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be obtained. Using data from 170 plot measurements in 
even-aged Larix olgensis (A. Henry) plantations across a 
wide range of site qualities and with different abundances 
of woody weeds, i.e. naturally regenerated non-crop species, 
in northeast China, this study compared the two methods in 
determining the self-thinning surface across eight sample 
sizes from 30 to 170 with an even interval of 20 observations 
and also over a range of quantiles through repeated random 
sampling and estimation. Across all sample sizes and over 
the quantile range of 0.90 ≤ τ ≤ 0.99, the normal-half nor-
mal stochastic frontier estimation proved to be superior to 
quantile regression in statistical efficiency. Its parameter esti-
mates had lower degrees of variability and correspondingly 
narrower confidence intervals. This greater efficiency would 
naturally be conducive to making statistical inferences. The 
estimated self-thinning surface using all 170 observations 
enveloped about 96.5% of the data points, a degree of envel-
opment equivalent to a regression quantile estimation with a 
τ of 0.965. The stochastic frontier estimation was also more 
objective because it did not involve the subjective selec-
tion of a particular value of τ for the favoured self-thinning 
surface from several mutually intersecting surfaces as in 
quantile regression. However, quantile regression could still 
provide a valuable complement to stochastic frontier analysis 
in the estimation of the self-thinning surface as it allows 
the examination of the impact of variables other than stand 
density on different quantiles of stand biomass.

Keywords Larix olgensis · Normal-half normal 
distribution · Site productivity · Woody weeds · Sample 
size · Quantile selection

Abstract Stochastic frontier analysis and quantile regres-
sion are the two econometric approaches that have been 
commonly adopted in the determination of the self-thin-
ning boundary line or surface in two and higher dimen-
sions since their introduction to the field some 20 years ago. 
However, the rational for using one method over the other 
has, in most cases, not been clearly explained perhaps due 
to a lack of adequate appreciation of differences between 
the two approaches for delineating the self-thinning surface. 
Without an adequate understanding of such differences, the 
most informative analysis may become a missed opportunity, 
leading to an inefficient use of data, weak statistical infer-
ences and a failure to gain greater insight into the dynamics 
of plant populations and forest stands that would otherwise 
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Introduction

In plant population and community ecology, self-thinning 
refers to the progressive decline in stand density (i.e. number 
of plants per unit area) through competition-induced mortal-
ity as individual plants grow larger and collectively accu-
mulate more biomass while competition intensity increases 
and site resources become limiting for all to survive (Harper 
1977; Begon et al. 2006). A series of Japanese studies on 
density effects, intraspecific competition and self-thinning 
among plants over a decade soon after the Second World 
War gave rise to the self-thinning rule for even-aged plant 
populations (Kira et al. 1953; Koyama and Kira 1956; Shi-
nozaki and Kira 1956; Yoda et al. 1957, 1963). The rule 
delineates a density-dependent upper frontier of mean plant 
mass or total stand biomass for even-aged pure stands at 
full site occupancy in a given environment with a power 
function:

where B represents either mean plant mass or the total stand 
biomass per unit area, N is stand density, K is a species-
specific and environment-specific constant, and �1 is the self-
thinning exponent, postulated to be − 1.5 for mean plant 
mass or − 0.5 for total stand biomass (Yoda et al. 1963; 
White and Harper 1970; White 1980, 1981, 1985; Westoby 
1984; Whittington 1984). When plotted on a log–log graph, 
this power function becomes the self-thinning boundary 
line that regulates the growth trajectories of even-aged plant 
populations from herbs to trees in the two-dimensional space 
of log transformed B and N (Gorham 1979; Norberg 1988; 
Pretzsch 2002). For trees in forest stands managed for timber 
production in particular, the quadratic mean dimeter ( Dq ), 
an easily obtainable stand attribute, is often used instead of 
average tree mass or stem volume as a measure of average 
tree size in the determination of size-density relationships 
for stand density management. In this case, the maximum 
size-density relationship of Reineke (1933), which defines 
a species-specific upper limit of stand density for a given 
quadratic mean diameter on log scales, has proven to be 
a special case of the self-thinning boundary line (Pretzsch 
2002, 2009; Pretzsch et al. 2012).

For quite some time in much of the earlier literature, it 
was generally understood that the self-thinning boundary 
line was species-specific and site-independent as reviewed 
by Westoby (1984). This presumed invariability with soil 
fertility or site productivity was largely due to the limita-
tion of the original simplistic graphical analysis of the clas-
sic self-thinning experiment by Yoda et al. (1963), where 
a single boundary line was drawn visually on top of the 
self-thinning trajectories of horseweed (Erigeron canaden-
sis (L.) Cronquist) populations grown at different levels of 

(1)B = KN�1

soil fertility. A statistically more rigorous analysis of the 
same experimental data by Bi (2004) some forty years later 
revealed that the intercept of the self-thinning boundary 
line increased with soil fertility. This revelation effectively 
extended the originally presumed species-specific two-
dimensional boundary line into a three-dimensional self-
thinning surface over a gradient of soil fertility. Such a sur-
face was also observed in even-aged forest stands of both 
coniferous and broadleaf tree species (Bi 2001; Weiskittel 
et al. 2009; Zhang et al. 2013). In addition to soil fertility 
or site productivity, other environmental and climatic vari-
ables as well as stand type and history have been found to 
influence the self-thinning boundary line (Weiskittel et al. 
2009; Zhang et al. 2013; Brunet-Navarro et al. 2016; Con-
dés et al. 2017; Kweon and Comeau 2017; Andrews et al. 
2018). Furthermore, attempts have been made to delineate 
the boundary line for uneven-aged or mixed-species stands 
(Puettmann et al. 1992; Woodall et al. 2003, 2005; Ducey 
and Knapp 2010; Long and Shaw 2012; Rivoire and Le 
Moguedec 2012; Reyes-Hernandez et al. 2013; Brunet-
Navarro et al. 2016; Andrews et al. 2018; Bravo-Oviedo 
et al. 2018; Quiñonez-Barraza et al. 2018; Salas-Eljatib and 
Weiskittel 2018; Weiskittel and Kuehne 2019; Kimsey et al. 
2019; Herberich et al. 2020). These developments have fur-
ther extended the three-dimensional self-thinning surface 
exemplified by Bi (2001, 2004) into higher dimensions:

where X’s are other independent variables indexed by 
i = 2,… , I in addition to stand density.

The delineation of the two-dimensional self-thinning 
boundary line has mostly in the past relied heavily on either 
visual or more systematic selection of data points that lie 
close to a perceived or arbitrarily determined upper bound-
ary (Bi and Turvey 1997; Solomon and Zhang 2002; Sun 
et al. 2010; Deng and Li 2014; Brunet-Navarro et al. 2016; 
Ge et al. 2017).

Only the selected data are then used to formally deline-
ate the perceived boundary line through traditional methods 
such as least squares regression or principle component anal-
ysis (e.g., Bi and Turvey 1997; Zhang et al. 2005; Marchi 
2019). However, no matter how data selection is done, some 
degree of subjectivity cannot be avoided, resulting in a cer-
tain lack of objectivity in the estimated self-thinning bound-
ary line. To overcome this problem, two econometric meth-
ods, namely stochastic frontier analysis (SFA) and quantile 
regression (QR), were introduced to the estimation of the 
self-thinning boundary line by Bi et al. (2000), Bi (2001, 
2004), Cade and Guo (2000) and Zhang et al. (2005). These 
two methods have since become the most commonly used 
techniques for estimating the self-thinning boundary line or 
surface in two and higher dimensions. Stochastic frontier 

(2)B = KN�1X
�2
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analysis has been performed in some studies (e.g., Mon-
tigny and Nigh 2007; Weiskittel et al. 2009; Charru et al. 
2012; Reyes-Hernandez et al. 2013; Kweon and Comeau 
2017; Quiñonez-Barraza et al. 2018; Kimsey et al. 2019), 
while quantile regression has been carried out in others 
(e.g., Vospernik and Sterba 2015; Xue et al. 2015; Riofrío 
et al. 2016; Condés et al. 2017; Andrews et al. 2018). In far 
fewer studies, both methods have been used (Sun et al. 2010; 
Zhang et al. 2013; Salas-Eljatib and Weiskittel 2018).

