2019). Notwithstanding the benefits of prescribed
burning, its application could be detrimental to the soil
ecosystem if temperatures increase beyond the allowable
threshold for low-intensity fires (Francos and Ubeda 2021).

Effect of fire on soil properties

Forest fires significantly influence the biological, chemi-
cal, and physical properties of soils (Panico et al. 2020;
Ribeiro-Kumara et al. 2020). During the fire, heat transfer
from burning biomass on the surface and within the soil is
directly responsible for the changes that occur (O’Brien et al.
2018). Fire impacts on soil properties are a function of inten-
sity, duration, and frequency, which constitute fire severity
(Alcaiiiz et al. 2018; Lucas-Borja et al. 2020; Fernidndez-
Garcia et al. 2021). However, modifications in soil proper-
ties are driven by the temperature of the soil during burning
as illustrated in Fig. 3 (Santin and Doerr 2016), as well as
soil characteristics (e.g., water content and organic matter)
(Sazawa et al. 2018). The following subsections illustrate the
impact of fire on soils of various ecosystems, with results
summarised in Tables 2, 3, and 4.

Chemical attributes

Several studies have reported fire impact on soil chemical
attributes (Table 2). The addition of ash following complete
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Fig. 3 Effects of temperature ranges from fires on soil properties; adapted from Santin and Doerr (2016)

or partial burning of biomass and organic matter and their
incorporation into the soil significantly alters soils chemistry
(Maksimova and Abakumov 2015; Jhariya and Singh 2021;
Liet al. 2021). Soil temperatures > 200 °C following a forest
fire incinerate organic matter and produce char compounds,
leading to ash formation and increased pH.

Soil organic carbon

Soil organic carbon (SOC) is one of the most studied factors
of soils following a fire due to its relevance to soil quality
(Hobley et al. 2017; Aaltonen et al. 2019). However, changes
in SOC are variable and depend on fire duration, available
biomass, and its moisture content, and fire type and inten-
sity (Reyes et al. 2015). Such variations result in the nearly
total loss of soil organic matter (Miesel et al. 2015), char-
ring (Zhang and Biswas 2017), a small distillation of minor
compounds (Certini 2005), and/or increased SOC content
to about 30% as in prescribed burning (Alcaiiiz et al. 2018).
Loss of SOC starts around 200-250 °C, whereas its com-
plete combustion is around 460-500 °C (Badia et al. 2014).
Studies by Goberna et al. (2012) for Rosmarinus officinalis
L. in Spain, Switzer et al. (2012) for a Douglas-fir forest
in Canada, Downing et al. (2017) for Kenyan alpine moor-
lands, Akburak et al. (2018) for a Quercus frainetto Ten.
forest in Turkey, and Fernandez-Garcia et al. (2019a, b) for
a Pinus pinaster Ait. forest in Spain, showed no change in
SOC after fire, while Bennett et al. (2014) and Muqgaddas
et al. (2015) for wet sclerophyll forests in Australia, Liu et al.

(2018) for grasslands in China, and Moya et al. (2019) for
a Pinus halepensis Mill. forest in Spain reported changes in
SOC following fire.

The impacts of fire on soils are highly variable and
suggest that low-intensity fires result in little or increased
change the SOC, whereas high-intensity fires result in
decreased SOC (Caon et al. 2014). In their study on the
effects of wildfire in Aleppo pine (Pinus halepensis Mill.)
forests in Spain, Badia et al. (2014) reported a 27.9% reduc-
tion in SOC in the 1- cm soil layer after a highly severe
fire. Similarly, Moya et al. (2019) recorded a 21.0% reduc-
tion in a Lithic Haplocalcid soil when a moderate to high
intensity wildfire occurred in a P. halepensis forest in Spain.
Reduction in SOC after high-intensity fires may be due to
several factors, including the combustion of SOM, increased
rates of C mineralization, volatilization, and C solubiliza-
tion because of high pH (nutrient-rich ash) (Rodriguez-
Cardona et al. 2020). In contrast, Akburak et al. (2018) for
a Q. frainetto forest in Turkey, and Fernandez-Garcia et al.
(2019a, b) for a P. pinaster forest in Spain reported no effects
on SOC following wildfire. Elsewhere, Alcaiiiz et al. (2016)
for a P. halepensis forest in Spain and Liu et al. (2018) for
grasslands in China, recorded a 19.4% and 11.2% increase
in SOC after a low intensity prescribed fire and a wildfire,
respectively. Thus, low-intensity fires are associated with
increased SOC due to increased pyrogenic C resulting from
incomplete combustion of organic matter, decomposition of
incomplete burnt biomass, and the addition of ash (Sénchez
Meador et al. 2017; Santin et al. 2018; Hu et al. 2020). The
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Table 2 (continued)

