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the disruption of atmospheric communication signals by 
elevated  O3 via changes in plant-regulated biogenic volatile 
organic compounds and long-chain fatty acids are consid-
ered. The ecological roles of plant volatiles and the effects 
of  O3 from both a chemical and a biological perspective 
are presented. Ozone-disrupted plant volatiles should be 
considered to explain herbivory phenomena in urban and 
suburban systems.

Keywords Biological interactions · Elevated  O3 · Insect 
grazing · Pollination · Plant defense mechanisms

Introduction

Ozone  (O3) levels have been increasing in the last decades 
around the northern hemisphere, especially in east Asia 
(Koike et al. 2013; Akimoto et al. 2015; Feng et al. 2015, 
2019a; Watanabe et al. 2017; Li et al. 2017; Nagashima et al. 
2017). In general, suburban and rural areas exhibit higher 
average daily  O3 levels than urban centers (Paoletti et al. 
2014; Khan et al. 2017; Liu et al. 2019; Diaz et al. 2020) 
However,  O3 pollution in cities has considerably increased 
in 2020 as a result of imposed lockdown measures due to 
COVID-19, suggesting potential temporal changes in the 
traditional differences in  O3 concentrations between urban 

Abstract Plant–insect interactions are basic components 
of biodiversity conservation. To attain the international 
Sustainable Development Goals (SDGs), the interactions in 
urban and in suburban systems should be better understood 
to maintain the health of green infrastructure. The role of 
ground-level ozone  (O3) as an environmental stress dis-
rupting interaction webs is presented. Ozone mixing ratios 
in suburbs are usually higher than in the center of cities 
and may reduce photosynthetic productivity at a relatively 
higher degree. Consequently, carbon-based defense capaci-
ties of plants may be suppressed by elevated  O3 more in 
the suburbs. However, contrary to this expectation, grazing 
damages by leaf beetles have been severe in some urban 
centers in comparison with the suburbs. To explain differ-
ences in grazing damages between urban areas and suburbs, 
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and suburban areas (Moser-Reischl 2019; Nakada and Urban 
2020; Sharma et al. 2020; Sicard et al. 2020). Differences in 
 O3 concentrations between urban and suburban areas indi-
cate that plant–insect interactions can be affected differently.

It has been assumed that herbivory by insects is affected 
by physical or physiological responses of plant leaves to 
 O3, which indirectly changes the lifecycle of insects, par-
ticularly under warmer climates (Duque et al. 2019). To 
date, research has focused on the  O3 effect on the defensive 
capacity of plants, as suppression of defensive capacity leads 
to increased susceptibility to damage by insects. In recent 
research, serious insect grazing damages on avenue trees 
were found at relatively low  O3 concentrations (urban cent-
ers) in northeast Asia, but such damages were not found 
on the same species at suburban sites with higher  O3 levels 
(Takahashi et al. 2020). Plant–insect communication via 
biogenic volatile organic compounds (BVOCs) should be 
considered as a possible explanation for these observations 
(Agathokleous et al. 2020; Masui et al. 2020). Understand-
ing plant–insect communications under changing atmos-
pheric environments may help to conserve healthy forest 
ecosystems.

There are two roles for BVOCs: an atmospheric one and 
a chemical signaling one. Chemical signaling is a hub facili-
tating plant to plant and plant–insect communication in the 
environment, including in forest ecosystems (Penuelas and 
Llusia 2001; Heil and Bueno 2007; Trowbridge and Stoy 
2013; Šimpraga et al. 2019). With regards to the atmospheric 
role, BVOCs contribute to  O3 formation as  O3 is generated 
from nitrogen oxides (NOx) via photochemical reactions 
with BVOCs under ultraviolet rays (UV) (Atkinson and Arey 
2003; Kim et al. 2013; Akimoto et al. 2015). Photochemical 
smog, such as peroxy-acyl nitrate (PAN), is simultaneously 
generated thorough photochemical reaction and air pollution 
aggravates. VOCs act as catalytic substances in the photo-
chemical reaction. In situations that the amount of NOx as a 
precursor substance of  O3 is rapidly increasing due to indus-
trial development, BVOCs are at the center of interest in 
atmospheric chemistry because global emissions of BVOCs 
surpass 10 times that of anthropogenic VOCs(Guenther et al. 
2006; Kim et al. 2010; Im et al. 2011).