Among these studies, the number of independent vari-
ables other than stand density that were incorporated into 
the model specification generally in the form of Eq. 2 has 
varied between one and four (e.g., Weiskittel et al. 2009; 
Reyes-Hernandez et al. 2013; Zhang et al. 2013; Kweon and 
Comeau 2017). Concomitantly, the number of data points 
ranged from tens to hundreds and thousands (e.g., Comeau 
et al. 2010; Sun et al. 2010; Zhang et al. 2013; Condés et al. 
2017; Kweon and Comeau 2017), and even to more than ten 
thousand in the extreme case (Vospernik and Sterba 2015). 
However, the rational for using stochastic frontier analysis 
or quantile regression has in most cases not been clearly 
explained and there appears to be a general lack of adequate 
appreciation of the differences between the two methods as 
statistical estimators for delineating the self-thinning sur-
face. Without a thorough understanding of such differences, 
the best and most informative method for analysing the valu-
able empirical data at hand may become a missed opportu-
nity, leading to an inefficient use of data, a failure to gain a 
greater insight into stand dynamics that would otherwise be 
obtained from the analysis, and more practically, leading to 
a suboptimal stand density management scheme for even-
aged forest plantations. Even more seriously, the validity of 
results may be called into question if statistical inferences 
are not made on a valid or reliable basis.

The two methods were briefly compared by Zhang et al. 
(2005) in a short research note for estimating the self-thin-
ning boundary line using 262 data points from even-aged pure 
stands of eastern white pine (Pinus strobus L.) as an example. 
Following this initial work, two brief comparisons of the meth-
ods were reported by Sun et al. (2010) and Zhang et al. (2013). 
The former used 160 observations from 10 experimental plots 
that were repeatedly measured in a spacing trial of Chinese 
fir (Cunninghamia lanceolata (Lamb) Hook.), and the later 
analysed data of ponderosa pine (Pinus ponderosa Lawson & 
C. Lawson) from 109 long-term research plots and 59 tempo-
rary inventory plots across California. In addition, the study 
by Socha and Zasada (2014) on the allometric relationships 
between density and tree dimensions in birch stands on post-
agricultural lands in Poland also contained some comparative 
results. A further and more considered comparison of these 
two methods was made in a recent study by Salas-Eljatib and 
Weiskittel (2018), particularly for determining the maximum 
stand density, i.e. the maximum number of trees at a given 

reference average diameter, using 178 observations from 130 
plots in mixed Nothofagus forests.

All these comparisons have been made in a two-dimen-
sional space, except for Zhang et al. (2013) which included 
site index in the analysis and were limited to the comparative 
positions of the estimated self-thinning boundary line. The 
methodological attributes and statistical properties of the two 
approaches that researchers need to carefully consider before 
choosing one or the other for their particular research objec-
tives and for the nature and size of data at hand remain to be 
further evaluated, particularly when the analysis goes beyond 
two dimensions. This paper aimed to further evaluate and 
highlight the pros and cons of these two methods particularly 
for estimating the self-thinning surface in higher dimensions 
through a more detailed comparison across a range of data 
sizes, (i.e. number of data points), to help researchers make 
the best choice for their analyses. In doing so, the two econo-
metric methods were briefly reviewed first to provide the mini-
mum but most essential details on their statistical properties 
as parametric boundary estimators. They were then compared 
in the estimation of the self-thinning surface in higher dimen-
sions using cross-sectional data from even-aged L. olgensis 
plantations across a range of sample sizes through repeated 
random sampling with replacement and model estimation. 
Finally, some practical guidance for choosing the best method 
is provided for researchers to address their particular research 
questions.

Materials and methods

Stochastic frontier analysis and quantile regression

Stochastic frontier analysis originated from the economic con-
cept of a production function which relates an upper boundary 
of maximum attainable output to any given quantities of a 
set of inputs in a production process (see Farrell 1957; For-
sund et al. 1980; Schmidt 1985). This econometric approach 
was first proposed some 40 years ago by Aigner et al. (1977), 
Battese and Corra (1977) and Meeusen and van den Broeck 
(1977). Over the past four decades, it has been intensively 
studied and applied to the estimation and measurements of 
productivity and technical efficiency in economics and a very 
wide range of other fields (see Kumbhakar and Lovell 2000; 
Fried et al. 2008; Kumbhakar et al. 2018 for major reviews). 
The model specification commonly used for a stochastic fron-
tier function takes the form of what is known in economics 
as the Cobb–Douglas production function with a composed 
error structure:

(3)Y = AX
�1
1
X
�2
2
...X

�k
k
eve−u



1518 D. Tian et al.

1 3

where Y is the dependent variable which is called output in 
econometrics, X’s are inputs, i.e., independent variables, A 
and β’s are parameters, ev and e−u are two error components. 
Taking logarithms, the model becomes

where y = lnY  , � = lnA, ln denotes natural logarithm, X is a 
vector of log-transformed independent variables, and β is a 
vector of parameters. The composed error term, � = v − u , is 
a compound random variable with two components and each 
is assumed to be independently and identically distributed 
across observations. The first error component ν is assumed 
to be normal with zero mean and constant variance �2

v
 and is 

intended to capture the effects of random factors external to 
producers on the frontier. The second random variable u is 
non-negative and is specified to capture the effects of techni-
cal efficiency of producers. Because u ≥ 0, it was assigned 
a half-normal distribution and an exponential distribution 
in the three seminal papers published in 1977, effectively 
giving the stochastic frontier function a normal-half normal 
and a normal-exponential specification. By allowing u to 
follow a truncated normal distribution N+

(
�, �2

u

)
 obtained 

by truncating at zero of the normal distribution with mean � 
and variance �2

u
 , Stevenson (1980) generalised the normal-

half normal model into a normal-truncated normal specifi-
cation for a more flexible representation of the patterns of 
technical efficiency u in the data. The flexibility is realised 
because the mode of u in the truncated normal distribution 
is no longer arbitrarily set at zero, but is allowed to be esti-
mated together with other parameters in the stochastic fron-
tier model. Unlike the half-normal and exponential densities 
which always have a mode at 0, the truncated-normal density 
has a mode at 0 only when � ≤ 0, but a mode at � otherwise.

Because u ≥ 0 by specification, the composed 
error term, � = v − u, is asymmetric and its expecta-
tion,E(�) = −E(u) ≤ 0 , as v and u are distributed indepen-
dently of each other. As shown in Kumbhakar and Lovell 
(2000):

and

for the normal-half normal model, and

and

for the normal-exponential model. For the normal-truncated 
normal model:

(4)y = � + X� + �

(5)E(�) = −�u
√
2∕�

(6)V(�) = �2

v
+ �2

u
(1 − 2∕�)

(7)E(�) = −�u

(8)V(�) = �2

v
+ �2

u

and

where the pre-truncation mean parameter � becomes the 
mode of the truncated normal distribution, �2

u
 is the pre-

truncation variance of normal distribution N
(
�, �2

u

)
 , 

a =
[
Φ
(
�∕�u

)]−1 and Φ(⋅) is the standard normal cumula-
tive distribution function.