Impact Reasons for impact

Soil property

Soil type

Fire properties

Location

Vegetation type

Author(s)

None

pH

Endogleyic Arenosols

Highly to very highly

Pinus pinea forests Migliarino, Italy

Certini et al. (2011)

Due to charred litter and

Increased

severe. WF

biomass incorporation

Nitrogen is preferentially

Decreased

immobilised during

charring

British Columbia, 40-853 °C, PF Orthic Eutric Brunisol  Total C None

Douglas-fir forest

Switzer et al. (2012)

Increased inorganic ions

Increased

Base cations

Canada

following combustion
of partially burned

vegetation

Refer to abbreviation list for soil properties

WEF, PF and IAB indicates wildfire, prescribed fire, and immediately after burning, respectively

combustion of C and the ash produced during low-intensity
forest fires are referred to as black carbon (BC) (Thomas
et al. 2017; Gao et al. 2018). Black carbons are highly con-
densed carbons, resistant to microbial attacks, that are gener-
ated after a fire. Their presence in the soil has been associ-
ated with an increased soil organic matter pool (Nave et al.
2011; Caon et al. 2014).

Soil reaction (pH)

During forest fire, losses occur in biomass and organic layers
and there is a resultant addition of nutrient-rich ash onto the
soil surface. This increases pH and significantly influences
soil chemical and biological properties. Higher pH is found
in soils with higher burn severity (temperatures > 450 °C)
(Knicker 2007). Several researchers have documented an
increase in pH after fire (Dzwonko et al. 2015; Akburak et al.
2018; Francos et al. 2019; Hinojosa et al. 2021). A report by
Alcaiiiz et al. (2016) noted that the prescribed burning of P.
halepensis forests in Spain resulted in a significant increase
in pH. In addition, Akburak et al. (2018) reported a similar
increase in pH after a fire in a Q. frainetto forest in Turkey.
Significant increases in soil pH, especially after high-inten-
sity fires, may be due to the addition of nutrient-rich ash
(base cations) after the burning of organic materials and the
denaturation of organic groups from organic matter (Alcafiiz
et al. 2018). However, an increase in pH may be depend-
ent on the initial pH, nutrient content, and the quantity of
deposited ash (Neary et al. 2005). In contrast, other reports
reported that pH remained unchanged following fire (Badia
et al. 2014; Fernandez-Fernandez et al. 2015; Fultz et al.
2016; Downing et al. 2017; Fernandez-Garcia et al. 2019a,
b). This could be associated with environmental conditions
after fire (e.g., erosion; Fernandez-Garcia et al. 2019a, b),
and low to moderate fires (Valko et al. 2016; Alcaiiz et al.
2018). Soil pH is a key factor influencing available nutrients
(Roques et al. (2013). For example, phosphorus becomes
unavailable by forming insoluble minerals with iron at low
pH., while at high pH levels, it is immobilized by calcium
(Neary et al. 2005).

