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used to estimate aboveground biomass. The results showed 
that the DLA models with 100 neurons in 6 hidden layers, 
100 neurons in 9 hidden layers and 100 neurons in 7 hidden 
layers for groups 1, 2, and 3, respectively, outperformed the 
NLS and NLME models. The root mean square error for the 
DLA models ranged from 1.939 to 3.887 m. The results also 
showed that using height predicted by the DLA models for 
aboveground biomass estimation brought about more than 
30% reduction in error relative to NLS and NLME. Conse-
quently, minimal errors were created in aboveground bio-
mass estimation compared to those of the classical methods.

Keywords Artificial intelligence · Height-diameter 
model · Mixed-effects · Nonlinear least squares · Tropical 
mixed forest

Introduction

Tree height (h) and diameter (d) are important variables that 
are frequently measured in forest inventories for the determi-
nation of volume, biomass, and basal area (Gomez-Garcia 
et al. 2014; West 2015), and used for forest stand structure 
analysis (Ogana and Gorgoso-Varela 2020). They provide 
information on the competitive status of a tree within a 
stand (West 2015) and their ratio is used as a stability index, 
i.e., tree slenderness coefficient (Sharma and Parton 2007; 
Zhang et al. 2020). Equally important, height and diameter 
measurements are used for assessing site productivity (West 
2015). In fact, height-diameter allometry is regarded as the 
fundamental component of forest growth and yield models 
(Gomez-Garcia et al. 2014; Bravo et al. 2019).

The ease by which diameter and height are measured 
vary, with the former being easier to measure and at low cost 
(Ferraz-Filho et al. 2018). On the other hand, measurement 
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of tree height is costly, often difficult and time- consuming 
(Özçelik et al. 2018; Ciceu et al. 2020; Magnussen et al. 
2020), especially in complex forest ecosystems with closed-
canopies (Larjavaara and Muller-Landau 2013), and as such, 
foresters find it more acceptable to estimate this variable 
(Temesgen et al. 2014). To do this, a few heights are meas-
ured and an appropriate height-diameter (h–d) function is 
then used to estimate other tree heights for which diameters 
have been measured (Kalbi et al. 2018). Modelling tree 
height-diameter relationships in even-aged, single-layer and 
monospecific or conspecific stands is straight-forward and 
less variable compared with complex tropical mixed forest 
ecosystems, characterised by multi-species, multi-layers, and 
indeterminate age composition (Temesgen et al. 2014).

A good example of a complex forest ecosystem is the 
tropical rain forest biome, regarded as one of the world’s 
major vegetation types and the most diverse terrestrial eco-
system (Turner 2001). It serves as habitat for more fauna 
and flora species compared to other biomes (Turner 2001). 
Studies have shown that in Nigerian rainforests there are 
more than 4600 identified plant species (Sarumi et al. 1996) 
and a majority are locally endemic (Richards 1996). Turner 
(2001) also suggested that some tropical rain forests may 
have over 100 tree species with ≥ 10 cm diameter at breast 
height (1.3 m aboveground) on one hectare. Thus, the com-
plex of species and structural composition within a small 
area makes it difficult to develop models for estimating 
some dendrometric variables e.g., tree height (Akindele and 
LeMay 2006; Bravo et al. 2019).

However, attempts have been made to develop height-
diameter (h–d) models for tropical forest ecosystems using 
different approaches. For example, Fang and Bailey (1998) 
developed h–d models for all species combined in a tropical 
forest in Hainan, China. Feldpausch et al. (2011) developed 
regional h–d allometry models for tropical forest ecosys-
tems using the ordinary least square technique. A similar 
approach was used by Ogana (2019) to fit h–d models in 
tropical mixed forests in Nigeria. However, procedures that 
do not take into consideration species-specific variability 
may not give precise predictions of height (Temesgen et al. 
2014). Another alternative that has been frequently used 
involves the identification of major tree species, arrange 
the species into groups if there are many major species and 
use ordinary least squares (OLS) or mixed-effect modelling 
technique to develop models for the groups. Temesgen et al. 
(2014) used this methodology to develop h–d relationships 
for major tree species in tropical forests in Northeast China. 
Kearsley et al. (2017) also used a similar procedure for tropi-
cal forests in the Congo basin. This approach seems appro-
priate and logical, however, when aboveground biomass esti-
mates of a tropical mixed forest is the objective, the issue 
of major species selection may be irrelevant. Since tropi-
cal biomass equations like those developed by Chave et al. 

(2014) and Fayolle et al. (2018) require tree height as one 
of the input variables, it is therefore important to develop 
h–d models that would account for the complex nature of 
tropical forest ecosystems. In Nigeria, Chenge (2021) clas-
sified all the sampled species in Omo biosphere into groups 
and fitted both ordinary least squares (OLS) and non-linear 
mixed-effect (NLME) models to the group data.