Similar to the half normal distribution, the exponential 
distribution is also a special case of the truncated normal 
distribution, and as such the three most commonly used 
distributions for u are all captured by the truncated normal 
distribution (Meesters 2014). Although other alternative dis-
tributions have been proposed for u in econometrics research 
over the past four decades, stochastic frontier models based 
on the three distributions, particularly the normal-half nor-
mal model, have remained the choice of applied research-
ers in the vast majority of empirical work (Kumbhakar and 
Lovell 2000; Parmeter and Kumbhakar 2014; Kumbhakar 
et al. 2018). The model parameters can be estimated by 
the maximum likelihood method, of which comprehensive 
descriptions can be found in Aigner et al. (1977), Stevenson 
(1980), Greene (1997), Kumbhakar and Lovell (2000) and 
Kumbhakar et al. (2018).

Another econometric approach that lends itself to bound-
ary estimation is quantile regression introduced by Koenker 
and Basset (1978) at almost the same time when stochastic 
frontier analysis was first proposed. As reviewed by Kumb-
hakar et al. (2018) and shown by references therein, it has 
recently been embraced for the estimation of production 
frontiers and measurements of efficiency. Quantile regres-
sion extends the least squares regression framework, tradi-
tionally focused on the conditional mean function onto non-
central parts of the conditional distribution so that the � th 
quantile Q�(X) of the conditional probability distribution of a 
response variable Y given X, a vector of predictor variables, 
can be estimated for any chosen value of 0 < 𝜏 < 1 (Koenker 
and Hallock 2001; Koenker 2005, 2017). The estimator of 
Q�(X) proposed by Koenker and Basset (1978) minimises 
the following asymmetric loss function:

which gives positive and negative residuals the weight of 
� and 1 − � , respectively. The minimization is achieved 
through linear programming as detailed by Koenker (2005) 

(9)E(�) = −
�a

2
−

�ua√
2�

⋅ exp

�
−
1

2

�
�

�u
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�

(10)V(�) = �2

v
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a
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a
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(
� − a

�

)
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(11)argmin
𝛽
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and Davino et al. (2013), and as such avoids assumptions 
of error distributions that are required by stochastic frontier 
models.

The quantile regression estimator is consistent and 
asymptotically normally distributed under some regularity 
conditions (Koenker and Basset 1978). Under the assump-
tion of independent and identically distributed (i.i.d.) errors, 
its asymptotic variance–covariance matrix can be obtained 
analytically through the estimation of the so-called sparsity 
function by differentiating a theoretical quantile function or 
by using a difference quotient of empirical quantiles. In the 
case of non i.i.d. errors, the derivation is more complicated 
as it uses a local estimate of the sparsity function to com-
pute a Huber sandwich estimate (Koenker 2005; Hao and 
Naiman 2007). To avoid making the i.i.d. assumption, which 
is often not the case in quantile regression applications, and 
still obtain robust results, resampling methods such as boot-
strapping are commonly implemented in quantile regression 
applications (Kocherginsky et al. 2005; Koenker 2005; Hao 
and Naiman 2007; Tarr 2012). As the estimator uses a well-
known M-function, the absolute value function, it is robust 
or more resistant than the traditional least squares estimator 
to the influence of outliers, particularly for inner quantiles. 
However, the variance of quantile regression estimator is 
U-shaped with τ changing from zero to one. The implication 
of such a pattern of estimator variance for extreme quantiles 
close to the data boundary is that the estimated frontiers or 
boundary lines can be quite variable even with a very small 
change in τ, particularly when data are sparse around the 

edges, and may even cross over each other, posing difficul-
ties for statistical inferences and interpretation of results.

Data

The data set for this study came from 146 temporary square 
or rectangular plots established between 1991 and 2016 in 
even-aged larch (L. olgensis) plantations under the man-
agement of four forestry agencies across two provinces in 
northeast China: Mengjiagang (MJG) Forest Farm, Linkou 
(LK) and Dongjingcheng (DJC) Forestry Bureaux in Hei-
longjiang Province, and Songjianghe (SJH) Forestry Bureau 
in Jilin Province. These plots covered much of the natural 
distribution of the species in northeast China (see Peng et al. 
2018), and a wide range of site quality and climatic condi-
tions (Table 1). The exact initial planting densities of the 
individual plots are unknown but they were most likely to 
be 3300, 4400 and 6600 ind.  ha−1, the most common plant-
ing densities for larch plantations in northeast China (Yu 
2008). For planting densities at such high levels, the plot 
size of 0.04‒0.09 ha would contain enough trees for sum-
marizing key stand attributes and describing stand structure 
and dynamics, although larger plots would be preferable (see 
García 1998; García and Batho 2005; Wagner et al. 2010; 
Zhou et al. 2019). Some plots were in plantations that had 
been thinned many years prior to measurement as judged 
by stumps remaining on the forest floor, but their silvicul-
tural histories were not recorded. Although in even-aged 
plantations, there were only 38 plots where larch was the 

Table 1  Number of plots, 
geographical locations, 
plot size, age ranges, key 
stand attributes and climatic 
conditions across four 
forest management areas: 
Mengjiagang (MJG), Linkou 
(LK), Dongjingcheng (DJC) and 
Songjianghe (SJH)

MDH stands for mean dominant height, i.e., average height of 100 tallest trees per hectare. N and  Nw are 
the stand densities of larch and woody weeds; G and  Gw are stand basal areas of the two groups. MAR is 
mean annual rainfall

MJG LK DJC SJH

Number of plots 36 13 9 88
Longitude (E) 130°32′‒130°52′ 129°40′‒130°34′ 128°07′‒130°02′ 127°12′‒127°50′
Latitude (N) 46°20′‒46°30′ 45°51′‒45°59′ 43°30′‒44°18′ 41°44′‒42°21′
Elevation (m) 250 400‒600 450‒900 700‒1000
Mean max. temp. (°C) 35.6 37.0 36.5 34.8
Mean ann. temp (°C) 1.3 2.5 3.0 2.7
Mean min. temp. (°C) − 34.7 − 39.0 − 40.1 − 44.1
MAR (mm) 550 580 550‒600 830
Plot size (ha) 0.06, 0.09 0.04, 0.06 0.06 0.04, 0.06
Age (years) 14‒42 17‒28 15‒29 8‒35
MDH (m) 12.1‒24.2 9.7‒23.3 14.0‒34.4 2.2‒38.5
Site Index (m) 15.0‒25.1 15.6‒22.1 19.6‒23.2 10.3‒20.8
N (trees·ha−1) 450‒3078 550‒2767 1367‒2450 367‒4425
Nw (trees·ha−1) 0‒717 0‒450 0‒333 0‒1275
G  (m2  ha−1) 10.4‒33.9 6.8‒21.3 13.4‒31.9 1.6‒37.2
Gw  (m2  ha−1) 0‒5.3 0‒2.9 0‒5.6 0‒13.0
Mortality (ind.·ha−1) 0‒667 0‒125 0‒33 0‒896
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only species. In the remaining plots, larch was the dominant 
species in both number and size, as naturally regenerated 
non-crop trees had emerged and mostly grown under the 
dominant larch, possibly reflecting the differences in previ-
ous land use and in site preparations across the plantations. 
Such non-crop trees in commercial plantations are usually 
regarded and termed as woody weeds in forest research and 
management (e.g., Bi and Turvey 1994; Rose et al. 2006). 
The woody weeds included Korean pine (Pinus koraiensis 
Siebold & Zucc.) and three broadleaf species: Betula platy-
phylla Sukaczew, Quercus mongolica Fisch. ex Ledeb. and 
Populus davidiana Dode. As mostly small trees, they rep-
resented less than 30% of the total number of trees and less 
than 30% of the total stand basal area in most plots (Table 1).

