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of each to explaining tree growth rates. They were prevented 
from doing so both by collinearity between the terms used to 
describe each of the effects and technical problems involved 
in the use of nonlinear least-squares regression to fit the 
models to any one data set. It is concluded that quite new 
approaches need to be devised if the effects on tree growth 
of tree size and competitive processes are to be quantified 
and modelled successfully.

Keywords Symmetric competition · Asymmetric 
competition · Tree growth rate · Growth modeling · 
Nonlinear modeling

Introduction

Given a forest growing on a particular site, with particular 
climatic characteristics and soil fertility, the growth rate at 
any time of a tree will depend, firstly, on its size (Pretzsch 
et al. 2012; Cordonnier et al. 2019; Ogawa 2019; Pretzsch 
2021) and, in particular, the amount of living tissues that 
it has accumulated to undertake metabolic processes. This 
growth rate will decline as the tree grows larger, possibly as a 
result of greater respiratory demands to maintain and renew 
its live tissues (West 2020). Some systems relating tree 
growth rates to tree size have functional forms that assumes 
this decline occurs (e.g. Papaik and Canham 2006; Yang 
et al. 2009; Acquah and Marshall 2020). A second determi-
nant of the growth of a tree will be its genetic makeup and 
concomitant physiological capabilities (von Wuehlisch et al. 
1990); these effects will be more pronounced between trees 
of different species (e.g. Bosela et al. 2019; Fien et al. 2019; 
Orman et al. 2021).

A third factor then affecting growth rates will be the 
amounts of light, water and nutrients each tree can obtain 
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from the site for its metabolic purposes. Where trees are 
growing in close proximity to one another, the regions 
around each from which they might gather those resources 
may overlap. The ability of a tree to then compete with its 
neighbors for access to those resources will determine how 
well it can grow subsequently.

Considerable study has been made of how competitive 
processes between plants operate. There are many reviews 
of this work (Berger et al. 2008; Pretzsch et al. 2012; Craine 
and Dybzinski 2013; Cordonnier and Kunstler 2015; 
Fernández-Tschieder and Binkley 2018; Pommerening and 
Meador 2018; Forrester 2019; Pommerening and Grabarnik 
2019). Rasmussen and Weiner (2017, Table 1) have offered 
the most recent definitions of the two forms of competitive 
processes that are believed to operate within a plant stand, 
‘symmetric’ and ‘asymmetric’ competition. Symmetric 
competition varies from ‘absolute symmetry’, where all 
plants take up the same amount of resources and each grows 
at the same rate irrespective of its size, to ‘relative size sym-
metry’, where plants take up resources and grow at rates 
directly proportional to their sizes. Asymmetric competition 
varies from ‘partial size asymmetry’, where resource uptake 
and growth proceed at rates disproportionately large with 
respect to tree size to ‘absolute size asymmetry’, where the 
largest plants take up all the resources and they are the only 
ones that grow.

Competition for water and nutrients below ground is most 
commonly symmetric, because individuals are able to take 
up amounts of those in proportion to the size and spread 
of their root systems; occasionally asymmetric competi-
tion below ground has been observed (Hodge 2006; Schenk 
2006; Lei et al. 2012; Brown et al. 2019; Rasmussen et al. 
2019). Above ground, competition is principally asymmet-
ric for light when taller (larger) trees may shade smaller, 
but the reverse cannot occur; canopy abrasion of smaller 

tree crowns by larger tree crowns has also been observed 
as an asymmetric competitive effect (Hajek et al. 2015). 
A model system of forest growth (Binkley 2004; Binkley 
et al. 2006; Fernández-Tschieder and Binkley 2018; For-
rester 2019; Fernández-Tschieder et al. 2020) describes how 
competitive processes develop over time as a forest grows. 
At the earliest stages of growth, individual seedlings have 
canopies and root systems that are too small to interact with 
those of their neighbours. As they grow, root systems start 
to overlap and symmetric competition below ground starts. 
Later, some trees become tall enough to shade others and 
asymmetric competition above ground for light starts. At the 
oldest stage, smaller trees will have died and only the larg-
est trees remain; these then continue to compete with each 
other symmetrically below ground. However, in general, at 
any stage of development of a forest, ‘the overall expression 
of competition is a mixture of asymmetric and symmetric’ 
(Wichmann 2001).

It seems clear also that the level of symmetric and asym-
metric competitive processes operating at any time in a stand 
may vary, depending on the availability of resources at that 
time. When environmental circumstances are less favour-
able, such as when rainfall is low, on less fertile sites or 
where light availability is low, symmetric competition for 
below ground resources tends to be relatively more influ-
ential in determining growth than asymmetric competition 
above-ground for light (Wichmann 2001; Copenhaver-Parry 
and Cannon 2016; Pretzsch and Biber 2010; Pretzsch et al. 
2012; Calama et al. 2019; Marqués et al. 2021).