A more recent approach that could be used to address the 
problem with modelling h–d relationships in a complex for-
est ecosystem is artificial neural networks (ANNs). ANNs 
are a subunit of artificial intelligence (AI) whose functional-
ity mimics that of the human brain (Strobl and Forte 2007). 
ANNs have been consistently used in forestry with signifi-
cant success for modelling tree height (Özçelik et al. 2013; 
Vieira et al. 2018; Bayat et al. 2020; Ercanli 2020a; Hamidi 
et al. 2021), tree taper (Nunes and Görgene 2016), site pro-
ductivity (Aertsen et al. 2010), tree biomass and volume 
(Miguel et al. 2016; Özçelik et al. 2017), basal area incre-
ment (Ashraf et al. 2013) and mortality and regeneration 
(Hamidi et al. 2021). These researchers reported reasonable 
predictions of tree dendrometric variables with ANNs com-
pared with ordinary least square and mixed-effect models. 
However, most of the studies have been limited to conspe-
cific stands or stands with a few tree species. In addition to 
ANNs, the deep learning algorithm (DLA) is another form 
of AI that has been recently introduced. DLA models are 
multi-layered ANNs with at least three hidden layers and 
hundreds to thousands of neurons (Ercanli 2020a). They rep-
resent a more complex structure similar to the human brain 
than those of ANNs. Recent studies by Ercanli (2020a, b) 
showed that the DLA had better prediction of tree height in 
an even-aged pine stand compared to ANNs, mixed-effect 
and ordinary least square models.

Application of the DLA models in complex tropical for-
ests of Africa, including Nigeria, has not apparently been 
documented. Yet accurate prediction of dendrometric vari-
ables such as total tree height is necessary for quantifying 
the aboveground biomass (AGB) of the region. When tree 
heights are accurately estimated for complex tropical for-
ests, minimal errors will be introduced into the estimation 
of AGB. Therefore, the objectives of this study were to: (1) 
develop DLA models for a tropical rain forest of Nigeria; (2) 
compare the predictions from DLA with h–d models devel-
oped with classical methods; and, (3) evaluate the models 
based on aboveground biomass estimations.

Materials and methods

Data

The data used for this study were collected in Cross River 
State of Nigeria during a REDD + research project funded 
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by the African Forest Forum (AFF) in collaboration with 
the Swiss Agency for Development and Cooperation (SDC). 
Additional inventory data from research in the Ekuri For-
est Reserve in the same state were also included. The data 
comprise diameter and total height of 1,736 individual trees 
representing 116 species measured from 52 0.25 ha sample 
plots. The number of individual trees (n) per species ranged 
from 1 to 378. Of this number, only 12 species ≥ 30. Because 
of the multiple tree species composition, it was not possible 
to develop species-specific height functions. Therefore, a 
cluster analysis was carried out.

A K-means clustering (MacQueen 1967) was used to clas-
sify the species into groups based on height-diameter ratios; 
this ensures high intra-class and low inter-class similarities. 
The Hartigan-Wong algorithm (Hartigan and Wong 1979 
cited in Kassambara 2017) was used. The algorithm mini-
mizes the total intra-cluster variation, defined as the sum of 
squared Euclidean distances between the height-diameter 
ratio of the species and corresponding mean.

where TWSS is the total within sum of squared, W repre-
sents within, Ck is the individual cluster (group), xi repre-
sents height-diameter ratio of a species belonging to the 
cluster Ck , �k is the mean value of the height-diameter ratio 
assigned to the cluster Ck . The cluster (Maechler et al. 2019) 
and factoextra (Kassambara and Mundt 2020) packages both 
implemented in R (R Core Team 2020) were used in the 
analysis. The 116 tree species were classified into three 
groups: group 1 had 68 species, group 2 and 3 had 25 and 
23 species, respectively, (see group 1 had 68 species, group 
2 and 3 had 25 and 23 species, respectively, (see Appendix 
Tables S1, S2,and S3).).

Descriptive statistics of the tree variables: diameter (d 
in cm), total tree height (h in m) and height-diameter ratio 
(h–d r); computed stand variables: quadratic mean diameter 
(Dg, cm), basal area per ha (G,  m2  ha–1), basal area per ha 
of larger trees (BAL,  m2  ha–1) and number of trees per ha (N, 
trees  ha–1); computed diversity indices: dominance, even-
ness, Simpson and Shannon indices of the data by species-
group are shown in Table 1. The species-group data were 
randomly split into training (85%) and validation (15%) 
sets. Diameter histograms (pooled data) and scatter plots by 
species-group are presented in Fig. 1a and b, respectively.

Modelling the height‑diameter (h–d) relationships

Two sets of h–d models were developed for each species-
group (SG) data from tropical rain forest ecosystems of 
Nigeria: those based on classical methods, i.e., nonlinear 
least squares (NLS) and nonlinear mixed-effects (NLME), 
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and those based on artificial intelligence (AI), i.e., the deep 
learning algorithm (DLA).

Models based on classical methods: NLS and NLME

Several nonlinear single predictor height-diameter func-
tions have been used to describe tree height and diameter 
relationships in both even-aged and uneven-aged stands 
(Mehtätalo et al. 2015; Corral-Rivas et al. 2019; Bronisz 
and Mehtätalo 2020; Ciceu et  al. 2020; Ercanli 2020a; 
Ogana et al. 2020; Xie et al. 2020), and in complex natu-
ral forests (Feldpausch et al. 2011; Temesgen et al. 2014; 
Kearsley et al. 2017; Ogana 2019; Chenge 2021). To select 
the base model for the complex tropical forests, 18 single 
predictor h–d models were initially evaluated. The models 
include: Curtis (1967), Meyer (1940), Chapman-Richards 
(Richards 1959), Michailoff (1943), Michaelis-Menten 
(Michaelis and Menten 1913), Korf (Lundqvist 1957), Näs-
lund (1937), Power (Stoffels and van Soest 1953), modified 
power (Ogana and Gorgoso-Varela 2020), Prodan (Strand 
1959), Gompertz (1825), Logistic (Pearl and Reed 1920), 
Ratkowsky (1990), Schenute (1981), Wykoff (Wykoff et al. 
1982), modified Hossfeld IV (Ogana et al. 2020), Weibull 
(Yang et al. 1978), and Burkhart (Burkhart and Strub 1974). 
Nonlinear least square (NLS) was used to fit the models in R 
(R Core Team 2020) and were evaluated and ranked based 
on five indices. Preliminary results showed that Meyer had 
the minimum rank sum (see Appendix Table S4). Thus, the 
model was selected and expanded.