Chemical-signaling interactions via BVOCs between 
plants and plants/insects have biologically important roles 
in nature (Sharma et al. 2019). BVOCs are emitted to the 
atmosphere from leaves or flowers as scents (Dudareva and 
Pichersky 2008). There are some chemical group in these 
compounds; isoprene  C5H8, a basic structure of BVOCs, 
monoterpene  C10H16, sesquiterpene  C15H24, while other 
chemically modified compounds like aldehyde or alcohol 
exist (Kesselmeier and Staudt 1999; Guenther et al. 2000). 
Although factors such as color and shape of flowers (and 
flower openness) contribute to their attractiveness, scent 
attracts insects from hundreds of meters, insects can locate 

their host plants by detecting unique volatile compounds 
or a unique blend of BVOCs (Šimpraga et al. 2016). Scent 
from flowers is a key factor to attract pollinators as well as 
herbivorous insects (Blüthgen and Klein 2011) in forest eco-
systems as well (Šimpraga et al. 2019). Pollinators receive 
nectar and/or pollen as rewards from flowers, and pollinators 
and flowering plants are mutualistic (Kearns et al. 1998; 
Blüthgen and Klein 2011). Approximately 80–95% of flow-
ering species in the world benefit from insect pollinators 
(Ollerton et al. 2011). Without pollinators, most species can-
not maintain their populations and expand their gene pool 
by cross-fertilization; thus pollinators support the forma-
tion and sustainability of forest ecosystems (Krishnan et al. 
2020).

When insects graze on leaves, they use leaf volatiles 
to detect target plants (Trowbridge AM and Stoy 2013). 
Plant–insect communication influences the productivity of 
a forest but in case of the grazing on avenue trees in cit-
ies the grazing damage has a negative effect on the aes-
thetics. A study reported that damages by herbivores are 
responsible for losses of net primary production up to 15% 
in temperate forests (Lindroth 2010). However, plants do 
not remain passive to be grazed upon but may affect vari-
ous types of insects, not only pests but also natural enemies 
of the pests. Plants often have different emissions, both in 
quality and quantity, after being stressed by biotic and abi-
otic factors, for example, by drought or high temperatures 
(Holopainen and Gershenzon 2010) as well as by grazing 
(Blande et al. 2007; Copolovici et al. 2011; Takabayashi 
and Shiojiri 2019). The different emissions after grazing by 
insects, called herbivore induced plant volatiles (HIPVs), 
have attractant effects (Bolter et al. 1997; Sun et al. 2012; 
Holopainen and Blande 2013), or repellent effects to the 
pests (De Moraes et al. 1998, 2001; Kessler and Baldwin 
2001; Kloth et al. 2012; Holopainen and Blande 2013). The 
attractant effect of HIPVs means that the more the pests visit 
and graze, the more grazing damage deteriorates at an accel-
erating pace. On the other hand, when HIPVs have a repel-
lent property, the host plant avoids further grazing, which is 
a type of direct induced-defense system via plant volatiles. 
Furthermore, included in an indirect-defense system, HIPVs 
attract natural enemies of the pests and indirectly limit graz-
ing damage (Shimoda et al. 2002; Ammunét et al. 2009; 
Klemola et al. 2012; McCormick et al. 2012).

In some cases, plants prepare a volatiles-defense system 
by emitting volatiles that are repellent to pests or attractant 
to natural enemies of the pests even before being attacked. 
The reason why plants can prepare to cope with pests before-
hand is attributed to plant-plant communication via BVOCs. 
When damaged plants emit unique BVOCs, non-damaged 
plants respond to the emissions as an emergency alert and 
increase the content of defensive compounds in the leaves 
(Himanen et al. 2010; Girón-Calva et al. 2016; Timilsena 
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et al. 2020). Because of this plant-plant communication, the 
further spread of grazing damage can be inhibited while the 
pests seek other undamaged host plants.