These growth behaviour and competitive processes seem 
to operate clearly in even-aged, monoculture forest growing 
on a particular site. However, in the more complex, uneven-
aged, mixed species forests, the differences between spe-
cies of their physiological and morphological characteristics, 
such as shade tolerance or root or crown development, affect 

Table 1  Symbols used here and their meanings

Symbol How computed Units Meaning

n Number of individual trees in a plot
Bi m2 Basal area of the ith tree in plot at the start of the growth period concerned
dBi/dt m2  a−1 Basal area growth rate of the ith tree in plot over the growth period
B̄ (Σi=1…n Bi

2/3)/n m2/3 Average of tree basal areas raised to the power 2/3
BT Σi=1…n Bi m2 Total basal area of trees in plot
BLi Σj=1…n Bj for Bj ≥ Bi m2 Total basal area of trees in plot with basal areas equal to, or greater than, that of the 

ith tree
BOi Σj=1…n, j≠i Bj m2 Total basal area of trees in plot excluding that of the ith tree
K π/40,000 m2  cm−2 Factor to convert tree diameter at breast height (cm) to tree basal area  (m2)
σi

2 m4  a−2 Estimate of residual variance for a tree of size Bi from fitting Eqs. 2, 7 or 12 
(Table 2) with unweighted least-squares linear regression

a, b, ρ, ψ, p, q, λ1, λ2, λ3, 
λ4, m, α, αI, α0, α1, α2, 
α3, α4

Model parameters
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how, when and how effectively trees may compete with each 
other (Papaik and Canham 2006; Pretzsch and Biber 2010; 
Pretzsch et al. 2012, 2018; Craine and Dybzinski 2013; Cor-
donnier and Kunstler, 2015; Guo et al. 2017; Cordonnier 
et al. 2018; Pommerening and Meador 2018; Brown et al. 
2019; Acquah and Marshall 2020; Wu et al. 2020; Orman 
et al. 2021).

Over many years and for many forest types around the 
globe, growth models have been developed to predict indi-
vidual tree growth rates in relation to tree size and the com-
petitive pressures to which they are subject. The major texts 
of Weiskittel et al. (2011, Chaps. 2, 5) and Burkhart and 
Tomé (2012, Chaps. 9, 14) offer substantial reviews of this 
work. Often, these models predict growth with sufficient pre-
cision of estimates for the purposes of practical forest man-
agement. However, they do not generally have a form that 
attempts to discriminate clearly between the effect on the 
growth rate of a tree of its size and of the level of each of the 
symmetric and asymmetric competitive processes to which 
it is being subjected. If they did so, they might give useful 
information about how each of those processes affect growth 
and lead ultimately to even better tree growth models.

However, there are a few individual tree growth model 
systems that have incorporated terms aimed at describing 
each of tree size and competitive effects separately. The pre-
sent work examines three such model systems to assess how 
successfully this has been done. These three have been cited 
frequently in other works, either to justify theories relating 
to growth behavior of trees in forests or to inform studies 
of competitive interactions. All three are applied here to 
growth of individual trees in each of a set of plots in even-
aged, monoculture forest of blackbutt (Eucalyptus pilularis 
Smith) growing in sub-tropical eastern Australia. Attention 
is given to difficulties that may be encountered in fitting the 
models, to determine if they fit the data well and if they offer 
opportunity to quantify the extent to which tree size and 
competitive processes separately influence tree growth rates.

Materials and methods

Models

The first of the three model systems considered specifically 
here (with several references to it given in parentheses) was 
that of Aikman and Watkinson (1980) (referred to later as 
A-W) (West and Borough 1983; Perry 1985; Yokozawa and 
Hara 1992; Ishihara et al. 2016; Rasmussen and Weiner 
2017; Mrad et al. 2020). The second was that of Coomes 
and Allen (2007) (C-A) (Takahashi 2010; Cordonnier and 
Kunstler 2015; Copenhaver-Parry and Cannon 2016; Looney 
et al. 2018; Guo et al. 2017; Calama et al. 2019; Nong et al. 
2019; Ogawa 2019; West and Smith 2019; Marqués et al. 

2021; Orman et al. 2021). The third was that of Cordonnier 
and Kunstler (2015) (C-K) (Glencross et al. 2016; Pomme-
rening et al. 2016; Cordonnier et al. 2018, 2019; Fernández-
Tschieder and Binkley 2018; Looney et al. 2018; West and 
Smith 2019; Zhang et al. 2020).

As is common in individual tree growth models, these 
models were designed to relate individual tree growth rates, 
over periods of perhaps 1 − 5 years, to tree size at the start of 
the growth period, to variables termed ‘competition indices’ 
that aim to describe the competitive processes that affect 
growth of each tree and perhaps also to environmental condi-
tions of the site on which each tree is growing. Competition 
indices may be ‘distance-dependent’, that is their formula-
tion depends on the size characteristics of a tree and the sizes 
of and distances to its neighbours, or ‘distance-independent’ 
where the distances to its neighbours have not been meas-
ured. Further, their formulation may involve only neighbours 
that are larger than a subject tree, when it is then assumed 
they reflect the level of asymmetric competitive pressure 
to which the tree is being subjected. Otherwise, they may 
involve trees of all sizes, then reflecting symmetric competi-
tive processes. Various competition indices that have been 
used are described in detail by Weiskittel et al. (2011, Chap. 
2) and Burkhart and Tomé (2012, Chap. 9). All three of 
the model systems considered here are unusual in that they 
include two competition indices, one to describe symmetric 
competitive processes and the other to described asymmet-
ric; the indices used are distance-independent in all three.