Nitrogen

Nitrogen (N) is noted as the most limiting nutrient in crop-
ping and forest ecosystems (Agbeshie et al. 2020). It is
unique and exists in the soil matrix as available or min-
eral N (e.g., NH,* and NO;") and organic N (Zhang and
Biswas 2017; Yang et al. 2020). The effect of forest fires
leads to the depletion of N via volatilization which occurs
when soil temperatures exceed 200 °C (Caon et al. 2014).
In addition to volatilization, N loss following fire may result
from erosion and leaching (Huddell et al. 2020; Cheng et al.
2021; Qiu et al. 2021). However, the effects of forest fires
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Table 4 (continued)

Reasons for impact

Impact

Soil property

Fire properties Soil characteristics

Location

Vegetation type

Authors

Increased

MBC

Low-moderate, PF Acuff and Amarillo

Texas, USA

Grassland

Fultz et al. 2016

Modified From fungal to bacteria

Microbial community

after fire incidence

Decreased Abundance of nutrients

B-glucosidase

Low-moderate, PF Loghouse gravelly

Texas, USA

Sky Island woodland
and oak savanna

Fultz et al. (2016)

from ash depositions

loams and Puerta
gravelly silt loams

Decreased Initial pulse response

L-asparaginase

associated with

increased nutrient

availability following

fire

Decreased Increased pH

Microbial community

Orthic Eutric Brunisol

Douglas-fir Forest British Columbia, 40-853 °C, PF

Switzer et al. (2012)

Canada

Refer to the list of abbreviation for soil properties

WEF and PF indicate wildfire and prescribed fire, respectively

on soil N present contradictory results yet to be understood.
For example, field studies undertaken by Muqgaddas et al.
(2015) in Australia revealed that low intensity prescribed
fires decrease total N in the topsoil of a wet sclerophyll for-
est. Studies by Franco et al. (2019) in a P. halepensis and
Q. ilex forest in Spain, showed that forest fires significantly
decreased total N in the topsoil. Significant lower total N
was also recorded in a Sapri-dystric Histosol soil under a
moist Scots pine forest following a high-intensity wildfire
in Poland (Dzwonko et al. 2015). According to Hahn et al.
(2021), a prescribed fire (low to moderate intensity) set in
the Fishburn forest in Virginia, USA, accounted for a 33%
decline in total N. A similar trend was observed by Certini
et al. (2011) who reported decreased total N after a forest
fire. A systematic review by Sanchez Meador et al. (2017)
revealed the impacts of forest fire on soil N and the decline
in total N in the A horizon. Volatilization is the main driver
for N losses in mineral soils after forest fires (Muqaddas
et al. 2015; Fraterrigo and Rembelski 2021; Pellegrini et al.
2021). However, studies by Akburak et al. (2018) in a Q.

frainetto forest in Turkey, Fernandez-Garcia et al. (2019a,

b) for a P. pinaster forest in Spain, and Moya et al. (2019)
for a P. halepensis forest, also in Spain, showed no differ-
ences in total N contents after a fire, whilst Goberna et al.
(2012) for R. officinalis L. vegetation in Spain, Alcafiz et al.
(2016) in P. halepensis forest in Spain, Hosseini et al. (2017)
in a P. pinaster forest in Portugal, and Liu et al. (2018) for
grassland vegetation in China, reported increased total N
in the A horizon following fire. The increase in total N is
due to the addition of ashes rich in nitrogen, especially after
low-intensity fires, and a higher rate of mineralization of
organic litter which releases a higher amount of N (Alcaiiiz
et al. 2018; Ferrer et al. 2021; Wan et al. 2021).