A number of researchers point out the possibility that 
some insecticides disrupt the activity of insects making 
their habitat near agricultural areas as well as harming pol-
linators (Christen and Fent 2017; Friedli et al. 2020). This 
has become a major concern for the conservation of forest 
ecosystems coexisting with agricultural practices. However, 
even if the pests or pollinators are healthy, plant–insect com-
munication can be disrupted due to external factors affecting 
BVOCs such as  O3 (Agrell et al. 2005; McFrederick et al. 
2009; Fuentes et al. 2013; Šimpraga et al. 2016; Masui et al. 
2020). In addition, because suburban and rural areas have 
relatively high  O3 concentrations, it is important to consider 
the possible disruption of plant–insect communication in 
these areas. Therefore, the effects of  O3 on plant–insect 
communication in suburban areas should be given more 
attention. However, information on the effect of  O3 on com-
munication with BVOCs is limited (Fuentes et al. 2013; 
Blande et al. 2014; Saunier and Blande 2019; Brosset et al. 
2020). Clarifying the communication webs in elevated  O3 
sites, e.g., suburban and rural areas, can helpto conserve 
healthy forest ecosystems under changing atmospheric envi-
ronments. Furthermore, understanding the mechanism via 
plant volatiles will provide a perspective for other initiatives 
such as integrated pest management (IPM) (Vreysen 2005). 
In this paper, we discuss the roles of factors that regulate 
insect grazing activities, including defensive indicators of 
leaves, and focus on plant volatiles as a critical factor that 
may explain differences in plant–insect interactions between 
urban centers and suburbs.

A parenthesis: the importance of pollinators 
in forests and agriculture

Pollinating insects have a significant ecological role in 
maintaining forest ecosystems and agroforestry. Land use 
systems with forest woody perennials growing among or 
around cultivated agricultural crops (agroforestry) can pro-
mote ecological and economical balance and secure sustain-
able production, helping to address sustainable development 
goals. In addition to their ecological importance, pollinators 
provide great benefits to horticultural as well as to agricul-
tural activities. Approximately 75% of crops humans depend 
on the activities of pollinators to maintain their productivity 
(Klein et al. 2007; Eilers et al. 2011). For example, hon-
eybees and bumblebees, possibly the most representative 
pollinators, are often used in greenhouse cultivation. Not 
only do pollinators sustain crop productivities, but they are 
also powerful contributors to horticultural and agricultural 
farming because they perfectly execute time-consuming and 

expensive tasks that otherwise skilled personnel would need 
to perform.

In modern practice, forest patches and agricultural areas 
often exist in the same regions, particulary in suburban and 
rural areas. Forest areas usually provide habitats for pol-
linators that contribute to agricultural crops (Rivers et al. 
2018) and vice versa. Therefore, such forestry and agricul-
tural areas complement each other by facilitating pollination 
(Proesmans et al. 2019). If plant-pollinator interactions are 
disrupted, both forest ecosystems and agricultural activities 
may be suppressed.

What factor is important for insect grazing 
under elevated  O3?

O3 effects on physical defensive systems

Generally, leaf mass per unit area (hereafter LMA) is an 
indicator of physical defense to insect herbivory (Koike et al. 
2006; de la Riva et al. 2016). Low LMA values mean that 
leaves may be easily grazed and high values that leaves may 
be more protected (Yamasaki and Kikuzawa 2003; Howe 
and Jander 2008; War et al. 2012). Elevated  O3 levels sup-
press photosynthetic activities (Sitch et al. 2007; Koike et al. 
2013; Watanabe et al. 2017; Grulke and Heath 2020), and 
photosynthesis is strongly correlated with LMA (Koike 
1988; Poorter et al. 2009), meaning that elevated  O3 can 
decrease LMA through physiological responses (Li et al. 
2015; Shang et al. 2017).