In its original formulation, the A-W model system used 
plant biomass to represent plant size and to describe growth 
rates, whilst the C-A and C-K model systems both used stem 
diameter at breast height (1.3 m). To bring commonality to 
the present comparisons, stem basal area (stem cross sec-
tional area at breast height) was used as the measure of tree 
size and its change over a few years was used to describe 
tree growth. For the A-W system, this invoked the common 
assumption that tree biomass is related closely to stem basal 
area (West 2015, Chap. 7). For both the C-A and C-K sys-
tems, it was straightforward to convert their formulations to 
replace stem diameter with stem basal area. The symbols 
used in the present work and definitions of terms are given in 
Table 1. The three model systems, as formulated originally 
and after conversion here to tree basal area, are shown as 
Eqs. 1, 6 and 11, respectively, in Table 2.

The A-W model system was designed to predict indi-
vidual plant growth at a single site. It was tested by Aik-
man and Watkinson themselves and by Mrad et al. (2020) 
in simulation studies, where the authors chose the tree cir-
cumstances and the model parameter values, rather than 
applying it to an observed data set. The C-A and C-K model 
systems were designed originally to use data that included 
individual tree growth rates from many stands spread over a 
large forest area, where environmental circumstances might 
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differ appreciably from stand to stand. The C-A system was 
applied to data collected from 9,000 ha of mountain beech 
(Fuscospora cliffortioides (Hook.f.) Heenan & Smissen, also 
known as Nothofagus solandri var. cliffortioides (Hook.f.) 
Poole) forests of New Zealand, whilst the C-K model system 
was applied to data from European beech (Fagus sylvatica 
L.) and silver fir (Abies alba Mill.) collected from sites scat-
tered over the forested areas of France.

All three model systems used terms to represent symmet-
ric competition that involved, essentially, the basal areas of 
the trees in each plot in the data set (the terms B ̄, BT and BOi 
in Eqs. 1, 6 and 11, respectively). In essence, this assumed 
that symmetric competition in any one stand was absolute 
and each tree took up the same amount of the below-ground 
resources required for growth. For the present work it was 
desired to apply the model systems in individual stands 
where symmetric competition could be considered as rela-
tive, when trees would take up resources at rates directly 
proportional to their sizes. Thus, the terms B̄, BT and BOi 
were simply replaced with tree size (Bi) in the three mod-
els, leaving Eqs. 5, 10 and 15 as equivalent models with 
application to data from individual stands, rather than data 

pooled over many stands. All three models then included 
other terms that aimed to describe asymmetric competitive 
processes by taking values that were assuming that larger 
trees could access resources required for growth that were 
disproportionately large relative to their sizes; these were 
the terms (B ̄/Bi

2/3), exp(λ3BLi) and (Bi)1/2BLi in Eqs. 5, 10 
and 15, respectively.

The set of models then considered here are shown in 
detail in Table 2. Equations 2, 7 and 12 include only the 
terms that the model authors had intended would reflect the 
relationship between growth rate and tree size. Equations 3, 
8 and 13 are the same models, but with the terms added that 
aimed to describe symmetric competition. Equations 4, 9 
and 14 have the terms added that aimed to describe asym-
metric competition. Equations 5, 10 and 15 have both terms 
added to describe both forms of competitive processes.

Data

An example data set was used here that came from eight 
sets of measurements of seven plots in even-aged, mono-
culture forest of E. pilularis growing in sub-tropical eastern 

Table 2  Various model forms used here as derived from the model systems of Aikman and Watkinson (A-W), Coomes and Allen (C-A) and 
Cordonnier and Kunstler (C-K). Note that ln(.) denotes natural logarithms

1 Model as given in original publication expressed in terms of tree basal area growth rate and tree basal area; 2 Part of model relating tree growth 
rate to tree size at the start of a growth period; 3 Model with term added describing symmetric competitive processes; 4 Model with term added 
describing asymmetric competitive processes; 5 Full model with terms added describing both symmetric and asymmetric competitive processes

Models Model Eq. no.

A-W model system
dB

i
∕dt = aB

2∕3

i
∕
[

1 +
(

nB

)�(

B∕B
2∕3

i

)�]

−bB2
i

11

dB
i
∕dt = (a∕2)B

2∕3

i
−bB2

i

22

dB
i
∕dt = aB

2∕3

i
∕
[

1 + B
�

i

]

−bB2
i

33

dB
i
∕dt = aB

2∕3

i
∕
[

1 +
(

B∕B
2∕3

i

)�]

−bB2
i

44

dB
i
∕dt = aB

2∕3

i
∕
[

1 + B
�

i

(

B∕B
2∕3

i

)�]

−bB2
i

55

C-A model system dB
i
∕dt = 2k�1

(

B
i
∕k
)�∕2

∕
{[

1 + �4BT

][

1 +
(

�1∕�2
)

exp
(

�3BLi

)]} 61

dB
i
∕dt = �1

(

B
i
∕k
)2 72

dB
i
∕dt = �1

(

B
i
∕k
)(�+1)∕2

∕
[

1 + �4Bi

] 83

dB
i
∕dt = �1

(

B
i
∕k
)(�+1)∕2

∕
{[

1 + �2exp
(

�3BLi

)]} 94

dB
i
∕dt = �1

(

B
i
∕k
)(�+1)∕2

∕
{[

1 + �4Bi

][

1 + �2exp
(

�3BLi

)]} 105

C-K model system dB
i
∕dt = �0B

1∕2

i
+ �1B

1∕2

i
ln
[

(

B
i
∕k
)1∕2

]