The Meyer model (Eq. 2) was expanded with the inclusion 
of stand variables and biodiversity indices. Stand variables 
(Dg, G, BAL and N) and biodiversity indices (dominance, 
evenness, Shannon and Simpson) in Table 1 were all evaluated 

first. However, only the inclusion of the quadratic mean diam-
eter (Dg) and number of trees per ha (N) in a linear combina-
tion as replacement for the asymptotic parameter b0 improved 
the models significantly. The generalised model is expressed 
as Eq. (3):

where E(h) and d represent expected total tree height (m) 
and diameter at breast height (cm), respectively; Dg is quad-
ratic mean diameter (cm), N is number of trees per ha (trees 
 ha−1), a0 , a1 , a2 , b1 are model parameters. Equations (2) and 
(3) were both fitted with NLS and NLME to the individual 
species-group data. The NLS has only fixed-effects param-
eters which explain the trend in tree height common to the 
overall stand (Ercanli 2020a). Contrary to the NLS, NLME 
has both fixed and random effects parameters. The fixed 
effects parameters play a similar role as those of ONLS; 
the random effects parameters explain the variation in h–d 
relationships across the plots.

The NLME model is represented in the general equation 
(Pinheiro and Bates 2013) as:

where m represents the number of grouping factors (one 
grouping factor was used in this study [plot]); ni represents 
the number of observation in the ith plot; hij is the height of 
tree j on plot i, Vij is a covariate vector; f represents the 

(2)E(h) = 1.3 + b0
(
1 − e−b1d

)

(3)E(h) = 1.3 +
(
a0 + a1Dg + a2N

)(
1 − e−b1d

)

(4)hij = f
(
Vij;�i

)
+ �ij;forwhichi = 1, ...,mandj = 1, ..., ni

(5)�i = Ai� + Bibi

Fig. 1  a Diameter histograms 
(pooled data) and b scatterplots 
by species group (SG)
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nonlinear models [Eqs. (2) and (3)]; �i is the vector r × 1; r 
is the model parameters; λ is a vector of the fixed parame-
ters: p × 1 (p the number of fixed parameters), bi is a vector 
of the random parameter: q × 1 (q equal number of random 
parameters) (Corral-Rivas et al. 2019), Aiis equalr × p and 
Biis r × q , respectively, and are the dimensional matrix for 
the fixed and random effects, for plot i (Corral-Rivas et al. 
2019). The plot effects is presumed to have a common mul-
tivariate normal distribution with zero mean and vari-
ance–covariance matrix var(bi ) given as D for all values of 
i (Mehtätalo et al. 2015). The �ij represents random error 
with zero mean and constant variance var ( �ij) = σ2. A power 
type variance function was used to account for heteroscedas-
ticity in the residuals: �2d2�

ij
 , where � , is the power parameter 

to be estimated. The maximum likelihood through the ‘nlme’ 
function in R (R Core Team 2020) was used to estimate the 
parameters of the NLME models.

Deep learning algorithm (DLA)

The deep learning algorithm (DLA) is a multi-layer artificial 
neural networks (ANNs) with at least three hidden layers 
and hundreds to thousands of neurons, and gives a better 
representation of complex systems such as tropical forest 
ecosystems (Ercanli 2020a). The DLA requires sophisti-
cated graphical processing units; thus, this study utilised 
the h2o.deeplearning function of the h2o package (LeDell 
et al. 2020) implemented in R (R Core Team 2020) to train 
the models. The h2o.deeplearning function has multi-layer 
feedback neural networks that provide well-supervised 
training procedures to predict output variable from input 
variable(s). In training the DLA models, diameter at beast 
height (d, cm), quadratic mean diameter (Dg, cm) and num-
ber of trees (N, trees per ha) were used as input variables, 
while tree height (h, m) was the output variable. The input 
variables were the independent variables used for the clas-
sical methods (NLS and NLME). The DLA was trained for 
each species-group.

Several factors influenced the convergence of DLA, 
e.g., number of hidden layers, number of neurons in the 
hidden layers, the activation function, distribution type, 
epochs, epsilon and rho. The adaptive learning rate algo-
rithm called ADADELTA (Zeiler 2012 cited in Ercanli 
2020b) was used to ensure fast convergence of the DLA. 
The ADADELTA has both momentum training and learn-
ing rate annealing. The rho parameter explains the rate 
of ADADELTA, while epsilon describes the strength of 
the learning rate during the training. Default values of 
0.999 and 1 ×  10–8 for rho and epsilon, respectively, were 
used to train the DLA models. A default value of 1000 
was also used for the epochs. A similar value was used 
in Ercanli (2020a, 2020b). The Gaussian distribution 

was selected amidst other distributions, (e.g., Bernoulli, 
Huber, Poisson, Multinomial, and Laplace) in the h2o.dee-
plearning function as the training distribution because it 
is a continuous distribution. The number of hidden layers 
initially evaluated in this study ranged from 3 to 10 and 
did not consider hidden layers > 10 because too complex 
a network makes it difficult to achieve convergence. For 
each hidden layer, 10 to 100 neurons with an increment 
of 10 per step were used. Of the three activation functions 
of the h2o.deeplearning function, the rectifier function 
was more suitable for the data set. The activation func-
tions describe the nonlinear trends in the tropical data set 
(Ercanli 2020b). The best DLA models were selected for 
each species-group.