Trichomes are also a physical defense mechanism and are 
specific cell constructions on the epidermal layer of leaves 
(e.g., hairs). They are classified into glandular and non-glan-
dular trichomes, and provide a means for plants to defend 
against stresses, both abiotic (e.g., drought, freezing, UV 
radiation,  O3) and biotic (e.g., pathogens, insects) (Koike 
et al. 2006; Hauser 2014; Oksanen 2018). For  O3 stress, 
glandular trichomes reduce  O3 uptake, while non-glandular 
trichomes do not have such a defensive role against  O3 (Li 
et al. 2018; Oksanen 2018). With regards to herbivory, the 
presence of trichomes influences insect oviposition and/
or feeding by various species (Vermeij 2015; Oksanen 
2018). For example, trichomes interfere with insect mobil-
ity because of their morphology and also contribute to the 
depression effect of toxic chemicals such as phenolics that 
reduce the nutritional value of leaves (Matsuki et al. 2004; 
Schoonhoven et al. 2005; Karabourniotis et al. 2020). Both 
types of trichomes function as a defensive system but may 
not necessarily protect against the same herbivorous insect 
species; glandular trichomes may prevent the herbivory of 
an insect but may not prevent the herbivory of another which 
may only be prevented by a high density of non-glandular 
trichomes (Matsuki et al. 2004; Tian et al. 2012). Leaves 
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under elevated  O3 may already have a high density of glan-
dular trichomes which act as a barrier against herbivory. 
Whether  O3 induces high density glandular and/or non-
glandular trichomes remains still unclear. However, there is 
evidence that a rapid change in glandular trichome density 
can occur in response to frost and to  O3 to enhance plant 
tolerance, although with high variations among ecotypes of 
species (Prozherina et al. 2003). It was noteworthy that a 
shift from glandular to non-glandular trichomes was caused 
by increased defoliation in birch (Rautio et al. 2002).

O3 effects on chemical defensive systems

Plant chemical defensive compounds such as condensed 
tannins, lignin, and phenolics are mostly carbon-based 
compounds regulated by photosynthesis (e.g. Schoonhoven 
et  al. 2005). According to the carbon-nutrient balance 
(CNB) hypothesis, allocation of carbon to defensive sys-
tems becomes lower in order to keep sufficient resources for 
growth when plants are growing in nitrogen-rich soils and/or 
in conditions not favoring photosynthesis, e.g., under shade 
or the presence of other environmental stresses (Schoon-
hoven et al. 2005). Elevated  O3 can suppress photosynthesis 
and lead to decreased carbon-based defense capacities, such 
as condensed tannins or phenolics (Matyssek et al. 2012; 
Sugai et al. 2020). According to the growth differentiation 
balance (GDB) hypothesis, some plants show a high growth 
rate in order to compete with other plants and to compensate 
for herbivorous damage, rather than allocating resources to 
defense when growing in an optimum environment with high 
availability of soil nutrients and adequate light (Herms and 
Mattson 1992).

In contrast, in environments with inadequate growing 
conditions, plants have higher levels of defensive metabo-
lites (Fig. 1; Schoonhoven et al. 2005; Matyssek et al. 2012; 
Cipollini et al. 2014). In the case of early successional spe-
cies with high light demands, trees allocate their photo-
synthates more to growth than to defense during sapling to 
adult stage (Koike et al. 2006). Moreover, when trees are 

affected by atmospheric conditions decreasing photosyn-
thetic efficiency such as  O3, defensive capacities become 
more aggravated.