+ �2B
(m+1)∕2

i
+ �3B

1∕2

i
B
Oi

+ �4B
1∕2

i
B
Li

111

dB
i
∕dt = �I + �0B

1∕2

i
+ �1B

1∕2

i
ln
[

(

B
i
∕k
)1∕2

]

122

dB
i
∕dt = �I + �0B

1∕2

i
+ �1B

1∕2

i
ln
[

(

B
i
∕k
)1∕2

]

+ �2B
3∕2

i

133

dB
i
∕dt = �I + �0B

1∕2

i
+ �1B

1∕2

i
ln
[

(

B
i
∕k
)1∕2

]

+ �4B
1∕2

i
B
Li

144

dB
i
∕dt = �I + �0B

1∕2

i
+ �1B

1∕2

i
ln
[

(

B
i
∕k
)1∕2

]

+ �2B
3∕2

i
+ �4B

1∕2

i
B
Li

155



569Problems with models assessing influences of tree size and inter‑tree competitive processes…

1 3

Australia. This is a species of commercial interest in the 
region and grows in both native forests and plantations. Data 
for six plots came from a collation of eucalypt forest data 
(Mattay and West 1994) and two from a plantation experi-
ment (West and Smith 2019). Table 3 summarises the data 
used. Plot areas varied over the range 0.05 − 0.2 ha. They 
were selected to have a wide range of ages and densities 

(degree of crowding of trees) so that different levels of tree 
growth and competitive interactions might be included. 
Before the measurement periods used, three of the older 
plots had been thinned from below by removal of about one 
half of their stand basal area; it is to be expected that inter-
tree competitive interactions will be much reduced for some 
years following thinning.

Table 3  Condition, before and after a growth period, of the eight measurements from seven example blackbutt plots used here

* Plots 1 and 18 were from a plantation experiment. Others were from regrowth native forest

Plot
No.*

At start of growth period At end of growth period Age when 
last thinned
(a)Age

(a)
Stocking 
density
(stems  ha−1)

Stand 
basal area
(m2  ha−1)

Tree average 
diameter
(cm)

Age
(a)

Stocking 
density
(stems  ha−1)

Stand 
basal area
(m2  ha−1)

Tree average 
diameter
(cm)

1 2.5 822 4.4 8 3.5 822 8.9 11.3 Unthinned
18 5.7 1196 27.7 16.8 6.6 1137 32.2 18.6 Unthinned
1018 12 1988 21.2 11 13 1963 25.5 12.1 Unthinned
1002 13 366 10.6 18.9 14 366 11.9 20.1 13
1009 28 1321 52.7 20.4 32 1210 58.6 22.3 Unthinned
1008 24 124 10.5 32.7 26 124 12.1 35 22
1018 32 1691 56.7 18.7 37 1395 58.5 20.9 Unthinned
1021 37 136 16.3 38.9 39 136 16.9 39.6 22

Fig. 1  Scatter plots of individ-
ual tree basal area growth rates 
against tree basal areas at the 
start of the growth period, for 
four of the example plots used 
here. Plots 1 a and 1009 b were 
unthinned, whilst plots 1002 c 
and 1008 d had been thinned. 
Additional plot details are given 
in Table 3
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Figure 1 illustrates the variation in growth rate behaviour 
that occurred across the example plots. Note that the scale on 
the growth rate axis is the same in each case, illustrating that 
similar growth rates can occur right across the range of plot 
circumstances. However, the scale on the tree basal area axis 
differs widely between the plots, with trees not having grown 
nearly as large in the younger plots (1 and 1002) than in the 
older (1008 and 1009). The patterns of growth apparent in 
Fig. 1 are common in even-aged, monoculture forests; there 
are many examples of similar growth data from many differ-
ent forest types around the world (e.g. West 1981a, b, 2018; 
West and Borough 1983; Perry 1985; Wichmann 2001; Pérot 
et al. 2010; Takahashi 2010; Pretzsch et al. 2012; Ishihara 
et al. 2016; Glencross et al. 2016; West et al. 2016; West 
and Smith 2019).

Subsequently, data from plot 1009 (Fig. 1b) are used to 
illustrate in detail how analyses were carried out with the 
data of all the plots. This plot was 0.081 ha in area and 
unthinned. It contained 107 trees when measured at 28 years 
of age. Over a subsequent five-year growth period, nine trees 
died. Its pattern of growth in Fig. 1(b) shows larger trees 
tending to grow faster than smaller, as is the usual effect of 
tree size on growth rate. As well, the presence of a group of 
smaller individuals, showing little or no growth, is consistent 
with the occurrence of asymmetric competitive processes, 
where larger trees were shading smaller and suppressing 
their growth. Of course, symmetric competitive processes 
may have been occurring at the same time to reduce growth 
rates of trees of all sizes from what they might have been if 
the trees were free of any competing neighbors. Note that 
some of the smaller trees in the plot had negative growth 
rates; this is often observed in forest growth data and usu-
ally arises through measurement errors of small changes or 
through stem shrinkage and swelling in response to differ-
ences in soil water availability at different times of meas-
urement (Sheil 1995; Baker et al. 2002; Chitra-Tarak et al. 
2015).