Model evaluation and equivalence test

The quality of model predictions was evaluated based on 
the comparisons of the root mean square error (RMSE), 
mean relative error (MRE), mean absolute percentage error 
(MAPE), critical error  (Ecrit) and Bayesian Information cri-
teria (BIC). The smaller the RMSE, MRE, MAPE,  Ecrit and 
BIC statistics, the better models.

where RSS is residual sum of squares; n is the number of 
observations; p the number of parameters; hi is average tree 
height; hi is observed tree height; ĥi is the predicted height 
by the model; � is the standard normal deviate (≈ 1.96 at 
probability level of � = 0.05) and �2

crit
 was obtained for � = 

0.05. In addition, relative rank (Poudel and Cao 2013) was 
used to determine the relative location of each model based 
on the evaluation statistics. It is expressed as:

(6)RMSE =

����∑n

i=1

�
hi − ĥi

�2
n − p

(7)MRE =
∑n

i=1

ĥi−hi

hi

�
n

(8)MAPE =

⎛⎜⎜⎝
∑n

i=1

�hi−ĥi�
hi

�
n

⎞⎟⎟⎠
× 100

(9)
Ecrit =

�
𝜏2

∑n

i=1

�
hi − ĥi

�2�
𝜒2
crit

Hi

(10)BIC = nln
(
RSS

n

)
+ p ln n
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where Ri is relative rank of model i (i = 1, 2, …, m); m is the 
number of models evaluated, Si the evaluation statistic value 
of model i; Smax and Smin are the maximum and minimum 
values, respectively, of Si. Relative rank is a real number 
with 1 as the best. For each model, the relative ranks were 
summed across the five statistics (RMSE, MRE, MAPE,  Ecrit 
and BIC). Thus, the relative rank sum was used to identify 
the best model for estimating tree height in complex tropical 
rain forest ecosystems.

The equivalence test of Robinson et al. (2005) was used to 
further assess height prediction by classical methods (NLS 
and NLME) and by DLA using the validation dataset (15% 
of the data). In this test, the size of the region of dissimilarity 
between the observed tree heights and predicted heights is 
an important factor for deciding on the acceptability of the 
model/method. The test begins with the null hypothesis (Ho) 
of significant difference between the observed and predicted 
values. Thus, a rejection of the Ho implies acceptance of the 
prediction of tree heights by the model.

The equivalence test was performed by regressing the 
relationships between the observed (X) and predicted (Y, 
predictions by NLS, NLME and DLA) heights and also 
by regressing the regression parameters with the inter-
cepts ( b0 ) and slope ( b1 ) for this relation (Ercanli 2020b). 
Confidence intervals (CIs) for b0 and b1 were calculated 
using a two one-sided test (TOST) (Robinson et al. 2005). 
TOST tests the equality of slopes ( b1 ) to 1 ± 10% and the 
equality of intercepts ( b0 ) to y ± 10% (Ercanli 2020b). We 
used the nonparametric bootstrap technique described by 
Robinson et al. (2005) to obtain the predictions of the CIs 
for the parameters. The number of bootstrap replicates was 
set at 1000 as recommended and recently used by Ercanli 
(2020b). The equivalence test procedures for observed (X) 
and predicted (Y, predictions by NLS, NLME and DLA) 
heights were carried out using the “equivalence” package 
(Robinson 2016) implemented in R (R Core Team 2020).

Aboveground biomass estimations

A useful application of h–d models is the estimation 
of aboveground biomass (AGB). Different studies have 
shown that allometric models for estimating AGB perform 
better when information on tree height is incorporated 
(Chave et al. 2014; Popkin 2015; Kearsley et al. 2017; Fay-
olle et al. 2018). Thus, both observed and predicted tree 
heights by DLA and classical methods were used to esti-
mate the AGB of the forests. The generalised pantropical 
AGB model (equation [12]) (Chave et al. 2014) was used.

(11)Ri = 1 +
(m − 1)

(
Si − Smin

)
Smax − Smin

where AGBest represents estimated aboveground biomass 
(kg); d is diameter at breast height (cm); h is tree height 
(m) and ρ is wood density (g  cm–3). Wood density for each 
species was extracted from the global wood density data-
base (Chave et al. 2009; Zanne et al. 2009). For unidenti-
fied species, an average of 0.5 g  cm−3 was used. A similar 
average was used by Ogana and Ogana (2019) in the same 
region. Reyes et al. (1992) also used 0.5 g  cm−3 for wood 
density of tropical African species. The global wood den-
sity database and the AGB model (equation [12]) have been 
implemented in the BIOMASS package (Rejou-Mechain 
et al. 2017). They were obtained with “wdData” and “com-
puteAGB” functions of the BIOMASS package in R. How-
ever, the AGB is in megagrams (Mg)—the conventional unit 
of AGB (Chave et al. 2014).