An important development in understanding the mecha-
nism is the recognition that plant responses to  O3 do not 
commonly follow a linear non-threshold model but widely 
follow a hormetic model (Agathokleous et al. 2019a; Bell-
ini and De Tullio 2019; Duque et al. 2019). Ozone expo-
sure inhibits physiological activities, however, suppression 
starts from a certain threshold level of exposure depend-
ing on the plant species (Agathokleous et al. 2019a). Based 
on the hormetic model (Agathokleous 2018, 2019a), low 
 O3 concentrations, (slightly above the concentrations that 
plants are adapted to) can induce positive effects, including 
enhanced photosynthesis, and improved photosystem func-
tioning, resulting in higher leaf areas and/or enhancement of 
defensive capacities by trees and other plant species. These 
suggest that  O3 effects on leaf quality is not a one-way but 
a two-way direction.

Limitation of traditional discussion in explaining 
plant–insect interactions based on foliage quality

Generally, it has been assumed that insect behavior is linked 
to the defensive properties of leaves (e.g. Bryant et al. 1983; 
Fürstenberg-Hägg et al. 2013; Agathokleous et al. 2019b). 
Low physical and chemical defensive properties indicate 
that insects can graze a plant more easily. Choice and no-
choice laboratory feeding assays showed that alder leaf 
beetle, an oligophagous pest of alder and birch, preferred 
grazing elevated  O3 leaves (over ambient  O3 leaves) when 
birch leaves had low contents of condensed tannin and phe-
nolics under elevated  O3 (Sakikawa et al. 2016; Agathokle-
ous et al. 2017). However, this phenomenon was not found 
in the field. In the field, leaf beetles grazed Japanese white 
birch individuals in ambient  O3 plots more than in elevated 
 O3 plots, although it would have been expected that the ozo-
nated leaves would have been preferred based on laboratory 

Fig. 1  Relationship between 
defensive capacity of plants 
and environmental conditions; 
C is carbon and N is nitrogen 
(illustrated from Schoonhoven 
et al. 2005)
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assays (Sakikawa et al. 2016; Agathokleous et al. 2017; Abu 
ElEla et al. 2018). To date, much research of  O3 effects on 
herbivory insects has focused on the relationship between 
the physiological response (photosynthesis, allocation of 
carbon products and nutrients) of plants and insect graz-
ing (Manninen et al. 2000; Holton et al. 2003; Kopper and 
Lindroth 2003; Agrell et al. 2005; Hamilton et al. 2005; 
Matyssek et al. 2012; Agathokleous et al. 2017; Bubica Bus-
tos et al. 2020). However, it is difficult to explain herbivory 
based on only foliage quality. Hence, apart from leaf inte-
riors, other leaf-exterior factors potentially affected by  O3 
should be identified. For instance, plant volatiles are a major 
leaf-exterior factor that is now receiving increasing interest.

New explanations: plant volatiles regulate insect 
grazing

BVOCs under elevated  O3: long‑distance signals

BVOCs can attract or repel pests and pollinators, creat-
ing an important communication platform for agroforestry 
ecosystems (Takabayashi and Shiojiri 2019). The effect of 
 O3 on BVOCs is divided into two types: (1) alteration of 
BVOCs emissions (an effect on plant metabolism), and (2) 
post-emission disruption of BVOCs in the atmosphere. In 
the former, BVOCs emissions can be negatively or positively 
affected by elevated  O3, potentially altering the behavior of 
insects that detect the BVOCs and orient to space. There are 
some tree species that significantly change their emissions 
due to  O3, while others show little or no effect, depending 
on the volatile compounds (Blande et al. 2007; Holopainen 
and Gershenzon 2010; Xu et al. 2015; Tani et al. 2017; Bison 
et al. 2018; Miyama et al. 2018). It should be noted that the 
response of BVOC emissions to elevated  O3 is dynamic and 
non-linear, often biphasic (Agathokleous et al. 2018). For 
example, in silver birch (Betula pendula Roth), the emission 
of some volatile compounds were reduced at lower  O3 levels 
but increased at higher levels (Carriero et al. 2016; Agath-
okleous et al. 2018). A literature meta-analysis revealed 
that isoprene emission is more affected by elevated  O3 than 
monoterpenes (Feng et al. 2019b).