Forest fires generally result in increased soil tem-
peratures and higher pH, which impact inorganic nitro-
gen (NH,* and NO; ™) dynamics via mineralization and
nitrification processes (Calvo et al. 2016; Verma and
Jayakumar 2018; Kong et al. 2019). After forest fires,
nitrogen, which is not completely volatilized, is mineral-
ized to NH4+—N (Jones et al. 2015; Verma et al. 2019)
and can be further nitrified to NO; —N under favourable
conditions (Agbeshie et al. 2020). Typically, there is an
increase in available nitrogen (NH,*~N and NO; -N)
following fire (Table 2). Significant increased NH,*-N
and NO; N after fire have been reported by Wang et al.
(2014), Adkins et al. (2019), and Hinojosa et al. (2021).
Badia et al. (2014) reported increased NH,*-N after a fire
in an Aleppo pine forest. Similarly, Goberna et al. (2012)
reported increased NH, ~N and NO; N in R. officinalis
vegetation following a prescribed fire. In an oak for-
est in Iran, the occurrence of mixed wildfire intensities
resulted in increased NO; —N in the topsoil compared to
unburnt plots (Heydari et al. 2017). A significant increase
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in NH,*-N and NO;™-N following fire in the A horizon
is largely associated with higher ash deposition coupled
with increased N mineralization and nitrification as con-
ditioned by temperature, pH, and microbial activities (Liu
et al. 2018; Rodriguez-Cardona et al. 2020). A review by
Caon et al. (2014) noted that ammonification and nitrifica-
tion processes were strongly correlated with increased soil
temperatures, water content, and pH.

Nutrient availability

Significantly increased nutrient availability following forest
fires is associated with ash deposition and organic matter
combustion. Decomposition of organic matter changes the
availability and distribution of nutrients contained in the
ash deposits (Alcafiiz et al. 2018). Most notably, concentra-
tions of exchangeable cations (Ca>*, Mg?*, K*, and Na™),
phosphorus, and mineralized nitrogen (NH,* and NO5")
increase with increasing fire intensity (Franco et al. 2019;
Verma et al. 2019; Chungu et al. 2020) (Table 2). However,
Ca, Mg, K, and P are less volatile compared to NH4Jr and
NO;™ (James et al. 2018).

Phosphorus (P), regarded as the second most limiting
plant nutrient, is required by crops as the available form
phosphate (PO43_) (Agbeshie and Abugre 2021). During
forest fires, organic phosphorus in the organic matter min-
eralizes to form available orthophosphate (PO,*") for plant
absorption (Zhang and Biswas 2017). Under a P. pinaster
forest in Spain, Fernandez-Garcia et al. (2019a, b) found
higher available P in the topsoil of a burnt plot compared
to an unburnt plot after a high-intensity wildfire. Similarly,
Moya et al. (2019) observed a significantly higher available
P in the A horizon (10 cm) of a burnt P. halepensis forest as
compared to the control plot. In grasslands, Liu et al. (2018)
reported elevated available P concentrations in the upper
10 cm soil layer following a low-intensity wildfire. Fol-
lowing a prescribed fire, Goberna et al. (2012) and Alcafiiz
et al. (2016) reported significantly higher available P in the
A horizon (upper 10 cm) in shrubland vegetation and in a P.
halepensis forest. Caon et al. (2014), Alcaiiiz et al. (2016)
and Zhang and Biswas (2017) showed that the increase in
available P in the A horizon was due to the transformation
of organic P to available P through mineralization, the addi-
tion of ash onto the soil surface, lower P losses due to higher
vaporization, and the formation of apatite (insoluble P) in
the presence of calcareous substances.

Exchangeable cations such as Ca’*, Mg?*, K*, and Na™
have been reported in numerous studies to increase after
forest fires (Shrestha and Chen 2010; Elliott et al. 2013;
Rahimi et al. 2020; Alexakis et al. 2021). In the A horizon
of a boreal stand, Maynard et al. (2014) found significantly
high levels of Ca?*, Mg?*, K* in burnt plots compared to
unburnt plots. In a pine forest, Alcaiiiz et al. (2016) reported