Fitting and testing the models

The data of Fig. 1 appear generally to be heteroscedastic 
in that the variation in growth rate tends to increase as tree 
basal area increases. The procedure REG of the  SAS® sta-
tistical package1 was used to determine the ordinary least-
squares regression fit to the data of each example plot for 
each of the models used here that considered tree growth 
in relation to tree size (Eqs. 2, 7 and 12). Examination of 
the residuals from these regressions suggested that their 

variance increased as stem basal area increased and, in each 
case, could be described by the model.

 where, σi
2 was the variance  (m4  a−2) of the residuals for a 

tree with stem basal area Bi  (m2) and p and q were param-
eters. For plot 1009, values of p and q, respectively, deter-
mined for Eq. 2 were −9.20 and 2.07, for Eq. 7were −9.13 
and 2.08 and, for Eq. 12 were −9.53 and 1.97. These, and 
similar functions for all the other example plots, were then 
used to provide weights for weighted least-squares regres-
sion in all subsequent regression analyses described below; 
the SAS procedure REG allows weighted least-squares 
regression to be done for linear models.

For all three model systems, the data of each example 
plot were used to apply weighted least-squares regression to 
the four versions of each model system as listed in Table 2, 
with and without the terms being used to describe competi-
tive processes (Eqs. 2−5, 7−10, 12−15). In the cases of 
the A-W and C-A model systems with competitive process 
terms included, the models were nonlinear in their param-
eters and the weighted least-squares regressions were done 
using the NLIN procedure of the SAS package. This proce-
dure offers four methods as options to solve the nonlinear 
least-squares problem, being the steepest-descent (gradient), 
Newton, modified Gauss–Newton or Marquardt methods. 
Trials suggested that occasionally one or other method led to 
a failure of the algorithm used to reach convergence. How-
ever, the Marquardt algorithm seemed to be consistently the 
most reliable and results reported here are for that method. 
All models of the C-K system fitted here (Eqs. 12 −15) were 
linear in their parameters, so the REG procedure of SAS was 
used for those.

In the cases of the nonlinear versions of A-W and C-A 
model systems (Eqs. 3−5, 8−10), it is important to appreci-
ate that, unlike linear regression, the methods used to solve 
nonlinear regression models do not provide unbiased esti-
mators of either the parameters or the fitted values from 
the regression. This is recognized in what is termed ‘intrin-
sic’ and ‘parameter effects’ nonlinearity (Ratkowsky 1983, 
1990). The former may lead to bias in estimates of the fitted 
values from the regression and their confidence limits (Rat-
kowsky 1983, Sect. 9.2). A high level of parameter effects 
nonlinearity may lead to substantial bias in estimates of the 
parameters (Ratkowsky 1983, Sect. 9.3); this is perhaps not 
of great importance, unless the estimates of the parameter 
values are to be used to draw some biological inference 
from the data, when any bias in them may lead to mislead-
ing conclusions. There may be a solution, often difficult, 
to the problems of parameter effects nonlinearity through 
re-parameterization of the model. As Ratkowsky (1983, 
Sect. 2.4) discussed, there are formal measures available that 

(16)�2
i
= exp(p)B

q

i

1 Documentation for the SAS statistical package is available at 
https:// suppo rt. sas. com/ en/ docum entat ion. html (accessed August 
2021).

https://support.sas.com/en/documentation.html
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allow assessment of the degree of both these nonlineari-
ties; the NLIN procedure of SAS determines those meas-
ures and they were considered here when nonlinear models 
were being fitted. Following Ratkowsky (1983, Sect. 2.4), 
if the measure of intrinsic or parameter effects nonlinear-
ity exceeds the value 1/(2√F), where F = F(κ, η-κ; α) is 
obtained from the F-distribution for a model fitted with κ 
parameters to a data set with η observations and with a sig-
nificance level α, the nonlinearity may be considered statis-
tically significant and, hence, the resulting biases may be 
significantly different from zero.

The objective of fitting the four versions of each model 
system was to determine the statistical significance of the 
inclusion in the model of the terms representing tree size 
and both symmetric and asymmetric competitive effects. 
The models including size effects only (Eqs. 2, 7 and 12) 
were fitted first; they are linear regressions and their good-
ness of fit was judged by their r2 values and scatter plots of 
their residuals against their fitted values. Then, in each case, 
the respective terms to describe symmetric and/or asymmet-
ric competitive processes were added to the model. Where 
nonlinear models are involved, as they were here, the most 
appropriate measure of their goodness-of-fit may be their 
root mean square error (the square root of the residual mean 
square) (e.g. Ratkowsky 2004). The statistical significance 
of the change in the root mean square error through adding 
a term to such a model (or to a linear model) may then be 
tested using the conventional ‘extra sum-of-squares’ F test. 
Many studies of the effects of competitive process on for-
est growth behavior have been based on this type of testing 
(Nystrom and Kexi 1997; Gourlet-Fleury and Houllier 2000; 
Lessard et al. 2001; Mabvurira and Miina 2002; Mailly et al. 
2003; Monty et al. 2008; Pérot et al. 2010; Pedersen et al. 
2012; Carr et al. 2020; Barros de Oliveira et al. 2021). How-
ever, of recent times it has become common to use ‘Akaike’s 
Information Criterion’ (AIC) (and allied criteria) to suggest 
which of a number of possible models is the most appropri-
ate when fitted to a particular data set; a number of studies 
of competitive processes have used this method (Miina and 
Pukkala 2002; Canham et al. 2006; Canham and Uriarte 
2006; Papaik and Canham 2006; Yang et al. 2009; Pretzsch 
2021). Some studies have used both methods (Pommerening 
and Maleki 2014; Cordonnier and Kunstler 2015; Kahri-
man et al. 2018; Acquah and Marshall 2020; Bhandari et al. 
2021) or, indeed, have used other methods altogether (Ver-
zelen et al. 2006; Kuehne et al. 2019). However, the use of 
AIC does not provide a test of the statistical significance 
between model options (Canham and Uriarte 2006; Ander-
son 2008, Chap. 3) and so it was not the method favored 
here.