Whether BVOC emissions are affected by elevated  O3 or 
not, post-emitted BVOCs in the atmosphere can be disrupted 
by  O3. The lifetime of each BVOC, which ranges from a 
minute to hours or days, is affected by air pollutants, includ-
ing  O3 (Fuentes et al. 2000; Atkinson and Arey 2003; Arneth 
and Niinemets 2010). Atmospheric chemistry developments 
show that many volatile substances are highly reactive with 
 O3. For example, the lifetime of limonene, a monoterpene, 
can be shorter under elevated  O3 than one under ambient 
 O3, ranging from 2 h at 26 nmol mol−1   O3 to about 40 min 
at 73 nmol mol−1 (Masui et al. 2020). The mechanism of 

shortened lifetime in elevated  O3 may be explained by a 
structural disruption of BVOCs through an oxidizing reac-
tion of the double-bond structure (Llusià et al. 2002; Atkin-
son and Arey 2003; Pinto et al. 2010). In this case, BVOCs 
functional role within an ecosystem is altered. If the attract-
ant compounds show high reactivity with  O3  (O3-reactive 
compounds), insects can be easily disoriented and wander 
away from their host plants in elevated  O3 (Fuentes et al. 
2013; Blande et al. 2014; Masui et al. 2020). In addition, 
oxidative products via reaction can show repellent effects to 
some insects (Glinwood et al. 2003; Mishra and Sihag 2010; 
Holopainen and Blande 2013), thus, the entire ecosystem 
may be affected by  O3 via BVOCs communication.

Chemical analysis of plant volatiles is an important 
explanatory factor to consider. The evaluation of  O3-reactive 
compounds is particularly necessary because there is a high 
possibility that these contribute to behavioral changes of 
insects. The composition of BVOCs depends on tree species, 
even in the same genus, i.e., some species emit only a few 
dominant compounds while others have diverse emissions, 
including monoterpenes (MT), sesquiterpenes (SQT), and 
others (Calfapietra et al. 2009; Loreto et al. 2009; Simpson 
and McPherson 2011). For species whose BVOCs compo-
sition has not been as yet clarified, BVOCs sampling and 
analysis are first needed. Moreover, heterophyllous species, 
ones that have leaves of more than one form on the same 
branch like birch (Betula sp.), show different physiological 
traits between early and late leaves (Matsuki et al. 2004; 
Koike et al. 2006; Agathokleous et al. 2017). Similarly, dif-
ferences between early and late leaves may also be found 
in BVOCs emissions. BVOCs sampling has to be arranged 
with the phenology of herbivorous insects and heterophyl-
lous species at the same time.

By comparing BVOCs among tree species that pests 
commonly graze (positive controls), compounds of high 
importance for the attractant property can be found. There 
are numerous studies that have clarified the composition of 
BVOCs of targeted trees but only showed the BVOCs pro-
file, being often difficult to refer to the relationship between 
BVOCs and insect behavior in detail (Killiny and Jones 
2017; Fancelli et al. 2018). If there is a distinct compound 
emission, it is easily identified and verification can pro-
ceed. However, in most cases it is assumed that the attract-
ant property is more attributed to a combination of several 
compounds (Bruce et al. 2005). Thus, BVOC analyses over 
multiple species, including negative controls, can help to 
detect common BVOC combination among positive controls 
(BVOCs sampling and measurement is described in Sup-
plementary Information). For example, in birch, whose main 
pest is the alder leaf beetle, Japanese white birch (Betula 
platyphylla var. japonica Hara) and alder (Alnus japonica 
(Thunb.) Steud) are positive controls; Japanese rowan (Sor-
bus commixta Hedl) and Korean mulberry (Morus australis 
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Poiret) are negative controls that grow in the same area and 
time with positive controls in Hokkaido, Japan (Masui et al. 
unpublished).