The observed AGB was calculated by substituting the 
density, and the measured diameters and heights into 
Eq. (12). The predicted AGB was obtained from the density, 
measured diameters and predicted heights by the classical 
methods (NLS and NLME) and DLA. Root mean square 
error (RMSE), critical error (Ecrit) and mean relative error 
(MRE) were used to assess the adequacy of the models for 
estimating AGB. A plot of relative error (i.e., predicted AGB 
minus observed AGB, divided by the observed AGB, in %) 
was also used to illustrate the bias in predicted AGB.

Results

Height‑diameter (h–d) models

The estimated parameters of Eqs. (2) and (3) fitted with 
NLS for the species groups (i.e., SG1, SG2 and SG3) are 
presented in Tables 2, 3 and 4. Also in the tables are the 
parameter estimations and variance components of the fit-
ted nonlinear mixed effect (NLME) models expressed as 
Eqs. (13) and (14), and the best of the DLA models. In SG1 
data, the parameters of the models by NLS and NLME had 
low standard errors and were significantly different from 
zero (p < 0.05), except for Eq. 14. 14 where a0 was not sig-
nificant (Table 2). Similarly, in SG2 data, parameters a1 and 
a2 were not significant in Eq. (13) and (14) (Table 3). How-
ever, all parameters in the models were significant for the 
SG3 data set.

(12)AGBest = 0.0673 ×
(
�d2h

)0.976

(13)h = 1.3 +
(
b0 + uj

)(
1 − e−b1d

)

(14)h = 1.3 +
([
a0 + uj

]
+ a1dg +

[
a2 + uj

]
N
)(
1 − e−b1d

)
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The results from the evaluation statistics (RMSE, MRE, 
MAPE, Ecrit and BIC) showed that the DLA models out-
performed other models fitted by NLS and NLME for the 
three species-group (Tables 2, 3 4). The DLA models had 
the smallest statistics and lowest relative ranks (i.e., 1.00) 
across the five indices for the species groups. The optimal 
number of hidden layers and neurons for the DLA models 
were: 100 neurons in six hidden layers for SG1, 100 neurons 
in nine hidden layers for SG2, and 100 neurons in seven 
hidden layers for SG3. In these DLA models, the input vari-
ables were diameter, quadratic mean diameter and number of 
trees per ha. Thus, based on the relative rank sum, the order 
of ranking is: DLA models > NLME models > NLS models.

The graphical relationships between the observed (x-axis) 
and predicted (y-axis) tree heights by the best three models 
compared with the 1:1-line for each species-group is shown 
in Fig. 2. As seen in the graph, the DLA models 100 neurons 
in six hidden layers for SG1, 100 neurons in nine hidden 
layers for SG2 and 100 neurons in seven hidden layers for 
SG3 produced a more organised cluster of measured and pre-
dicted values along the main diagonal (i.e., 1:1-line) com-
pared with those of NLS and NLME. Furthermore, the graph 
of residual against predicted tree heights by the models did 

not show any meaningful heteroscedasticity across the three 
species groups (Fig. 3).

The results from the equivalence test using the validation 
data showed that, for all models developed by NLS, NMLE 
and DLA, the null hypothesis (H0) of dissimilarity for inter-
cept ( b0 ) parameters was rejected, for which the bootstrap 
intercept ( b0 ) lies inside the equivalent regions ( y ± 10% ) 
(Table 5). In the case of the null hypothesis for dissimilarity 
for slope parameters ( b1 ), only the DLA models 100 neurons 
in six hidden layers for SG1, 100 neurons in nine hidden lay-
ers for SG2 and 100 neurons in seven hidden layers for SG3 
were rejected, in which the bootstrap slope ( b1 ) lies within 
the equivalent regions 1 ± 10% . The predicted bootstrap ( b1 ) 
limit by the NLS and NLME models were not rejected for 
the three species groups. Since a rejection of the Ho implies 
acceptance of the prediction of tree heights, the DLA models 
were selected for the tropical rain forest ecosystems.

Aboveground biomass estimation

Aboveground biomass (Mg) estimations using tree height 
predicted by NLS, NLME and DLA models were assessed 

Table 2  Species group 1: Information on parameters of models, root mean square error (RMSE), mean relative error (MRE), mean absolute 
percentage error (MAPE) critical error (Ecrit), Bayesian information criterion (BIC) and relative rank sum (∑R) 