Except for 24 plots on the MJG Forest Farm which were 
measured twice, all plots had a single measurement for a 
total of 170 plot measurements from the 146 plots. For the 
purpose of this paper, the potential correlation between the 
consecutive measurements of the 24 plots were not taken 
into consideration. The 170 plot measurements were effec-
tively treated as cross sectional data. Diameter overbark at 
breast height of 1.3 m above ground (DBH) and total height 
of all live trees were measured, regardless of species and 
size. For standing dead trees, only DBH was recorded. At 
the time of plot measurement, stand age ranged from 8 to 
42 years, which was close to the rotation age of 45‒50 years 
for larch plantations in this region, and stand density varied 
between 367 and 4425 trees/ha (Table 1). Stand mean domi-
nant height, calculated as the mean height of the 100 tallest 
trees per hectare, ranged from 2.2 to 38.5 m among the plots. 
With the calculated stand height and age, site index at the 
base age of 30 years was derived for each plot using the site 
index equation developed by Peng et al. (2018) for the same 
larch species in northeast China.

The aboveground biomass of individual larch trees 
was calculated from their DBH and total tree height using 
two sets of biomass equations. The first set was a system 
of additive biomass equations developed by Dong et al. 
(2016) based on data from 90 trees with DBH ranging 
from 7.6 to 35.7 cm from 17 plots in larch plantations in 
Heilongjiang province. The second set was developed by 
Zheng and Li (2013) using data from 150 trees with DBH 
between 1.6 and 44.1 cm from both plantations and natu-
ral forests over a much broader area in northeast China 
as part of the Eighth National Forest Inventory. As the 
biomass equations of Dong et al. (2016) were not intended 
for very small trees, the equations of Zheng and Li (2013) 
were used to calculate the aboveground biomass of trees 
with DBH < 5 cm. For larger trees, both sets of equations 
were used and the two biomass estimates were averaged 
for each tree and taken as its final biomass estimate. 
This simple form of model averaging was used to reduce 

possible prediction bias from arbitrarily choosing any one 
set of equations. The biomass estimates of individual larch 
trees were summed up for each plot and converted to total 
aboveground stand biomass on a pro rata basis. Standing 
dead trees were not included in the biomass calculation.

Deterministic model specification and estimation

The deterministic model specification extended that of Bi 
(2001) for estimating the self-thinning surface by incor-
porating stand density and basal area of non-larch species 
in the equation:

where B represents stand biomass of larch trees in kg  ha−1, K 
is a constant, N stands for the stand density of larch in trees/
ha,�1 is the self-thinning exponent, S is a relative measure 
of site productivity and takes any value between 0 and 1 
because it was calculated as a ratio between site index and 
the maximum site index of 26 m for larch plantations in 
northeast China, W is a relative measure of the abundance 
of woody weeds in the larch stands, �2 and �3 are parameters. 
The formulation of W was based on a still-to-be published 
study by the second author on self-thinning in relatively 
even-aged eucalypt regrowth forests in Australia. It took 
both the density and basal area of woody weeds in the larch 
stands into account:

where Nw is the density of woody weeds in trees/ha, G and 
GW indicate, respectively, the basal area of larch and that of 
woody weeds in  m2  ha−1.

This formulation of W was used following an explora-
tory analysis with the aim to overcome the collinearity 
that arose from the correlation between Nw and GW  if 
the two variables were included separately in the model 
specification. The ill effects of collinearity on parameter 
estimation and interpretation in linear regression was well 
recognised and described by Belsley (1991). In pure larch 
stands, W = 0 ; when woody weeds are present, 0 < W < 1 . 
When W = 0 in Eq. (6), woody weeds have no influence 
whatsoever on the self-thinning surface; when W > 0 , 
however, they are expected to have a negative impact on 
the self-thinning surface because of their competition with 
larch for site resources. Varying between 0 and 0.82, the 
calculated W had a positively skewed distribution with a 
median of 0.12, a mean of 0.18, a third quartile of 0.30 and 
a 90th percentile of 0.46 (Fig. 1).

(12)B = KN�1S�2e�3W

(13)W =

√(
Nw

N + Nw

)2

+

(
Gw

G + Gw

)2
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Estimating the self‑thinning surface as stochastic 
frontiers

To estimate the self-thinning surface as stochastic frontiers 
in the four-dimensional space, Eq. (12) was linearized by 
taking the natural logarithm of both sides and the linearized 
equation was then given a composed error term � = v − u:

where k = lnK , and the other variables are as previously 
defined. While the first error component, v , was assumed 
to follow N

(
0, �2

�

)
 as reviewed previously, the second error 

component, u , was considered to follow either a half normal, 
or an exponential or a truncated normal distribution. The 
combination of distributional assumptions of the two error 
components led to three stochastic frontier models, namely, 
normal-half normal (NH), normal-exponential (NE) and 
normal-truncated normal (NT). The three models were esti-
mated through the maximum likelihood estimation using the 
Quasi–Newton method in the QLIM procedure of SAS/ETS 
(SAS Institute Inc. 2014). Convergence was easily reached 

(14)lnB = k + �1lnN + �2lnS + �3W + �

for the first two simpler models with no more than 20 itera-
tions. Their parameter estimates and asymptotic standard 
errors were compared, together with their model fit sum-
maries. However, convergence was not attained for the more 
complex NT model even after 200 iterations. To overcome 
the problem of non-convergence and obtain valid parameter 
estimates, the model was repeatedly estimated 2000 times, 
each time using 170 observations randomly sampled with 
replacement from the data set. Using the parameter estimates 
from the converged cases out of the 2000 rounds of estima-
tion, the mean and standard error were calculated for all 
model parameters and taken as their parameter estimates and 
standard errors. Finally, values of �̂  , i.e., estimated residuals 
of the composed error term � in Eq. (14), were obtained for 
the three stochastic frontier models. Their residual frequency 
distributions were then plotted and examined with the aid of 
simple descriptive statistics including the mean, variance, 
skewness and kurtosis.

Fig. 1  Scatter plot matrix of stand biomass (B), stand density (N), relative site productivity index (S) and abundance of woody weeds (W) for 
170 even-aged larch stands; frequency distributions of the four variables are displayed as kernel density plots in the diagonal graphic cells
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Estimating the self‑thinning surface as regression 
quantiles

Like the stochastic frontier models, Eq. 12 was similarly 
linearized for estimating the self-thinning surface as regres-
sion quantiles:

where B� , k� , �1� , �2� , and �3� are previously defined variable 
and parameters corresponding to the chosen quantile � . But 
unlike the composed error term in the stochastic frontier 
models, �� here represents the � th quantile of the error term, 
which is set to zero as required by the model specification 
of quantile regression (Hao and Naiman 2007). As such, � 
also indicates the proportion of nonpositive residuals, or in 
other words, the proportion of data points on or under the 
self-thinning surface as defined by the �th conditional quan-
tile of lnB� for any given values of N , S and W  in Eq. (15). 
As there were 170 data points available for estimating the 
self-thinning surface in this study, 10 values of � from 0.90 
and 0.99 with an even increment of 0.01 were used in the 
QUANTREG procedure of SAS/STAT (SAS Institute Inc. 
2013). For the parameter estimates associated with each 
value of � , their approximate standard errors and 95% con-
fidence limits were computed using the resampling method 
through 2000 repetitions.