Results

As indicated by the r2 values in Table 4, there was found 
to be a reasonably good fit to the data with the models that 
included only the terms that were attempting to describe tree 
size effects, averaging 76% over all models and plots. There 
was little difference between the A-W, C-A and C-K model 
systems in this respect.

Consideration was then given to the effects of adding the 
terms to the models that aimed to describe competitive pro-
cesses. Table 5 shows the residual mean square error in each 
plot for the full models that included the terms describing 
size terms and both of the competitive processes (Eqs. 5, 10 

Table 4  Values of r2 (%) for 
the fit to the data for each of the 
models used here that contained 
terms designed to describe tree 
growth rate in relation to tree 
size only (Eqs. 2, 7 and 12)

Plot no. Model system

A-W C-A C-K

1 92 78 79
18 82 79 69
1018 90 69 86
1002 95 83 84
1009 82 81 83
1008 98 91 43
1018 41 34 54
1021 91 84 64

Table 5  Residual mean square errors (all values here should be mul-
tiplied by  10−3) of the fit to the data for each of the models used here 
that contained terms designed to describe tree growth rate in relation 
to all of tree size and both symmetric and asymmetric competitive 
processes (Eqs. 5, 10 and 15)

Superscripts denote the statistical significance of reductions in the 
residual mean square error for model versions that included fewer 
terms
a,b,c  Residual mean square error was reduced significantly (p < 0.05 or 
smaller) from that of the corresponding model that included a terms 
describing tree size effects only (Eqs. 2, 7 and 12), b terms describing 
tree size effects and symmetric competitive processes (Eqs. 3, 8 and 
13) or c terms describing tree size effects and asymmetric competitive 
processes (Eqs. 4, 9 and 14). If no superscript, there was no signifi-
cant change of the residual mean square error from that of any of the 
other corresponding models

Plot no. Model system

A-W C-A C-K

1 3.46 3.46a 3.51 
18 3.74a 4.12a 3.47a 
1018 3.61 3.46a 3.58a,b 
1002 3.46a 3.32a,b 3.41 
1009 1.30a,b,c 1.27a,c 1.26a 
1008 4.00 2.97a,b 3.47a 
1018 1.55 1.37a,b,c 1.37 
1021 2.90 3.61a 3.46 
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and 15). There tended to be quite small differences between 
the residual mean square errors of these models in each plot, 
suggesting that all three fitted the data equally well. Also 
indicated are the cases where the fit to the data of these full 
models was significantly better (p < 0.05 or smaller) than 
the fit to the data when some terms were omitted from each 
model; the extra sum of squares F test was used for these 
tests. In some cases there was no significant improvement, 
although, especially in the C-A case, there often tended to be 
improvement when either or both terms describing the com-
petitive processes were added to the model which included 
tree size terms only. However, even when the improvements 
were significant, they were often quite small. For the A-W 
and C-K cases, including both competitive terms reduced 
the residual mean square error from the model with tree size 
terms only by an average of 5% over all the plots. For the 
C-A case, the corresponding reductions were more appre-
ciable, averaging 34%. Once one or other of the competi-
tive terms was included, adding the other tended to have a 
very small effect with an average reduction in residual mean 
square error over all plots of less than 1.5%.

For those models that were nonlinear in their parameters 
(Eqs. 3−5, 8−10), the values of both the intrinsic and param-
eter effects measures of nonlinearity were often many times 
in excess of 0.2−0.3, the values below which they needed to 
be for a non-significant (p = 0.05 or higher) departure from 
zero. Table 6 shows the cases where these significant depar-
tures occurred; of the 48 such models fitted, intrinsic nonlin-
earity was not significant in six cases and parameter effects 
in two cases, all eight being for the A-W system and none 
for the C-A system. The significant departures would explain 
why, as mentioned earlier, the nonlinear fitting procedures 
often had some difficulty reaching convergence. It suggests 
also that there might be substantial bias in the parameter 
values determined in these cases and/or the fitted values. 
However, the results of Fig. 2 for Plot 1009 suggest that the 
three models (Eqs. 5, 10 and 15) were reasonably unbiased 
estimators of growth rates even when potential existed for 
there to be bias in the fitted values estimates. Note also the 
quite modest scatter of the data around the 1:1 lines drawn 
there, suggesting that each model was a reasonably precise 
predictor of growth rates as suggested earlier. As shown 