SE Standard error, values in parenthesis are relative ranks

Method Eqn Parameter Estimate SE RMSE MRE MAPE Ecrit BIC ∑R

NLS 2 b
0

36.3264 0.8839 5.4852 0.065 21.6913 0.4883 7349
b
1

0.0339 0.0015 (5.00) (5.00) (5.00) (5.00) (5.00) 25.00
3 a

0
38.6096 2.269 5.2525 0.0607 20.3436 0.4676 7262

a
1

− 0.1287 0.0436 (4.42) (3.81) (4.24) (4.42) (4.92) 21.81
a
2

0.0161 0.0023
b
1

0.0322 0.0015
NLME 13 b

0
34.8992 1.0467 4.8835 0.0539 19.1895 0.4348 7076

b
1

0.0342 0.0015 (3.49) (1.92) (3.60) (3.50) (4.74) 17.25
�2

u
15.458 0.1147

�2 1.2113 0.0321
� 0.4823

14 a
0

36.3931 3.4334 4.8872 0.0541 19.1152 0.4351 7092
a
1

− 0.099 0.0759 (3.50) (1.97) (3.56) (3.50) (4.75) 17.28
a
2

0.0175 0.0034
b
1

0.0337 0.0015
�2

u
21.8012 0.1363

�2

v
0.0001 0.0003

�2 1.4643 0.0353
�
uv

− 0.9998
� 0.4517

DLA 100 neurons in 6 
hidden layers

3.8873 0.0506 14.5569  0.3461  3209

(1.00) (1.00) (1.00) (1.00) (1.00) 5.00
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by the root mean square (RMSE), the mean relative error 
(MRE) and critical error (Ecrit) (Table 6). The results show 
that using tree heights predicted by DLA into the AGB 
Eq. (12) yielded the smallest RMSE (0.1931 Mg), MRE 
(0.0353) and critical error (0.4511 Mg) values. It brought 
about more than 30% reduction in the indices relative to 
NLS and NLME. The graph of relative error (%) also show 
that minimal error was inserted into the estimation of AGB 
using predicted heights by DLA compared with those of 
NLS and NLME models (Fig. 4). The DLA produced a near 
perfect smooth spline regression with little tendency toward 
overestimation and underestimation of aboveground bio-
mass, whilst those of NLS and NLME were more irregular.

Discussion

This research developed models for predicting tree heights in 
the complex rain forest ecosystems of Nigeria using classical 
methods (nonlinear least square and nonlinear mixed effect) 
and a robust AI technique, i.e., a deep learning algorithm 
(DLA) with a view to improving aboveground biomass esti-
mations. The DLA models produced the smallest evaluation 

statistics and, as such, were more suitable in predicting tree 
heights in complex tropical rain forests. Parallel observa-
tion was reported in Ercanli (2020a) who applied the DLA 
technique to predict tree heights of even-aged pure Anatolian 
Crimean pine in Turkey. The author found the DLA model 
100 neurons in 9 hidden layers to be the best for predict-
ing tree heights compared with nonlinear regression and 
nonlinear mixed-effect models. Similarly, Ercanli (2020b) 
observed that a DLA model with 100 neurons in 8 hidden 
layers produced the best height predictions in even-aged pure 
Turkish pine. In the case of the complex tropical rain for-
est ecosystems, DLA with 100 neurons in six hidden layers 
was more accurate for predicting tree heights in SG1. Spe-
cies group 1 contains more than 60 tree species. For SG2 
(25 tree species) and SG3 (23 tree species), 100 neurons in 
nine hidden layers and 100 neurons in seven hidden layers, 
respectively, produced the best predictions of tree height.

The DLA models trained for the tropical rain for-
ests resulted in more than 20% and 50% reduction in the 
RMSE and BIC values relative to NLS and NLME models 
across the species groups. As a rule of thumb, a minimum 
ΔBIC ≤ 2 is required for two models to be similar (Gorgoso-
Varela et al. 2019). In addition, Temesgen et al. (2014) noted 

Table 3  Species-group 2: Information on parameters of models, root mean square error (RMSE), mean relative error (MRE), mean absolute 
percentage error (MAPE) critical error (Ecrit), Bayesian information criterion (BIC) and relative rank sum (∑R) 

SE standard error, values in parenthesis are relative ranks

Method Eqn Parameter Estimate SE p-value RMSE MRE MAPE Ecrit BIC ∑R

NLS 2 b
0

39.9357 2.6667 0.0000 5.2484 0.0292 16.8958 0.2642 716.0
b
1

0.0221 0.0031 0.0000 (5.00) (5.00) (5.00) (5.00) (4.95) 24.95
3 a

0
48.2668 7.5297 0.0000 5.2012 0.0291 16.7201 0.2619 723.0

a
1

− 0.1796 0.1378 0.1950 (4.94) (4.98) (4.94) (4.94) (5.00) 24.80
a
2

− 0.0034 0.0078 0.6620
b
1

0.021 0.0031 0.0000
NLME 13 b

0
36.3742 1.9908 0.0000 4.3306 0.0282 14.2193 0.218 672.0

b
1

0.0275 0.0034 0.0000 (3.89) (4.81) (4.12) (3.89) (4.63) 21.34
�2

u
10.8287 0.3082

�2 3.1555 0.1664
� 0.2931

14 a
0

42.3565 7.0432 0.0000 4.1811 0.0276 13.6756 0.2105 673.0
a
1

− 0.1454 0.1457 0.3220 (3.71) (4.70) (3.94) (3.71) (4.64) 20.70
a
2

− 0.0009 0.0077 0.9050
b
1

0.0269 0.0035 0.0000
�2

u
23.2572 0.4517

�2

v
0.00006 0.00078

�2 4.5904 0.2007
�
uv

− 0.9981
� 0.3769

DLA 100 neurons in 9 
hidden layers

1.9391 0.0079 4.6993 0.0976 165.0

(1.00) (1.00) (1.00) (1.00) (1.00) 5.00
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that the extension of a model is only necessary if the dif-
ference in RMSE is > 5%. Beside the evaluation statistics, 
only in the DLA models were the null hypothesis (H0) of 
dissimilarity for intercept ( b0 ) and slope ( b1 ) parameters 
rejected. The performance of the DLA models in predicting 
tree heights could be attributed to the complex network of 
neurons with different numbers of hidden layers. The DLA 
models are multi-layered ANNs with at least 3 hidden lay-
ers and hundreds to thousands of neurons (Ercanli 2020a). 
This is the first attempt to apply DLA techniques to model 
height-diameter relationships in complex tropical rain for-
ests. Although Hamidi et al. (2021) used two ANNs, i.e., 
multilayer perception (MLP) and radial basis function (RBF) 
to model height-diameter relationship and other dendromet-
ric variables in complex Hyrcanian forests of northern Iran, 
few species composition exist compared to those of tropi-
cal rain forests. Moreover, the MLP and RBF contain fewer 
networks than those of DLA models. Ercanli (2020a) also 
reported better performance with DLA models compared 
with ANNs in pure pine stands.