@ Springer

an increased exchangeable cation immediately after a low
intensity prescribed fire. Dzwonko et al. (2015) also reported
significantly higher exchangeable cations in burnt plots over
controls in a Scots pine forest when a high severity wild-
fire occurred. Under a low intensity prescribed fire in a Q.
frainetto forest, Akburak et al. (2018) also found signifi-
cantly high Ca®* and Mg®* levels in the A horizon (upper
5 cm) immediately after burning. In addition, Johnson et al.
(2014) reported an elevated and consistent Ca”* content two
years post-fire. However, other researchers have reported no
change or a decline in exchangeable cations after fires. For
example, in grassland vegetation, Liu et al. (2018) reported
an insignificant amount of K* between pre-and post-wild-
fire- affected soils. Similarly, Johnson et al. (2014) found
insignificant Mg?* and K™ levels in pre-and post-wildfire in
a mixed conifer forest. An increase in exchangeable cations
is associated with the combustion of organic materials which
releases ions into the soil matrix in the form of ash (Switzer
et al. 2012; Lucas-Borja et al. 2021). In addition, exchange-
able cations exhibit high vaporization thresholds, and thus
are highly resistant to volatilization losses (Zhang and Bis-
was 2017). However, increased exchangeable cation concen-
trations in soils after fire may be short-lived and may soon
return to their pre-fire levels (Granged et al. 2011; Maynard
et al. 2014; James et al. 2018). Due to their high vaporization
thresholds, losses of exchangeable cations may arise from
erosion of ash and leaching of cations, coupled with plant
uptake during post-fire succession (Caon et al. 2014).

Physical attributes

Soil physical properties, to a large extent, affect plant devel-
opment as do soil chemical attributes. Several researchers
have reported the impact of forest fires on soil physical prop-
erties (Table 3), with an emphasis on texture, bulk density,
porosity, aggregate stability, and water content and repel-
lency (Albalasmeh et al. 2013; Thomaz and Fachin 2014,
Alcaiiiz et al. 2018; Dove et al. 2020; Busse et al. 2021).

Soil texture

Soil texture, which indicates the particle-size distribution
in the soil, is the relative proportion of inorganic elements
< 2 mm of mineral soil. The texture is not easily affected
by forest fires since sand, silt, and clay exhibit high tem-
perature thresholds (Alcaiiiz et al. 2016). The temperature
threshold for clay (400-800 °C) is lower than for sand
and silt (1414 °C) (Neary et al. 2005). Hence, clay par-
ticles are more affected with regards to texture. In a pine
forest on a sandy clay loam, Inbar et al. (2014) recorded
a marginal decrease in clay particles in the 2-5 cm soil
depth, with a resultant gain in silt particles after a wild-
fire. Under oak forest, Heydari et al. (2017) reported a
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decline in clay content in the A horizon following a high
severity wildfire. They further noted that the loss of clay
particles after a fire resulted in a gain of sand particles.
Likewise, Granged et al. (2011) also reported an increase
in percent sand particles relative to a decline in clay par-
ticles. Despite the reduction in clay particles in favour
of silt and sand, almost all researchers did not report a
change in soil texture (Scharenbroch et al. 2012; Heydari
et al. 2017; Moya et al. 2019). However, the increase in
sand and silt particles after a wildfire is due to the col-
lapse and subsequent destruction of clay lattice structure
(Alcaiiiz et al. 2018). Thus, the collapse of clay particles
leads to the aggregation of finer particles to form larger or
coarser sand and silt particles. Heydari et al. (2017) pre-
sented similar findings and reported that, under higher soil
temperatures, there is an irreversible deletion of hydroxyl
ions (OH™) and destruction of crystalline clay structure,
leading to cementation and aggregation of clay particles
to the size of sand.