Comparative performances of the two methods 
across sample sizes

The estimations described above used all 170 observa-
tions and so the performances of stochastic frontiers and 
regression quantiles could only be compared on the basis 
of one sample size. However, as evident from the literature 
reviewed previously, the sample size, i.e., the number of 
observations or data points, used in the estimation of the 
self-thinning frontiers varied from as small as 30 observa-
tions to as large as thousands, even tens of thousands of plot 
measurements in the extreme case (e.g. Bi 2004; Condés 
et al. 2017; Kimsey et al. 2019). As statistical estimators, the 

(15)lnB� = k� + �1� lnN + �2� lnS + �3�W + ��

two methods would naturally differ in statistical efficiency 
and so their comparative performances can be expected to 
change with sample size from small to large. For a more 
complete and informative comparison of the two methods, 
the estimations described above were carried out over a 
range of sample sizes through repeated random sampling 
with replacement from the 170 observations. In doing so, 
the sample size varied from 30 to 170 with an even interval 
of 20 observations and for each sample size the sampling 
was repeated 2000 times. Each time, the self-thinning sur-
face was estimated as stochastic frontiers as well as quantile 
regression. As there were little differences in the estimated 
self-thinning surface among the three stochastic frontier 
models, only the normal-half normal model was used in 
the comparison for the sake of parsimony. Considering the 
range of sample size, 20 values of � from 0.80 to 0.99 with 
an increment of 0.01 were used in the quantile regression 
for estimating the self-thinning surface. For each sample 
size, the distribution of the 2000 estimates of each parameter 
and its descriptive statistics were obtained for the stochastic 
frontier model and quantile regression over the 20 selected 
quantiles. These descriptive statistics included the mean, 
variance, coefficient of variation, skewness and kurtosis 
calculated as the excess kurtosis, which is three less than 
the standardized fourth central moment. They were com-
pared between the stochastic frontier model and quantile 
regression across the range of sample sizes to evaluate the 
comparative performances of the two methods.

Results

The self‑thinning surface estimated as stochastic 
frontiers

There were little differences in the estimated self-thinning 
intercept � and slope �1 in Eq. 14 among the three stochastic 
frontier models with different distributional specifications 
for the composed error term � (Table 2). The estimated value 
of � was 15.90 for the normal-half normal (NH) model, 
15.72 for the normal-exponential (NE) model and 15.95 for 

Table 2  Parameter estimates and standard errors for the self-thinning surfaces estimated through the three stochastic frontier models with nor-
mal-half normal (NH), normal-exponential (NE) and normal-truncated normal (NT) specifications for the composed error term � as in Eq. 14

Unlike the two simpler models, tabulated values for the NT model were based on results from repeated sampling and estimation (see text)

� k β1 β2 β3 μ �
v

�
u

NH 15.90
(0.62)

− 0.48
(0.08)

1.54
(0.25)

− 1.52
(0.23)

0.14
(0.04)

0.88
(0.06)

NE 15.72
(0.55)

− 0.47
(0.07)

1.29
(0.23)

− 1.73
(0.21)

0.18
(0.03)

0.56
(0.06)

NT 15.95
(0.76)

− 0.50
(0.10)

1.32
(0.44)

− 1.69
(0.35)

− 177.52
(5269.24)

0.11
(0.08)

2.86
(10.49)
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the normal-truncated normal (NT) model. The estimated 
value of �1 was − 0.48 for the NH model, − 0.47 for the 
NE model and − 0.50 for the NT model. All three estimates 
of �1 were significantly different from zero but not signifi-
cantly different from − 0.50, the hypothesized self-thinning 
slope at � = 0.05 . The estimated values of �2 and �3 , the two 
parameters associated with the relative site productivity S 
and the abundance of woody weeds W, were, respectively, 
1.54 and − 1.52 for the NH model, 1.29 and − 1.73 for NE 
model, 1.32 and − 1.69 for the NT model. The differences in 
the three estimates of the same parameter were not signifi-
cant at � = 0.05 . The standard errors of parameter estimates 
were comparable among the two simpler models, but they 
were noticeably larger for the NT model (Table 2). When the 
three estimated self-thinning surfaces were sliced at particu-
lar values of S and W and the resulting self-thinning frontiers 
plotted together, they were hardly visually distinguishable 
(Fig. 2).

The estimated value of �v was smaller for the NH model 
than for the NE one (Table 2). Consistent with the stochas-
tic frontier specifications, the distribution of �̂  was nega-
tively skewed and leptokurtic for all three models (Fig. 3). 
The NH model had only six positive residuals (i.e., �𝜀 > 0 

observations above the estimated self-thinning surface) and 
a mean �̂  of − 0.67, while the NE model had 18 such residu-
als and a mean �̂  of − 0.56. With 12 positive residuals and 
a mean �̂  of − 0.59, the NT model was in the middle of the 
two simper models. The distribution of �̂  for the NH model 
had a smaller variance and was also slightly less skewed 
and less leptokurtic than the other two stochastic frontier 
models for which the variance, skewness and kurtosis of �̂  
were almost the same.

During parameter estimation, convergence was easily 
reached for the two simpler NH and NE models, but the 
convergence rate of the NT model was less than 58%, with 
only 1156 cases attaining convergence out of the 2000 
repeated estimations. Among these converged cases, about 
7.4% of the estimated mean of the pre-truncation normal 
distribution �̂  were positive, but only within a narrow open 
interval of (0, 0.81). For the remaining cases, �̂  was either 
a negative or an unreasonably large negative number. The 
lower 25% values of �̂  lay below − 12 and even dropped 
to a 6-digit negative number in the extreme case. The 
estimates of the pre-truncation standard deviation �̂u were 
correspondingly large or extremely large, ranging from a 
single digit to a three-digit number. Pearson’s correlation 

Fig. 2  Examples of self-thin-
ning frontiers obtained by slic-
ing the estimated self-thinning 
surfaces at 3 × 3 values of S 
and W, respectively, represent-
ing low, medium and high site 
quality and 0, medium and high 
abundance of woody weeds in 
even-aged larch stands. Solid 
red lines represent the stochastic 
self-thinning frontiers result-
ing from the NH, NE and NT 
models; broken blue lines from 
bottom up are those estimated 
through quantile regression 
at � = 0.90, 0.95 and 0.99. 
Numbers on lower right-hand 
corners are number of data 
points in the subspace deline-
ated by S being ≤ the value in 
top stripe of each column and 
by W being ≥ the value in the 
right stripe of each row. Solid 
dots represent pure larch stands 
with W = 0 while open circles 
stands with woody weeds
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coefficient between �̂  and �̂2
u
 was almost − 1, indicating a 

close negative linear relationship. Among the unconverged 
cases, the values of �̂  and �̂u reached when optimization 
was terminated after a large number of iterations were 
even larger negative and positive numbers than those in 
the lower 25% of the estimates of the converged cases as 
described above.

The self‑thinning surface estimated as regression 
quantiles

Parameter estimates for the self-thinning surface obtained 
through quantile regression changed systematically as � 
increased from 0.80 to 0.99 (Table 3). Among the 20 values 
of � , the parameter estimates and their standard errors were 

Fig. 3  Frequency distributions 
of residuals �̂  of the normal-half 
normal (NH), normal exponen-
tial (NE), and normal-truncated 
normal (NT) stochastic frontier 
models (top row) and residuals 
�̂� from the quantile regression 
at the � th quantile as indicated 
by the value in the stripe on top 
of each panel in the bottom row 
of the multi-panel display. The 
number on right of the red verti-
cal line in each panel indicates 
the number of residuals greater 
than zero

Table 3  Parameter estimates 
and standard errors for the self-
thinning surfaces estimated as 
the � th regression quantile

� k β1 β2 β3 � k β1 β2 β3

0.80 15.70
(0.73)

− 0.48
(0.10)

1.37
(0.35)

− 1.75
(0.31)

0.90 16.22
(1.01)

− 0.56
(0.15)

0.83
(0.33)

− 1.99
(0.35)

0.81 16.20
(0.75)

− 0.55
(0.10)

1.22
(0.34)

− 1.92
(0.31)

0.91 16.11
(1.13)

− 0.54
(0.16)

0.85
(0.35)

− 2.01
(0.38)

0.82 16.12
(0.78)

− 0.54
(0.11)

1.26
(0.33)

− 1.82
(0.32)

0.92 15.84
(1.18)

− 0.49
(0.16)

0.87
(0.40)

− 2.00
(0.42)

0.83 16.12
(0.80)

− 0.54
(0.11)

1.26
(0.33)

− 1.82
(0.31)

0.93 15.50
(1.27)

− 0.45
(0.18)