Long‑chain fatty acids under elevated  O3; 
short‑distance signals

Long-chain fatty acids (LCFAs) and their composition can 
also regulate the behavior of insects via oxidation by ele-
vated  O3 (Manosalva et al. 2011). LCFAs are not included 
in BVOCs but they function as signal chemicals. In previous 
studies, female adult beetles of Hylastinus obscurus Marsh. 
(Coleoptera: Chrysomelidae) were attracted to LCFAs lau-
ric, palmitic and oleic fatty acids, and red pumpkin beetle 
(Aulacophora foveicollis Lucas) to myristic, palmitoleic, 
α-linolenic, and nonadecanoic acids (Mukherjee and Barik 
2014). Females are assumed to be more attracted to olfactory 
signals than males because they have to detect host plants 
for oviposition as well as for feeding (Mukherjee and Barik 
2014). Because of the low volatility of LCFAs, insects sense 
them from shorter distances (Manosalva et al. 2011) com-
pared with BVOCs. Thus, it is possible that LCFAs enable 
insects to detect host plants after being attracted by BVOCs 
from a long distance. In addition, oviposition of insects can 
be influenced by LCFAs on the surface of the oviposition 
site such as seeds or leaves (Parr et al. 1998; Li and Ishikawa 
2006). Although it is still unknown how LCFAs react with 
 O3 in the atmosphere as BVOCs do, the amount of LCFAs 
in the tissue of leaves can be decreased by  O3 uptake, which 
means decreased olfactory information for insects to detect.

Comparisons between pre- and post-exposure to  O3 based 
on a GC/MS analysis, shows the dynamics of LCFA compo-
sition in elevated  O3. Previously, the relationship was stud-
ied by evaluating malondialdehyde (MDA), an indicator of 
lipid peroxidation (Calatayud et al. 2003; Cassimiro and 
Moraes 2016). However, the actual changes to compounds 
by  O3 have not, as yet, been well researched. Furthermore, 
the effect of long-term  O3 exposure to plants in open-field 
experiments remains unknown. For example, the GC/MS for 
major LCFAs, such as palmitic acid  (C16:0), linolenic acid 
 (C18:3), linoleic acid  (C18:2), oleic acid  (C18:1) and stearic 
acid  (C18:0) can be relatively easily analyzed with standard 
samples.

Olfactory response test

Several studies have examined whether elevated  O3 exposure 
can disrupt plant–insect communication (Fuentes et al. 2016; 
Girón-Calva et al. 2016; Agathokleous et al. 2017; Mofikoya 
et al. 2018; Sugai et al. 2020). These studies support the 
observation that the degradation of BVOCs by elevated  O3 
is a key driver of the disruption. To support the results in 
the field and to identify the attractant or repellent property 

of each BVOC, olfactory response tests are needed. One 
of the tests is electroantennography (EAG), which enables 
the detection of whether each compound is active on the 
insect’s antennae (Bruce et al. 2005; Fernandez and Hilker 
2007; Feng et al. 2017; Germinara et al. 2019; Iovinella et al. 
2020). EAG analysis is a remarkable and useful technique 
for olfactory experiments; however, it does not indicate 
whether the insect is attracted or repelled by a compound 
and does not show the function of BVOCs, including all 
volatile compounds from plants. The Y-tube olfactometer, 
(Y-tube preference test), is a simpler and more effective 
method in vitro. In this test, air A (with BVOCs) flowing 
from a side of an arm and air B (BVOCs mixed with  O3) 
from the other arm at the same flow rate, an insect has the 
task to move from the mouth of Y-shaped glass tube and 
select one of the two arms (Air A or Air B) to visit (Taka-
bayashi and Dicke 1992; Shimoda et al. 1997; 2002; Brilli 
et al. 2009; Fuentes et al. 2013; Mukherjee et al. 2014; 
Masui et al. 2020). Attractant properties of BVOCs can be 
demonstrated by simultaneously comparing two conditions, 
e.g. an ambient  O3 level vs an elevated  O3 level that is arti-
ficially created (Pinto et al. 2007a, b). The Y-tube test can 
provide clear results of BVOCs as phenomenon in close-to-
reality simulation.