Soil bulk density

Forest fires negatively impact soil bulk density (Granged
et al. 2011; Jordan et al. 2011; Heydari et al. 2017), with
its resultant effect on soil porosity. However, there are con-
trasting results in the literature, with some studies reporting
lower soil bulk density after fire (Chief et al. 2012; Down-
ing et al. 2017), while others found no significant effect
on bulk density (Goberna et al. 2012; Meria-Castro et al.
2015). Heydari et al. (2017) reported increased soil bulk
density following a wildfire in an oak forest in Ilam, Iran.
Similarly, Granged et al. (2011) and Jordan et al. (2011)
found significantly higher soil bulk densities in burnt soil
following prescribed and wildfire in Australia and Mexico,
respectively. Similarly, Verma et al. (2019) observed higher
soil bulk densities in tropical dry deciduous forests of the
Western Ghats, India, following the incidence of 12-year
wildfires. The increase in soil bulk density after fire is a
result of the collapse of soil aggregation and the destruc-
tion of soil organic matter (Alcaifiiz et al. 2018). Heydari
et al. (2017) also reported similar findings and concluded
that the destruction of structure and pores, coupled with the
decline in organic matter increased soil bulk density. Verma
et al. (2019) also observed that the destruction of soil aggre-
gation and organic matter decline, as well as the clogging
of pore spaces by ash and dispersed clay particles during
forest fires leads to increased soil bulk density. Soil bulk
density is inversely proportional to soil porosity, thus an
increase in bulk density results in decreased porosity, with
further ramifications on hydrological properties (Wieting
et al. 2017; Lucas-Borja et al. 2020). In contrast, Chief et al.
(2012) reported lower soil bulk densities under shrubland

vegetation in Nevada, USA after a prescribed fire. Similarly,
in an alpine moorland, Downing et al. (2017) reported a
lower soil bulk density after a high-intensity wildfire on
Mount Kenya in Kenya. They found that lower bulk den-
sity was due to the addition of partially decomposed organic
matter, coupled with soil vapour expansion. Consequently,
further research on the effect of forest fires on soil bulk den-
sity are required to clarify fully the mechanisms underlining
the impact of fire on bulk density.

Soil aggregate stability

Soil temperatures between 30 and 60 °C have a positive
effect on soil aggregate stability by the thermal transforma-
tion of sesquioxides which help to bind clay particles to form
strong silt particles. Also, organic matter in the soil has simi-
lar functions by acting as a cementing agent with soil par-
ticles. However, the increase in soil temperatures from 200
to 460 °C results in charring or the complete oxidation of
organic matter (Badia et al. 2014). This leads to the destruc-
tion of soil structure via disaggregation and breakdown of
soil macropores (Alcaiiiz et al. 2018). However, there have
been inconsistencies in the literature on the impact of fire on
soil aggregate stability. In their study on mixed fire intensi-
ties in a fir forest, Jordan et al. (2011) found no significant
change in soil aggregate stability when low severity wildfire
occurred. Likewise, Scharenbroch et al. (2012) noted that a
low-intensity fire (120-230 °C) did not alter soil aggregate
stability of an oak forest in Illinois, USA. In other studies,
Jordan et al. (2011) observed increased aggregate stability
in burnt soils following a low severity wildfire in a fir forest.
Similarly, Granged et al. (2011) also observed significantly
high aggregate stability in burnt soils in a Mediterranean
heathland. An increase in aggregate stability has been linked
to the development of an organo-mineral complex arising
from the combination of organic matter and soil minerals
to form a hydrophobic layer on the aggregates (Varela et al.
2010; Alcaiiz et al. 2018). This increase in soil aggregate
stability highlights the importance of organic matter as a
cementing agent. In contrast, Varela et al. (2015) reported
that medium-severity wildfires in a maritime pine forest
reduced aggregate stability on a Leptic Regosol soil in
Galicia, northwest Spain. In a high-severity fire, Jordan
et al. (2011) noted decreased aggregate stability of soil in
a fir forest. In addition, Urbanek (2013) reported a similar
decline in soil aggregate stability following fire. Mataix-
Solera et al. (2011) noted that the decrease in soil aggregate
stability was associated with burn severity, soil type, and the
type and amount of the cementing agent. However, reduced
aggregate stability is more associated with the breakdown or
destruction of organic matter as the cementing agent. Thus,
further research on soil aggregate stability following fire is
required to broaden our knowledge of soil aggregate stability
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as impacted by burn severity, soil type, or the cementing
agent involved.