Bayat et al. (2020) used the ANNs and adaptive neuro-
fuzzy inference system (ANFIS) to provide better estima-
tion of tree heights in uneven-aged, mixed stands in Iran 

compared with regression analysis. Similar observation 
was reported by Vieira et al. (2018) for eucalyptus species. 
Özçelık et al. (2013) also showed that the use of ANNs 
improved height prediction of Crimean juniper. The ANNs 
model resulted in 20% reduction in RMSE compared to 13% 
by NLME. In addition, they noted that using ANNs is more 
advantageous than NLME because no height measurements 
are required for its application. In contrast, prior informa-
tion is needed for mixed-effect model calibrations. Saudi 
et al. (2016) also asserted that random parameters in NLME 
may not be applicable for most prediction purposes except 
that calibration data are readily available. Data availability 
remains a limiting factor in complex tropical rain forests.

One important limitation of artificial intelligence is 
model transferability to other users (Hamidi et al. 2021). To 
ensure efficient transferability, the R syntax files of the DLA 
models was provided for the three species group in down-
loadable links via google drive (SG1: https:// drive. google. 
com/ file/d/ 1faIw y3ndB BCm39 GNpxx KG2wXY_ UqiT0E/ 
view? usp= shari ng; SG2: https:// drive. google. com/ file/d/ 
13p9y W36_ 73M6U 0PY42 cxqWw FKNd5 MwOU/ view? 
usp= shari ng; SG3: https:// drive. google. com/ file/d/ 1- bgIOs 
P8o25_ HL- d6m2G pxNZ5 tNMKw h5/ view? usp= shari ng). A 

Table 4  Species-group 3: Information on parameters of models, root mean square error (RMSE), mean relative error (MRE), mean absolute 
percentage error (MAPE) critical error (Ecrit), Bayesian information criterion (BIC) and relative rank sum (∑R) 

SE Standard error, values in parenthesis are relative ranks

Method Eqn Parameter Estimate SE p-value RMSE MRE MAPE Ecrit BIC ∑R

NLS 2 b
0

33.3667 1.8174 0.0000 4.9308 0.0547 19.0593 0.3821 1083
b
1

0.0499 0.0053 0.0000 (5.00) (5.00) (5.00) (5.00) (5.00) 25.00
3 a

0
13.517 4.8776 0.0062 4.7180 0.0498 18.6285 0.3656 1077

a
1

0.4674 0.1166 0.0000 (4.68) (4.54) (4.85) (4.68) (4.97) 23.72
a
2

0.0137 0.0055 0.0137
b
1

0.0535 0.0056 0.0000
NLME 13 b

0
32.1665 1.8012 0.0000 4.5584 0.0515 17.7168 0.3532 1055

b
1

0.0542 0.0059 0.0000 (4.44) (4.70) (4.52) (4.44) (4.86) 22.96
�2

u
5.9993 0.1841

�2 4.0685 0.1516
� 0.2714

14 a
0

13.1208 6.1663 0.0350 4.3462 0.0476 17.2072 0.3368 1048
a
1

0.4601 0.1509 0.0027 (4.12) (4.33) (4.33) (4.12) (4.82) 21.72
a
2

0.0128 0.0064 0.0477
b
1

0.0567 0.006 0.0000
�2

u
23.5421 0.3647

�2

v
0.0002 0.0009

�2 5.1425 0.1705
�
uv

0.9998
� 0.2188

DLA 100 neurons in 7 
hidden layers

2.2883 0.0123 7.9234 0.1773 309

(1.00) (1.00) (1.00) (1.00) (1.00) 5.00

https://drive.google.com/file/d/1faIwy3ndBBCm39GNpxxKG2wXY_UqiT0E/view?usp=sharing
https://drive.google.com/file/d/1faIwy3ndBBCm39GNpxxKG2wXY_UqiT0E/view?usp=sharing
https://drive.google.com/file/d/1faIwy3ndBBCm39GNpxxKG2wXY_UqiT0E/view?usp=sharing
https://drive.google.com/file/d/13p9yW36_73M6U0PY42cxqWwFKNd5MwOU/view?usp=sharing
https://drive.google.com/file/d/13p9yW36_73M6U0PY42cxqWwFKNd5MwOU/view?usp=sharing
https://drive.google.com/file/d/13p9yW36_73M6U0PY42cxqWwFKNd5MwOU/view?usp=sharing
https://drive.google.com/file/d/1-bgIOsP8o25_HL-d6m2GpxNZ5tNMKwh5/view?usp=sharing
https://drive.google.com/file/d/1-bgIOsP8o25_HL-d6m2GpxNZ5tNMKwh5/view?usp=sharing
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step-by-step guide for uploading the R syntax files of DLA 
models in R for tree height prediction purposes can be found 
in the appendix of Ercanli (2020b). This ensures accessibil-
ity so that forest practitioners can use the predicted heights 
to estimate other dendrometric variables like tree biomass 
and volume.