Plant–insect communication through plant 
volatiles under elevated  O3

If olfactory cues show an attractant property, insects can visit 
and foliage quality secondarily will affect the feeding insects 
(Fig. 2). In contrast, if  O3 disrupts BVOC signals from plants 
to insects, or the BVOCs act as a repellent, insects may not 
be able to visit and thus, the chemical and physical defense 
of leaves do not play any role in plant–insect interaction, 
regardless of the actual quality. Therefore, in addition to the 
traditional insight of leaves as a feeding source, the effect 
of  O3 on plant volatiles as olfactory cues should be taken 
into consideration when plant herbivory under elevated  O3 
is studied in the future. The Y-tube preference test, as a bio-
logical assay, can show the role of plant volatiles (Fuentes 
et al. 2013; Masui et al. 2020) and the changes under pol-
luted air. Furthermore, by chemical analysis (e.g., using GC/
MS) to identify important profiles for attractants of BVOCs, 
a better understanding of the interaction between  O3 and 
plant volatiles can be achieved.

Conclusions and perspectives

The considerable temporary increase in  O3 pollution in cit-
ies worldwide subjected to “lockdown” against the spread-
ing of the severe acute respiratory syndrome coronavirus 
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2 (SARS-CoV-2) (Nakada and Urban 2020; Sharma et al. 
2020; Sicard et al. 2020) suggests that plant–insect interac-
tions in urban and suburban agroforestry systems may be 
threatened in a shorter term due to rapid changes in anthro-
pogenic activities.

Most studies on plant–insect interactions under  O3 have 
been carried out in urban and suburban areas. This creates 
an important knowledge gap of  O3 effects on plant–insect 
communication in remote/rural and mountainous natural 
forests, and especially at high altitudes, considering that 
 O3 concentrations tend to increase with increasing altitude 
and that high altitudes have considerably higher  O3 levels 
than low altitudes (Schultz et al. 2017; Saitanis et al. 2020). 
Hence, studies of how  O3 affects plant–insect interaction at 
high altitudes are also needed.

Recently considerable research of  O3 effects on plant vol-
atiles have been carried out on agricultural crops (Fuentes 
et al. 2013; Farré-Armengol et al. 2016; Khaling et al. 2016, 
2020; Acton et al. 2018; Mofikoya et al. 2018; Agathokle-
ous et al. 2019b; Duque et al. 2019). Although there are 
some recent studies on  O3 effects on forest tree volatiles (Xu 
et al. 2015, 2019; Yuan et al. 2020), the studies remain much 
fewer relatively to crops. This lack of studies with trees may 
be attributed to the practical difficulty in conducting such 
experiments with trees (in  O3-FACE systems) in terms of 
time, effort and resources needed. New studies of plant vola-
tiles with forest and avenue trees should be conducted to 
conserve healthy forest ecosystems in different environments 
facing the threat of elevated  O3.

In conclusion, biological communication via plant vola-
tiles (biogenic volatile organic compounds, long-chain fatty 
acids) between plants and insects in urban and suburban 
areas should be of concern. Traditional discussions were 
based on foliage quality (leaf mass/unit area, condensed tan-
nin, phenolics, lignin, nitrogen content), which was rightly 
assumed to directly affect pests, pollinators, and natural 
enemies. However, a new insight based on communication 
between plants and insects should be also considered. Plant 
volatiles as olfactory cues can be altered by air pollutants 
such as  O3 in the atmosphere, thereby altering the activity 
of insects before they arrive at the leaves and are affected by 
the chemical and physical foliage quality. This review serves 
as the basis to encourage further studies based on this insight 
centered on plant–insect communication via plant volatiles.
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Fig. 2  A new insight into the behavior of insects with plant volatiles 
under elevated  O3. White arrows indicate traditional discussion for 
herbivory explained with foliage qualities such as defensive capaci-
ties. The processes indicated by white arrows mean an explanation 

with traditional discussion and blue arrows mean new processes with 
plant volatiles, incorporated to traditional discussion as shown in 
main text
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