Soil water repellency

Soil water repellency (SWR) is an important soil physi-
cal property and is affected by fire (Bodi et al. 2012;
Robichaud et al. 2016). SWR reduces water infiltration,
and increases runoff, with associated enhanced soil erosion
(Weninger et al. 2019). Soil water repellency can be cre-
ated, increased, or decreased by forest fires (Scharenbroch
et al. 2012; Pereira et al. 2013; Varela et al. 2015; Hosseini
et al. 2017). Studies by Weninger et al. (2019) in a Mediter-
ranean karst forest in Croatia showed that soil water repel-
lency increased after wildfire. In a prescribed fire (142 °C)
in Australia, Granged et al. (2011) noted an increase in soil
water repellency in a Eucalyptus forest soil. However, Varela
et al. (2015) reported a decrease in soil water repellency fol-
lowing a moderate-intensity wildfire in a P. pinaster forest
in Galicia, northwest Spain. Similarly, Inbar et al. (2014)
reported a decrease in soil water repellence in burnt soils
with a water-drop penetration time <5 s when a low-mod-
erate severity wildfire occurred in P. halepensis and P. bru-
tia forest soils. Increase in soil water repellency is due to
the hydrophobic layer formed on mineral particles during
organic matter combustion (Mataix-Solera et al. 2011). Dur-
ing the fire, hydrophobic compounds move downwards in
the soil and condense on cooler particles, forming a hydro-
phobic coat. However, Zavala et al. (2010) noted that water
repellency generally increased as soil temperatures approach
200 °C and was destroyed at temperatures above 300 °C. In
contrast, lower soil water repellence on surface soils results
from: (1) the soil texture—water repellency decreases more
in fine-textured soils than coarse-textured ones (Mataix-Sol-
eraet al. 2011; Inbar et al. 2014); (2) organic matter coupled
with moisture content—low organic matter and high water
content increases soil water repellency after fires (Gonzalez-
Pelayo et al. 2015; Mao et al. 2019); (3) depth of soil pro-
file—deeper profiles show increased water repellency due to
the condensation of hydrophobic organic coating on cooler
mineral particles (Rodriguez-Alleres et al. 2012; Varela et al.
2015); and, (4) surface temperatures—high surface tempera-
tures during burning completely break down soil hydropho-
bicity (Badia et al. 2014; Plaza-Alvarez et al. 2018). Infil-
tration and erosion processes are closely connected to soil
water repellency, such that water repellence increases over-
land flow with a decrease in water infiltrability. Similarly,
Hosseini et al. (2017) observed that increased runoff and
sediment loss were associated with increased water repel-
lency in a P. pinaster forest in north-central Portugal follow-
ing a wildfire. Inbar et al. (2014) also reported increased soil
loss on burnt plots under P. halepensis and P. brutia after
wildfire. They concluded that the low to moderate wildfire
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resulted in a breakdown in soil aggregates and increased
water repellency, which gave rise to increased runoff.

Biological properties

The heating of soils from wildfires or prescribed burns
causes fluctuations in soil biological properties (micro-
organisms, biota activities and communities, soil inver-
tebrates). Fire affects biological properties by directly
killing or denaturing soil biota through combustion or
indirectly by post-fire plant recovery or changes in soil
organic matter (Knelman et al. 2015; Jonathan et al. 2016;
Ibafiez et al. 2021). In their review of prescribed burning
on soil attributes, Alcaiiiz et al. (2018) noted that the tem-
perature needed to kill most soil biological matter ranges
from 50 to 120 °C. Santin and Doerr (2016) also noted that
temperatures from 50—150 °C result in the killing of fine
roots, bacteria, fungi, and seeds within the soil. Several
researchers have documented the impact of forest fires on
soil biological properties (Table 4).