Table 6  For each of the 
example plot growth periods 
(see Table 3), values are 
shown of the intrinsic and 
parameter effects nonlinearities 
determined for the three 
nonlinear models fitted for the 
A-W and C-A model systems

Plot no. Eq. no. A-W Eq. no. C-A

Intrinsic Parameter effects Intrinsic Param-
eter 
effects

1 3 0.86  > 10 8 3.41  > 10
4 0.66 3.37 9 0.55  > 10
5 6.89  > 10 10  > 10  > 10

18 3  < 0.01  > 10 8  > 10  > 10
4 0.18 0.36 9  > 10  > 10
5 1.36  > 10 10  > 10  > 10

1018 3 0.54  > 10 8 0.83  > 10
4 0.36 2.22 9  > 10  > 10
5  > 10  > 10 10  > 10  > 10

1002 3 0.36  > 10 8  > 10  > 10
4 0.23 1.01 9  > 10  > 10
5 2.11  > 10 10  > 10  > 10

1009 3  < 0.01  < 0.01 8  > 10  > 10
4  < 0.01  > 10 9  > 10  > 10
5  > 10 0.03 10  > 10  > 10

1008 3  > 10  > 10 8  > 10  > 10
4 2.67  > 10 9 0.80  > 10
5  > 10  > 10 10  > 10  > 10

1018 3  > 10  > 10 8  > 10  > 10
4 9.57  > 10 9 0.77  > 10
5  > 10  > 10 10  > 10  > 10

1021 3 0.02  > 10 8  > 10  > 10
4 0.33  > 10 9  > 10  > 10
5  > 10  > 10 10  > 10  > 10
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in the Supplementary Material, results for the other seven 
example plots were similar to these.

In least-squares regression analysis, the contribution 
of the various terms in a model to explaining the varia-
tion in the response variable (tree basal area growth rate 
in the present case) depends on the collinearity amongst 
the design (independent) variables. If one design vari-
able has been included in the fitted model, addition to 
the model of another term that is substantially correlated 
with it will add little increase to the variation explained by 
the regression. This will occur no matter in which order 
the terms are added to the model. Thus, to consider the 
inter-relationships between the various design variables 
included in the models being fitted here, Table 7 shows 
the correlations between those variables for the case of 
Plot 1009. Most correlations are very high, with the excep-
tion of the ninth term, Bi

1/2BLi. That ninth term is used to 

Fig. 2  For example plot 1009, and for each of the three model sys-
tems used here with the full models that included terms to describe 
tree growth rates in relation to tree size and both symmetric and 
asymmetric competitive processes (Eqs.  5, 10 and 15), scatter plots 

are shown of the fitted values of the model against the corresponding 
observed values. The solid lines are 1:1 lines on which all the points 
would lie if the model predicted growth exactly

Table 7  For the data of Plot 
1009, correlations between 
various design variables 
included in the 12 models being 
fitted here (Eqs. 2−5, 7−10, 
12−15)

Design variables Terms excluding competitive pro-
cesses

Symmetric 
competition 
terms

Asymmetric competition terms

Bi
2/3 Bi

2/3 Bi
2 Bi

1/2 
ln[(Bi/k)1/2]

Bi Bi
3/2

B̄∕B
2∕3

i

exp(BLi) Bi
1/2BLi

Bi
1/2 1 0.998 0.895 0.999 0.983 0.944  − 0.896  − 0.975  − 0.056

Bi
2/3 1 0.920 0.999 0.993 0.963  − 0.868  − 0.959  − 0.116

Bi
2 1 0.914 0.959 0.991  − 0.646  − 0.777  − 0.459

Bi
1/2ln[(Bi/k)1/2] 1 0.990 0.952  − 0.867  − 0.956  − 0.105

Bi 1 0.986  − 0.795  − 0.905  − 0.243
Bi

3/2 1  − 0.701  − 0.824  − 0.390

B̄∕B
2∕3

i

1 0.951  − 0.342

exp(BLi) 1  − 0.177
Bi

1/2BLi 1

Fig. 3  Relationship between the design variable Bi
1/2BLi and tree 

basal area (Bi) for Plot 1009
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estimate how asymmetric competitive processes might be 
operating in the C-K model system (Eqs. 14 and 15). Its 
relationship with tree basal area in Plot 1009 is shown in 
Fig. 3. Amongst smaller trees, the increase apparent with 
increasing tree size is consistent with the effect expected 
with asymmetric competition. However, for larger trees, 
the decline with increasing tree size is the inverse of what 
might be expected. That is to say, in Plot 1009 this variable 
appeared to be a rather poor descriptor of what is expected 
of the asymmetric competitive process. The shape of the 
relationship makes it apparent also why the correlation 
of that variable with the others was low. As shown in 
the Supplementary Material, results for the collinearity 
between the design variables in the other seven example 
plots were mostly similar to those for Plot 1009.

Discussion

The results suggested that, in the example forest stands 
considered here, the models tested served rather poorly to 
describe, separately, the effects on individual tree growth 
rates of each of tree size and symmetric and asymmetric 
competitive processes. Whilst the models were generally 
able to explain around three quarters of the variation in 
growth rates and to fit the data well (Fig. 2), there were 
practical problems with their use.