0.91
(0.38)

− 1.99
(0.44)

0.84 16.31
(0.84)

− 0.57
(0.12)

1.18
(0.32)

− 1.88
(0.32)

0.94 14.88
(1.39)

− 0.36
(0.19)

0.84
(0.42)

− 1.92
(0.51)

0.85 16.36
(0.87)

− 0.57
(0.12)

1.17
(0.31)

− 1.83
(0.32)

0.95 15.06
(1.57)

− 0.39
(0.22)

0.75
(0.45)

− 1.98
(0.57)

0.86 16.39
(0.89)

− 0.58
(0.12)

1.13
(0.30)

− 1.85
(0.31)

0.96 15.07
(1.78)

− 0.38
(0.24)

0.90
(0.52)

− 1.82
(0.64)

0.87 16.31
(0.92)

− 0.56
(0.13)

1.12
(0.31)

− 1.87
(0.31)

0.97 15.95
(2.31)

− 0.51
(0.31)

0.57
(0.68)

− 2.17
(0.76)

0.88 16.27
(0.97)

− 0.56
(0.14)

1.03
(0.30)

− 1.91
(0.32)

0.98 15.14
(3.19)

− 0.39
(0.44)

0.94
(1.68)

− 1.48
(1.08)

0.89 16.19
(1.01)

− 0.55
(0.14)

0.93
(0.32)

− 1.94
(0.33)

0.99 13.28
(8.14)

− 0.13
(1.11)

1.11
(3.11)

− 0.89
(2.68)
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closest to the stochastic frontier estimates when � = 0.80 . 
As � increased from 0.81 to 0.91, the estimated self-thin-
ning intercept k� in Eq. (9) varied within a narrow range 
between 16.11 and 16.36, while the estimated self-thinning 
slope �1� also varied narrowly between − 0.54 and − 0.58. 
At the same time, the estimates of �2� generally decreased 
from values greater than 1.20 to less than 0.90, while the 
estimates of �3� varied between − 1.82 and − 2.01. As � 
further increased beyond 0.91 to 0.99, the parameter esti-
mates for the self-thinning surface exhibited much larger 
variations. The estimated value of k� varied mostly between 
15.00 and 16.00 until it dropped down to 13.28 when � 
reached 0.99. Correspondingly, the estimated value of �1� 
varied between − 0.36 and − 0.51 before it became a much 
flatter slope of − 0.13 when � = 0.99. The estimated value 
of �2� varied mostly between 0.57 and 0.94 before reaching 
a much greater value of 1.11 when � = 0.99, while that of 
�3� varied within the range of − 2.17 to − 1.48 before a large 
increase to − 0.89 at the most extreme quantile. Over the 
more extreme quantiles, a slight change in � , even as small 
as 0.01, could lead to relatively large changes in parameter 
estimates. As expected, the standard errors of parameter 
estimates became increasingly larger as � increased beyond 
0.90 to 0.99 (Table 3). Because of the large standard errors, 
the estimated self-thinning slope �1� was not significantly 
different from zero at � = 0.05 when � ranged from 0.95 
and 0.99, and also �2� , the parameter associated the relative 
measure of site productivity S. Further detailed numerical 
and graphical examinations of the self-thinning surfaces 
estimated at different values of � revealed that they inter-
sected each other within the empirical data space delineated 
in Fig. 1, particularly for high and extreme quantiles with 
� ≥ 0.90.

Comparative performances of the two methods 
across sample sizes

The repeated sampling and estimation of the self-thinning 
surface through the normal-half normal stochastic frontier 
model revealed systematic changes in the variability, skew-
ness and kurtosis, but not the mean of parameter estimates, 
across sample sizes. The means of 2000 values of k̂  , �̂1 , 
�̂2 and �̂3 each changed little with sample size and were 
almost identical to the estimated parameters of the normal-
half normal model presented in Table 2 when sample size 
reached 170 (Fig. 4). The absolute values of coefficient of 
variation (CV) of the four parameters were expectedly the 
largest for the smallest sample size of 30, being at least or 
more than twice the values for the largest sample size of 
170 (Fig. 5). As sample size increased, the absolute value 
of CV decreased rapidly until sample size reached 90 and 
from there onwards the decline became more gradual for 
all four parameters. Concomitantly, the 90% confidence 

interval of parameter estimates (i.e. interval containing the 
middle 90% of values of parameter estimates) was increas-
ingly narrower (Fig. 4). The skewness of k̂ and �̂1 were both 
close to zero for the smallest sample size of 30 and then 
diverged, with the former showing a slight increase and 
the latter a slight decrease as sample size became larger 
(Fig. 6). The skewness of �̂2 decreased linearly with sample 
size, from 0.33 and 0.50 at sample size 30 and 50 to − 0.26 
when sample size reached 170. Contrastingly, the skewness 
of �̂3 was consistently positive across sample sizes and did 
not exhibit a systematic pattern of change, falling between 
0.31 and 0.42 for all sample sizes except for the value of 
0.21 for the largest sample size. In comparison to the skew-
ness, the pattern of change in the kurtosis with sample size 
resembled a flattened and elongated tick mark for all four 
estimated parameters, with the largest sample sizes being 
the most leptokurtic (Fig. 7). For k̂  , �̂1 and �̂3 , the kurto-
sis was mostly positive, falling between 0 and 1, but for 
�̂2 it was within ± 0.24 among the eight sample sizes. As 
expected, k̂  and �̂1 were closely and negatively correlated 
and their Pearson’s correlation coefficient (r) was almost 
− 1. In contrast to this negative correlation, k̂ was positively 
correlated with �̂2 (r = 0.81) and, to a much lesser extent, 
with �̂3 (r = 0.46).

In comparison to stochastic frontiers, the self-thinning 
surface estimated as regression quantiles through repeated 
random sampling with replacement across the eight sample 
sizes exhibited both similarities and differences in the distri-
butional characteristics of its four parameters. The degree of 
differences varied with sample size and also depended upon 
the selected quantile � . The estimated values of the self-thin-
ning intercept and slope, k̂� and �̂1� , were very similar to the 
values of k̂ and �̂1 estimated by the stochastic frontier model 
for sample sizes smaller than 100 and also for larger samples 
but only when 𝜏 < 0.90 . As � and sample size increased, k̂� 
became increasingly smaller than k̂ and at the same time �̂1� 
became increasingly greater than �̂1 . When � reached 0.99 
at the largest sample size of 170, the differences were the 
largest and became marginally significant statistically as k̂� 
and �̂1� just touched the 90% confidence limits of k̂  and �̂1 
(Fig. 4). Unlike the similarities that k̂� and �̂1� exhibited to k̂ 
and �̂1 , the estimated values of �̂2� and �̂3� were consistently 
smaller than those of �̂2 and �̂3 over the range of � across all 
sample sizes except for the extreme quantiles with � ≥ 0.98 
at large sample sizes in the case of �̂3.

Although k̂� and �̂1� were similar in value to k̂  and �̂1 , 
their variabilities were much greater and therefore the 90% 
confidence intervals were much wider than that of k̂ and �̂1 
particularly for high and extreme quantiles with � ≥ 0.90 . 
For any given quantile, the variability of ̂k� and �̂1� decreased 
with sample size, but the decrease was much less steeper for 
high and extreme quantiles (Fig. 4). The other two param-
eters, �̂2� and �̂3� , also exhibited a similar pattern of change 
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in variability, but only less prominently. The skewness and 
kurtosis of the quantile regression parameter estimates were 
quantile-dependent and showed a much greater magnitude of 
variation than that of the stochastic frontier parameter esti-
mates across the eight sample sizes (Figs. 6, 7). As sample 
size increased, the quantile-dependent variation was increas-
ingly amplified, with skewness swinging between positive 
and negative and kurtosis oscillating from leptokurtic to 
platykurtic. Similar to k̂ and �̂1 , k̂� and �̂1� were also closely 
and negatively correlated across sample sizes with correla-
tion coefficient (r) varying from − 0.85 to a value approach-
ing − 1.00, except for the smallest sample size where the cor-
relation became weak and turned positive with an r of 0.19.