Estimation of aboveground biomass of forest ecosys-
tems is relevant, especially in the context of climate change. 
Accurate tree height predictions are required to improve 

AGB estimation (Kearsley et al. 2017). Using predicted 
tree heights by DLA in AGB equations resulted in a 30% 
reduction in the root mean square error, mean relative error 
and critical error. This implies that the number of errors 
introduced into the estimation of aboveground biomass is 
small. In contrast, errors produced by NLS and NLME in 
predicting tree heights of complex tropical rain forests are 
brought about in AGB estimations. Because tree diameters 
and wood density are fixed variables, i.e., the same for DLA, 

Fig. 2  Relationship between observed (x-axis) and predicted (y-axis) tree height by the three best models for each species group (SG1, SG2 and 
SG3)
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NLS and NLME, tree heights are the only source of variabil-
ity. Several studies (Chave et al. 2014; Popkin 2015; Kears-
ley et al. 2017; Foyolle et al. 2018) have supported the use 
of local height-diameter model in generalised pan-tropical 
AGB models to minimise error in biomass estimations. 
Kearsley et al. (2017) quantified the size of error from using 
heights predicted by pan-tropical height-diameter values for 
aboveground estimation for the central Congo Basin. They 
reported a significant overestimation of tree heights which 
resulted in significant overestimation of AGB.

Besides the estimation of aboveground biomass, tree 
height predictions by DLA models could be applied to quan-
tify the volumes of important timber species of the region. 
Volume equations developed for these species in the tropical 
rain forest by Akindele and LeMay (2006) require informa-
tion on tree height as input variables. The predicted height 
by DLA models will improve the accuracy of estimated tree 
volumes, which could be scaled up to stand level.

Fig. 3  Residual plots of the three best models for each species group (SG1, SG2 and SG3)
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Conclusions

The complexity of tropical rain forest ecosystems requires 
innovative techniques to improve the prediction of impor-
tant dendrometric variables such as tree heights for 

aboveground biomass estimation. This study has shown 
the relevance of artificial intelligence (e.g., deep learning 
algorithm [DLA]) in addressing the problem of model-
ling tree height in complex tropical rain forest ecosystems. 
The DLA models outperformed other classical modelling 
techniques (nonlinear least square and nonlinear mixed-
effects) in predicting tree heights in these ecosystems, 
consequently, minimizing the amount of error in above-
ground biomass estimation. The input variables for the 
DLA models included diameter at breast height quadratic 
mean diameter and number of trees per ha. To facilitate 
the application of the DLA models by other users, a link is 
provided where the models can be downloaded and reused 
for tree height prediction.

Table 5  Equivalence tests of the models (equations [2], [3], [13], [14] and DLA) using the 15% validation data set from the species-group 
(SG1, SG2 and SG3)

Species-group Eqn b0 limits Bootstrap  b0 limits b1 limits Bootstrap  b1 limits

(SG) Lower Upper Lower Upper H0: not Equivalent Lower Upper Lower Upper H0: not Equivalent

SG1 2 20.7803 21.8172 15.8325 26.3875 Rejected 0.5587 0.6659 0.7500 1.2500 Not rejected
3 20.6555 21.7476 15.8325 26.3875 Rejected 0.5636 0.6713 0.7500 1.2500 Not rejected
13 20.7796 21.7937 15.8325 26.3875 Rejected 0.5850 0.6910 0.7500 1.2500 Not rejected
14 20.7754 21.8061 15.8325 26.3875 Rejected 0.5836 0.6936 0.7500 1.2500 Not rejected
DLA 20.9555 21.3236 15.8325 26.3875 Rejected 0.9690 1.0307 0.7500 1.2500 Rejected

SG2 2 22.4171 26.3201 19.8643 33.1071 Rejected 0.3618 0.8017 0.7500 1.2500 Not rejected
3 22.2301 26.0857 19.8643 33.1071 Rejected 0.3481 0.7934 0.7500 1.2500 Not rejected
13 22.2875 27.0757 19.8643 33.1071 Rejected 0.2999 0.8292 0.7500 1.2500 Not rejected
14 22.2755 27.2147 19.8643 33.1071 Rejected 0.2991 0.8307 0.7500 1.2500 Not rejected
DLA 25.4213 26.5076 19.8643 33.1071 Rejected 0.9055 1.0093 0.7500 1.2500 Rejected

SG3 2 22.9379 24.7649 17.5078 29.1797 Rejected 0.4759 0.7398 0.7500 1.2500 Not rejected
3 22.8664 25.0090 17.5078 29.1797 Rejected 0.4747 0.7640 0.7500 1.2500 Not rejected
13 22.5427 24.4876 17.5078 29.1797 Rejected 0.4226 0.7064 0.7500 1.2500 Not rejected
14 22.2839 24.3139 17.5078 29.1797 Rejected 0.4086 0.7074 0.7500 1.2500 Not rejected
DLA 23.2583 24.1429 17.5078 29.1797 Rejected 1.0090 1.1373 0.7500 1.2500 Rejected

Table 6  The root mean square error (RMSE), mean relative error 
(MRE) and critical error (Ecrit) of models based on aboveground bio-
mass (AGB, Mg) estimation

Method Equation RMSE MRE Ecrit

NLS 2 0.3558 0.0601 0.8311
3 0.3578 0.0560 0.8357

NLME 13 0.3125 0.0523 0.7301
14 0.3114 0.0518 0.7275

DLA 0.1931 0.0353 0.4511
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