For the models that were nonlinear in their parameters, 
both the intrinsic and parameter effects nonlinearities were 
very often high (Table 6). Whilst reparameterization of a 
model might remove the parameter effects nonlinearity, this 
can be difficult to achieve in models with structures as com-
plex as those here (Ratkowsky 1983 and 1990). However 
intrinsic nonlinearity is an inherent property of the model-
data set combination and cannot be removed. The conse-
quences of these high levels of nonlinearity can be difficul-
ties in achieving convergence of the methods used to fit the 
models as well as bias in estimates of the parameter values 
of the models and/or the fitted values from the models.

Even more problematic were the generally high correla-
tions that existed between the design variables that were 
being used to describe each of tree size and competitive 
processes (Table 7). If design variables could be found that 
described each of those three effects specifically and that 
were uncorrelated with each other, then the degree of vari-
ation in growth rate explained separately by each of them 
could provide a quantitative measure of the extent to which 
each was affecting tree growth. These collinearities, and the 
inconsistent structure of the Bi

1/2BLi variable with the com-
petitive process it was designed to describe (Fig. 3), sug-
gest that the competitive process descriptors used here were 
linked inextricably with tree sizes. This means there is little 
likelihood that models of the nature of those considered here 

will be useful to segregate tree size and competitive process 
effects. Using data from mixed coniferous forests of Mon-
tana, USA, Contreras et al. (2011) showed how common 
were high levels of correlation between various indices that 
were describing the level of either symmetric or asymmetric 
competitive processes.

The apparent virtues of these model systems, as proposed 
in the publications in which they were devised (Aikman and 
Watkinson 1980; Coomes and Allen 2007; Cordonnier and 
Kunstler 2015), probably derive from the fact that they were 
either used in simulation studies only, hence not compared 
with observed data, or were applied to predict growth of 
individual trees that were scattered amongst many stands 
that varied in their circumstances across a large forest area. 
In that latter case, much of the variation in tree growth rates 
will be attributed to those varied stand circumstances, such 
as differences in their stocking densities, which may affect 
how competitive processes operate in different stands as 
much or more as between individual trees within any one 
stand.

The variables used to describe inter-tree competitive pro-
cesses in the three model systems considered here were ‘dis-
tance-independent’ competition indices. Many studies have 
used ‘distance-dependent’ competition indices (e.g.Nyström 
and Kexi 1997; Mabvurira and Miina 2002; Miina and Puk-
kala 2002; Mailly et al. 2003; Pérot et al. 2010; Contreras 
et al. 2011; Pommerening and Maleki 2014; Kahriman et al. 
2018; Kuehne et al. 2019; Carr et al. 2020; Lamonica et al. 
2020; Barros de Oliveira et al. 2021) and have even included 
indices derived from aerial laser scanning (Pedersen et al. 
2012). Models attempting to describe growth of individual 
trees commonly use distance independent or dependent indi-
ces to determine the extent to which either symmetric or 
asymmetric competitive processes are determining growth, 
but not the relative extent to which each is operating. It was 
the inclusion in the present models of terms which attempted 
to describe the effects of tree size and both competitive pro-
cesses separately that recommended them to the present 
work; the hope was that quantification of the effects of the 
three might be determined separately.

There are a few other examples where indices describing 
both competitive processes, based on both distance-depend-
ent and/or distance independent competition indices have 
been included jointly in a model (Gourlet-Fleury and Houl-
lier 2000; Lessard et al. 2001; Larocque 2002; Mainwaring 
and Maguire 2004; Stoll and Newbery 2005; Monty et al. 
2008; Bollandsås and Næsset 2009; Yang et al. 2009; Kue-
hne et al. 2019; Wang et al. 2021). However, in these cases, 
the degree of collinearity between the design variables used 
in the models does not seem to have been examined in detail 
and it probably confounded tree size and competitive effects 
in the same way as in the present work.
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In conclusion, it appears that despite their reputations as 
being useful in explaining tree growth behaviour, none of the 
model systems examined here could distinguish separately 
between the effects on individual growth rates of trees in a 
single stand of each of tree sizes and symmetric and asym-
metric competitive processes. They were prevented from 
doing so both by collinearity between the terms used to 
describe each of the factors and technical problems involved 
in the use of nonlinear least-squares regression to fit the 
models to any one data set. Thus, they offer little opportunity 
to quantify the relative influences of these three processes 
on tree growth, information that would undoubtedly assist 
in the development of new model systems that may better 
describe tree growth.

Perhaps then, quite new approaches need to be devised 
if the effects on tree growth of tree size and competitive 
processes are to be quantified and modelled successfully. 
One approach that may have promise would initially involve 
derivation of a model that would describe size effects on 
individual tree growth rates for a species when trees were 
open-grown and not subject to competitive interactions with 
neighbors. A number of model systems have been based 
on that approach (e.g., Pommerening and Maleki 2014; 
Lamonica et al. 2020; Bhandari et al. 2021; Pretzsch 2021). 
Once that was determined, competition indices that describe 
above- and below-ground competitive processes separately 
might then be added to the system to attempt to quantify 
symmetric and asymmetric processes.
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