For example, on a Haplic Umbrisol under P. pinaster in
Spain, Ferndndez-Garcia et al. (2019a, b) reported that the
highest microbial biomass carbon (MBC) was in unburnt
soil relative to a burnt soil following a wildfire. Akburak
et al. (2018) studied the effects of low-intensity prescribed
fire on soil microbes under Q. frainetto forest and recorded
a decline in MBC in burnt soils compared to unburnt soils.
Similarly, Knelman et al. (2015) and Moya et al. (2019)
observed decreased MBC in burnt soils after high severity
wildfires in P. ponderosa (USA) and P. halepensis forests
(Spain), respectively. The reduction in MBC could be due
to the loss of microbial biomass by fire, a reduction in
nutrient availability, and the release of compounds limit-
ing fungal growth (Akburak et al. 2018; Ferndndez-Garcia
et al. 2019a, b). However, some researchers reported an
increase in microbial biomass in burnt soils following fire
which may be due to the addition of mineral ash and the
abundance of labile C (Goberna et al. 2012; Fultz et al.
2016).

In the Anatolia region of Turkey, Erkovan et al. (2016)
recorded changes in the microbial community after for-
est fires. According to the researchers, fire resulted in a
shift in the microbial community from fungal dominant
one towards a bacterial community. This was also noted
by Fultz et al. (2016) who reported a shift in microbial
community from fungi to bacterial- dominated in a burnt
grassland soil in Texas, USA. This was similar to the find-
ings of Switzer et al. (2012) and Oliver et al. (2015) who
observed modifications of microbial communities from
fungal to bacterial-dominated ones. The shifts in microbial
communities could be due to increased pH and the avail-
ability of nutrients (base cations) following fire (Mikita-
Barbato et al. 2015; Pressler et al. 2019; Wang et al. 2020).
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In addition to microbial community modifications, fire
impacts enzymatic activities in burnt soils. For example,
Knelman et al. (2015), Fultz et al. (2016), and Moya et al.
(2019) reported decreased B-glucosidase activity in burnt
forest soils and associated the decline to the incidence of
fire and the abundance of nutrients from ash depositions.
Fernandez-Garcia et al. (2019a, b) and Moya et al. (2019)
observed decreased acid phosphatase after forest fires, and
this could be due to damage or a decline in microbial bio-
mass activity. Decreased acid phosphatase could also be
due to higher available phosphorous added to the soil fol-
lowing fire which would diminish acid phosphatase activ-
ity (Xue et al. 2014).

Conclusion

The impact of forest fires on soil properties is largely
dependent on burn severity, consisting of fire intensity and
duration. Wildfires and prescribed fires affect biological,
chemical, and physical properties. Fire leads to complete
or partial burning of organic matter and ash deposition
on the soil surface. Thus, the mixing of ash and partially
burnt organic materials into the soil significantly alters soil
chemistry. However, the impacts of fire on soil chemical
properties are highly variable and suggest that low-inten-
sity fires result in little change or an increase in available
nutrients (K*, Ca**, Mg?**, PO,*~, NH,") and pH due to
ash deposition. High-intensity fires decrease soil organic
matter and total N due to combustion and volatilization
losses. It is, therefore, imperative to stabilize burnt sites
to increase nutrient content from ash deposition and min-
eralization, and to a larger extent, prevent high-intensity
forest fires and volatilization losses. It has been noted in
this review that soil physical and biological properties are
generally negatively affected by forest fires. Water- repel-
lent soils created or increased after fire reduce water infil-
trability, leading to excess runoff with associated increased
risk of erosion. Soil micro-biota are highly sensitive to
environmental changes and are completely killed at soil
temperatures above 120 °C. Current global warming,
higher temperatures, and extreme droughts will signifi-
cantly increase the risk of forest fires. Consequently, the
use of low-intensity fires (prescribed burning) as a man-
agement tool to reduce the fuel load in forested areas is
highly recommended to reduce the incidence of wildfires.
Likewise, comprehensive soil and forest management is
needed to restore fire-disturbed soil ecosystems. It is also
critical to conduct further research in tropical climates
to better understand the dynamics of forest fires on soil
properties in different ecosystems.
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