Discussion

Since their introduction to the estimation of the self-thin-
ning boundary line some 20 years ago by Bi et al. (2000), 
Bi (2001, 2004), Cade and Guo (2000) and Zhang et al. 
(2005), stochastic frontier analysis and quantile regression 
have become the two most commonly adopted economet-
ric approaches by ecologists and forest biometricians in the 
determination of the self-thinning frontier or surface in two 
and higher dimensions. The two approaches were both moti-
vated in their early development by the desire to determine 
an unobservable upper boundary of maximum attainable 
output for a given vector of inputs in a production process 

Fig. 4  A multi-panel display of mean and 90% confidence limits of 
2000 estimates for each of the four parameters of the self-thinning 
surface estimated through the normal-half normal stochastic frontier 

model (blue lines) and through quantile regression over 20 evenly 
spaced � values from 0.80 to 0.99 (red curves) across the eight sample 
sizes as denoted in the top stripe of each column
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and subsequently to evaluate and benchmark the efficiencies 
of individual production units against the production fron-
tier (Kumbhakar and Lovell 2000; Parmeter and Kumbhakar 
2014; He 2017; Kumbhakar et al. 2018). While stochastic 
frontier analysis has so far been applied predominantly in 
economics and related fields (Kumbhakar et al. 2018), quan-
tile regression, as a natural extension of the traditional least 
squares regression, has enjoyed a much wider audience and 
has rapidly become a more general method in applied sta-
tistics (Koenker 2005, 2017; Hao and Naiman 2007; Davino 
et al. 2013). Although both approaches can serve the same 
purpose of boundary delineation in applied statistics far 
beyond econometrics (e.g., Brandt 2016; Rosenberg et al. 
2017), the statistical thinking and reasoning behind them 
are quite different. An adequate appreciation of the differ-
ences between the two approaches would be essential for 
researchers to select the best method to estimate the self-
thinning surface, particularly in high dimensions, for their 
data at hand and to gain a greater insight into how variables 
other than stand density would impact upon the self-thinning 
surface.

The three stochastic frontier models, each with a different 
distributional specification for u, the non-negative one-sided 
error component in the composed error term of Eq. (14), 
resulted in little and practically immaterial differences in 
the estimated self-thinning surface (Fig. 2). In this case, a 
natural question would arise: do distributional assumptions 
matter in the estimation of self-thinning surface? Despite 
the vast number of stochastic frontier analysis undertaken in 

theoretical as well as applied research with empirical data, 
surprisingly few studies have been devoted to discerning 
the impact that alternative shapes of the distribution of u 
can have on the frontier and efficiency estimation and few 
attempts have been made to explicitly address specifica-
tion testing in stochastic frontier models (Guo et al. 2018; 
Kumbhakar et al. 2018). Under the assumption of a nor-
mally distributed v in the composed error term, Wang et al. 
(2011) proposed the Pearson �2 and Komolgorov-Smirnov 
type statistics to test the goodness of fit of the specific dis-
tributional assumption on u through simulating the quan-
tiles of the composed error distribution. However, the power 
of these tests against plausible alternative distributions is 
somewhat low, making it hard to distinguish the sum of a 
normal and an exponential from the sum of a normal and a 
half-normal distribution, unless the variance of the normal 
component is very small or the sample size is very large 
(Wang et al. 2011). Furthermore, a rejection from the test 
does not necessarily imply that the distributional assump-
tion on u is incorrect as it could be that the normality dis-
tributional assumption on v or the parametric form of the 
stochastic frontier model is mis-specified (Kumbhakar et al. 
2018). An alternative test of the distributional assumptions 
on both v and u was proposed by Chen and Wang (2012) 
through a centred residuals-based method of moments esti-
mator for stochastic frontier models. Unlike the commonly 
used maximum likelihood estimator for stochastic frontier 
models, this moment estimator has yet to be implemented in 
general purpose statistical software.

Fig. 5  Relative coefficient of 
variation (RCV) of parameter 
estimates in relation to sample 
size for each of the four param-
eters of the self-thinning surface 
estimated through the NH 
stochastic frontier model (solid 
lines) and by quantile regression 
with � = 0.90, 0.95, 0.99 (three 
broken lines from bottom up in 
each panel). For each parameter, 
sample size and estimation 
method, RCV was the ratio of 
the coefficient of variation (CV) 
of 2000 estimates over the CV 
of parameter estimates obtained 
through the NH stochastic 
frontier model using the largest 
sample size of 170
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Philosophically, it does not matter that the stochastic fron-
tier models cannot be distinguished statistically if they give 
more or less the same results as it only becomes a problem 
when the models give substantively different results (Wang 
et al. 2011). The choice of a distribution for u out of an 
ever-increasing number of theoretical candidates such as 
half normal, exponential, truncated normal, gamma, Pear-
son, uniform, Beta, Weibull, doubly truncated normal, and 
even a mixture distribution, as reviewed by Kumbhakar and 
Lovell (2000), Kumbhakar et al. (2018) and Horrace and 
Parmeter (2018), is often practically driven through avail-
able statistical software to implement the method rather than 
an underlying theoretical link between a model of produc-
tive inefficiency in econometrics and the exact shape of the 
corresponding distribution. Although conceptually pleasing, 

some alternative or more complex frontier models may lead 
to difficult estimation problems as found by Ritter and Simar 
(1997) with the normal-gamma model and also shown by the 
difficulty of the NT model in attaining convergence in our 
case. Possibly as a consequence, the half-normal assump-
tion for the one-sided inefficiency term is almost without 
question the most common distribution for u in practical 
applications (Kumbhakar et al. 2018). In the case of this 
study, the estimated variance of the normally distributed 
error component �2

v
 for the NH model was about 60% of 

that for the NE model based on the estimates of �v for the 
two models (Table 2). Correspondingly there were only six 
positive residuals for the former against 18 such residuals 
for the latter. Therefore, the relatively simple half-normal 

Fig. 6  Multi-panel display of the skewness of the 2000 estimates 
for each of the four parameters of the self-thinning surface estimated 
through the normal-half normal stochastic frontier model (blue lines) 

and through quantile regression over 20 evenly spaced � values from 
0.80 to 0.99 (red curves) across the eight sample sizes as denoted in 
the top stripe of each column
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distribution became the obvious choice for u out of the three 
distributions for estimating the self-thinning surface.

Another reason for choosing the half normal distribution 
was the difficulty of the more flexible NT model in attaining 
convergence during parameter estimation and the unreason-
ably wide range and high degree of variation of �̂  and �̂u , 
the estimate values of the mean and standard deviation of 
the pre-truncation normal distribution. With a convergence 
rate of less than 58%, the normal-truncated normal (NT) 
model was the slowest and most difficult to converge dur-
ing parameter estimation. Among the 1156 estimations that 
reached convergence, a quarter ended up with �̂  being a 
large negative or an unreasonably large negative number and 
�̂u being a correspondingly large or extremely large positive 
number. Among the unconverged cases, the values of �̂  and 

�̂u when optimization was terminated after a large number 
of iterations were even larger negative and positive numbers 
than that in the lower 25% of the converged cases. In the 
cases where �̂ and �̂u tended to negative and positive infinity, 
Meesters (2014) proved mathematically that the truncated 
distribution was equal to an exponential distribution. As the 
relationship between the truncated normal and exponential 
distribution is at the boundary of the parameter space of the 
truncated normal distribution, he deduced that a maximum 
of the likelihood based on the truncated normal distribu-
tion may not exist if the underlying data is exponentially 
distributed. During parameter estimation, this non-existence 
of a maximum may result in a nonconverging optimization 
routine or result in numerical problems before finding the 
maximum as observed in this study. Another cause of the 

Fig. 7  Multi-panel display of the kurtosis of the 2000 estimates for 
each of the four parameters of the self-thinning surface estimated 
through the normal-half normal stochastic frontier model (blue lines) 

and through quantile regression over 20 evenly spaced � values from 
0.80 to 0.99 (red curves) across the eight sample sizes as denoted in 
the top stripe of each column
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slow- and non-convergence of the normal-truncated normal 
model might be the high degree of collinearity between 
� and �2

u
 as their Pearson’s correlation coefficient (r) was 

almost -1 among the 1156 converged cases. Both variables 
appear in the log-likelihood function for parameter estima-
tion, although �2

u
 in a reparameterized form (see Stevenson 

1980; Kumbhakar and Lovell 2000). On the other hand, 
because of the wide range and high degree of variation of �̂ , 
about 7.4% of its estimates were small positive values within 
an open interval of (0, 0.81) and the remaining 92.6% were 
negative. Therefore, it is almost certain that the truncated-
normal density had a mode at 0. Furthermore, as its 95% 
confidence interval contained 0, �̂ might not be judged to be 
significantly different from zero in a statistical sense, mak-
ing it hard to distinguish the truncated normal distribution 
from its special case, the half-normal when �̂ = 0 in this 
case. These reasons further strengthen our case for choosing 
the half-normal distribution for u in the stochastic frontier 
estimation of the self-thinning surface.

Unlike the maximum likelihood-based estimation of 
parameters in stochastic frontier analysis, quantile regres-
sion does not require any distributional assumption to be 
made for the quantile-specific error term �� as in Eq. (15) 
because its parameter estimates are obtained by minimising 
the asymmetric loss function as shown in Eq. (11) through 
linear programming. However, as shown in Figs. 4, 6 and 7, 
the parameter estimates, their variance, skewness and kur-
tosis were all quantile-dependent and these distributional 
characteristics also changed with sample size. Consequently, 
which value of � to choose for the estimation of the self-
thinning surface becomes a question that has to be addressed 
with sound statistical as well as biological reasoning for the 
size and nature of the empirical data under analysis. The 
value of � chosen for estimating the self-thinning frontier, 
mostly in the two-dimensional space of stand biomass or 
tree size versus stand density, has ranged largely from 0.90 
to 0.99 in the literature, with 0.95 ≤ � ≤ 0.99 being the 
most common choices (Sun et al. 2010; Zhang et al. 2013; 
Vospernik and Sterba 2015; Xue et al. 2015; Riofrío et al. 
2016; Condés et al. 2017; Andrews et al. 2018). Only in 
the most extreme cases where the research interest was for 
the estimated boundary line to completely envelope all data 
points, an extremal quantile with � greater than 0.99 was 
used (e.g. Zhang et al. 2005; Salas-Eljatib and Weiskittel 
2018). The number of observations in these studies ranged 
from tens to hundreds to thousands. Often the objectives of 
the analyses were twofold: (1) delineating the self-thinning 
boundary line to envelope most, if not all, the data points; 
and, (2) making statistical inferences about the boundary 
line across species, forest types or other environmental gra-
dients. When estimating the self-thinning surface in higher 
dimensions, a balance between the two objectives may have 
to be found in choosing the value of � for a given data set. 

As demonstrated by the results of this study, for sample sizes 
less than 100 data points, a value of 𝜏 < 0.90 may have to be 
chosen, otherwise the confidence interval of parameter esti-
mates, such as the self-thinning slope, may become far too 
wide for making any statistically significant and biologically 
meaningful inferences. Even for sample size greater than 100 
data points, high and extreme quantiles with 0.95 ≤ � ≤ 0.99 
should be selected after a careful comparison of multiple 
� values. The need for such a comparison stems from the 
following reasons: (1) the confidence intervals of param-
eter estimates may be too wide as shown in Fig. 6; (2) the 
self-thinning surfaces estimated at different quantiles could 
intersect each other; and, (3) parameter estimates at the 
extremal quantile of � = 0.99 may become illogical, lead-
ing to a rather flattened self-thinning slope (Fig. 4). These 
problems can potentially further complicate the interpreta-
tion of results. Without such a careful comparison to strike 
a balance between the two objectives, quantile regression 
would likely carry a certain degree of subjectivity, defying 
the original purpose of its use i.e. to avoid the long-standing 
problem of subjectivity in the estimation of the self-thinning 
boundary line as described in the introduction.

Across all eight sample sizes and over the quantile 
range of 0.90 ≤ � ≤ 0.99 that is most applicable for esti-
mating the self-thinning surface in higher dimensions, the 
normal-half normal stochastic frontier model proved to 
be superior to quantile regression in the sense of statis-
tical efficiency. Its parameter estimates had much lower 
degrees of variability and correspondingly narrower con-
fidence intervals (Figs. 4, 5). This greater efficiency would 
naturally be conducive to detecting differences among 
species, forest types, site classes and other environmen-
tal and climatic conditions through statistical inferences. 
When the entire data set of all 170 observations were 
used in the estimation, the model had only six positive 
residuals and therefore the estimated self-thinning surface 
enveloped about 96.5% of the data points. This degree of 
envelopment would be equivalent to a regression quantile 
estimation with a � of 0.965, but it was achieved with a 
much greater degree of precision through the stochastic 
frontier estimation. Such comparative performances of the 
two methods could also be seen from the results reported 
but not noted or elaborated by Zhang et al. (2013). Fur-
thermore, the stochastic frontier estimation could lead to 
a more objective self-thinning surface because it did not 
involve the subjective selection of a particular value of � 
to peel through the data space in high dimensions as in 
quantile regression.

However, quantile regression could still provide a val-
uable complement to stochastic frontier analysis in the 
estimation of the self-thinning surface as it allowed the 
examination of the impact of variables other than stand 
density, namely S and W in this case, on different quantiles 
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of stand biomass. The quantile regression estimates of �2 
and �3 , the two parameters associated with relative site 
productivity S and the abundance of woody weeds, exhib-
ited somewhat different patterns of quantile-dependence 
(Table 3, Fig. 4). When � increased from 0.80 to 0.95, 
�̂2 generally decreased but �̂3 showed no obvious change 
trend. As � further increased, both �̂2 and �̂3 increased, but 
with the former less so than the latter. The effect of site 
productivity and the impact of the abundance of woody 
weeds on the accumulation of stand biomass were not the 
same across the conditional quantiles. Such differences, 
when carefully examined, would provide a greater insight 
into the growth dynamics of the even-aged larch stands 
growing under the self-thinning surface. This comple-
mentarity between stochastic frontier analysis and quan-
tile regression argues for the application of both meth-
ods in the estimation of the self-thinning surface in high 
dimensions, especially when dealing with data that do not 
conform to the distributional assumptions of stochastic 
frontier models.

Conclusions

For estimating the self-thinning surface in higher dimensions 
using cross-sectional data, the normal-half normal (NH) 
stochastic frontier model proved to be superior to quantile 
regression over the quantile range of 0.90 ≤ � ≤ 0.99 across 
small as well as large sample sizes. The superiority lies not 
only in the statistical efficiency of parameter estimation but 
also in the greater objectivity of the stochastic frontier model 
as it does not involve the subjective selection of a particular 
value of � as in quantile regression. The higher statistical 
efficiency and greater degree of objectivity are conducive 
to making statistical inferences about the parameters of the 
self-thinning surface. However, quantile regression can still 
provide a valuable complement to stochastic frontier analy-
sis in the estimation of the self-thinning surface because it 
can deal with data that do not conform to the distributional 
assumptions of stochastic frontier models and help reveal 
the impact of variables other than stand density on stand 
biomass at levels of � below the estimated surface.
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